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Food systems and the communities they support are increasingly challenged
by climate change and the need to arrest escalating threats through mitigation
and adaptation. To ensure climate change mitigation strategies can be
implemented effectively and to support substantial gains in greenhouse gas
emissions reduction, it is, therefore, valuable to understand where climate-
smart strategies might be used for best effect. We assessed mariculture in
171 coastal countries for vulnerabilities to climate change (12 indicators)
and opportunities to deliver climate mitigation outcomes (nine indicators).
We identified Northern America and Europe as having comparatively lower
regional vulnerability and higher opportunity for impact on climate mitiga-
tion. Australia, Canada, France, Italy, Japan, Republic of Korea, New
Zealand, Norway and the United States of America were identified as well-
positioned to advance strategies linked to mariculture. However, the nature
of vulnerabilities and opportunities within and between all regions and
countries varied, due to the formation of existing mariculture, human devel-
opment factors and governance capacity. Our analysis demonstrates that
global discussion will be valuable to motivating climate-smart approaches
associated with mariculture, but to ensure these solutions contribute to a resi-
lient future, for industry, ecosystems and communities, local adaptation will
be needed to address constraints and to leverage local prospects.

This article is part of the theme issue ‘Nurturing resilient marine
ecosystems’.
1. Introduction
Food systems are highly exposed to the effects of climate change but are, in
themselves, key contributors with 26% of total global greenhouse gas (GHG)
emissions coming from industry associated with food production [1,2]. Strat-
egies that can reduce the climate impacts of food production while meeting
increasing demand are, consequently, critically needed [3]. Mariculture (aqua-
culture in marine environments) is an important and growing food sector
and can form a lower GHG emission source of protein than agricultural sources
(e.g. beef and pork) [2,4]. Emissions from finfish and shellfish aquaculture in
2017 (93% of global aquaculture production and excluding aquatic plants)
were estimated to be 0.49% of total anthropogenic sources (263 Mt CO2e [5]).
But this figure doesn’t account for emissions from post-harvest activities and
the supply of seafood to market, nor indirect emissions, such as those that
might occur through degradation of the environment. Ongoing emissions
associated with the mariculture production system are therefore undoubtedly
higher, and while sustainable growth in this industry could make a valuable
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contribution to food and nutritional security [6–8], mitigation
of emissions must be a focus in its development.

Mariculture is also garnering attention for its potential to
support nature-based solutions, such as the farming of sea-
weed for GHG emissions reductions through its use in
animal feeds—which can reduce methane—as biofuels, or
as products that might support carbon sequestration, such
as fertilizers that improve soil health and carbon retention
[9,10]. Yet, mariculture—like all aquaculture—is highly sus-
ceptible to a range of climate impacts, including physical
effects such as shifts in weather patterns and severe weather
events [11–13], but also socio-economic capacity and the abil-
ity of industry, government and communities to respond to
change [14–16]. It is anticipated that climate change will
have some positive effects on mariculture, including enabling
the growth of species in new locations or extended growing
seasons, but the impacts on this industry are projected to
be predominantly negative and to occur throughout the
value chain [14,17,18]. Impacts are also expected to occur
throughout culture environments (freshwater, brackish and
marine), though the effects of some key threats, particularly
severe weather events and changes to water quality (e.g. sal-
inity, ocean acidification), will most certainly have a greater
impact on coastal areas and aquaculture in brackish and
marine environments [14,17]. Furthermore, aquatic foods
are some of the most highly traded commodities among
food and agricultural sectors. The exposure of supply
chains to climate-related disruptions can exacerbate the
vulnerability of mariculture to climate change [19,20].

To ensure that climate change mitigation can be achieved
it is useful to understand how and where mitigation strat-
egies can be deployed for maximum benefit. The
vulnerability of food production systems and communities
can, however, present a barrier to their implementation and
sustainability, because they can, for example, demand
additional resources not readily available or require industry
to move or expand [16,17,21,22]. Here, we combine a view of
the vulnerability of mariculture to climate change with an
assessment of the opportunity to leverage a range of factors
as pathways to climate change mitigation. Twelve indicators
of vulnerability from five themes and nine indicators of lever-
age opportunity from four themes were used to assess 171
coastal countries, and the implications of the assessment
explored at global, regional and country scales (box 1). This
study builds on existing analyses, such as integrated assess-
ments of fisheries and aquaculture and their relationship
with sustainability objectives (e.g. [27]), by considering a
broad range of factors explicitly associated with the maricul-
ture production system and ways in which this industry
could be linked to emissions reduction and climate mitigation
strategies. To rise to the challenge of meeting the growing
demand for food within increasingly constrained envi-
ronmental limits [8], development of a climate-smart
mariculture industry at successive spatial scales must occur
[17]. Our analysis assists in understanding which countries
are currently well-placed to implement climate-smart mari-
culture strategies, and the strategies that may be available
to all coastal countries worldwide to realize climate mitiga-
tion outcomes, in light of the vulnerabilities they will face
as a result of climate change.

‘Vulnerability’ in our analysis refers to the collective
impact of climate change on mariculture, and the resulting
limitations that countries may face in sustaining or growing
this industry into the future. Our use of this term incorpor-
ates, but does not isolate, measurement of exposure,
sensitivity and adaptive capacity, which are commonly
used in climate vulnerability assessments [14,15,28]. The indi-
cators used relate to mariculture as a food production system
(e.g. species and quantities produced, consumption of sea-
food products, governance) and are consistent with the
types of responses needed to build industry and community
capacity to respond to climate change, specifically absorp-
tive capacity (capacity for persistence), adaptive capacity
(incremental adjustment) and transformative capacity (trans-
formational responses) [29,30]. Our view of these types of
capacity follow the definition of these factors provided by
Béné et al. [30], and resilience is the result of maintaining
and improving each of these types of capacity in an integra-
tive way [30]. Prior assessments of the impacts of climate
change on aquaculture highlight that adaptive capacity, in
particular, will be influential in the successful adaptation of
climate mitigation strategies, and should be implemented
in parallel with strategies that support broader adaptation
outcomes [14,17].

‘Leverage’ describes pathways through which climate
mitigation approaches could be focused, because ‘leverage
points’ can be used to identify places where transformation
for sustainability can be realized in complex food systems
[31]. For example, interventions for reducing climate impacts
from industry practices can include enhancing efficiencies in
crop yields or converting crop production for human food
use (rather than animal feed), thereby reducing calorific loss
from food waste [32]. To date, mariculture has been largely
excluded from the narrative of sustainable global food pro-
duction (i.e. viewing aquaculture as a food system) despite
many aspects of mariculture being synonymous with agricul-
tural practices, such as the use of feed and production of
waste [33,34]. The importance of seafood in food and nutri-
tional security means its inclusion in approaches to broader
food policies to increase resilience and our responses to
climate change is needed [35].
2. Methods
(a) Data collection and processing
Inconsistent reporting in datasets occurs across seafood indus-
tries, and there is known to be sustained misrepresentation of
mariculture statistics at various scales [14,33,36]. Aquaculture
data in global datasets can also be over-aggregated in compari-
son to fisheries data (for example, the Organisation for
Economic Co-operation and Development provides country-
level aquaculture production data but only in aggregate, by com-
bining freshwater and marine culture as well as multiple
organisms, despite more explicitly detailing fisheries statistics),
thus precluding the use of valuable sources of information in cli-
mate mitigation analyses. Additionally, databases that do contain
detailed information relevant to mariculture are not always
identifiable via conventional search methods and search terms.
An important example is the UN Food and Agriculture Organiz-
ation’s FishStatJ database [37], which provides access to the most
recent and complete seafood production and consumption stat-
istics. Despite being widely known and regarded, this database
does not appear as an obvious dataset under many search
terms and can be overlooked in a structured review. To approach
this complexity of disparate data sources and varying compre-
hensiveness, we used an iterative search process to identify



Box 1. Interpreting vulnerabilities and leverage for climate-smart outcomes in mariculture.

We collated indicator data on the vulnerability of mariculture to climate change impacts and the opportunities associated
with development of a climate-smart mariculture industry. The intention is for these data and analyses to support industry
sectors, governments and international organizations to respond to climate change impacts on, and from, mariculture, and to
pursue climate-smart strategies. These responses may be specific to a country or region, or they may bridge challenges across
multiple jurisdictions.
Example 1: Cross-jurisdictional design, seafood consumption
Countries with high rates of consumption and importation of fish and fishery products (greater than the 80th percentile of
the dataset based on all countries, e.g. France, Fiji, Kiribati) could implement strategies to decrease the proportion of
imported products in favour of increased domestic production, thus reducing the length of supply chains and associated
GHG emissions and building resilience in domestic mariculture. Indicators of the scale of opportunity to implement this
strategy include an understanding of the vulnerability of consumption (reliance or preference for fish and fishery products)
and a measure of the countries’ seafood consumption footprint. Promoting local products in domestic markets (e.g. building
brand value for provenance, food safety standards or values, tax incentives) could be used to support growth in use and
subsequent production of local food. However, where a country is also ‘vulnerable’ due to, for example, low rates of
annual production (under the 20th percentile) or diversity in the production portfolio, operational strategies such as increased
investment into research, infrastructure, supporting legislation or training and development will be needed to support this
objective. This example is illustrated in countries such as Timor-Leste, where the opportunity to reduce reliance on imported
products is high (the country is currently above the 80th percentile for this metric) and vulnerability in production is medium
(between the 40th and 60th percentiles). However, vulnerability is increased by a lack of evenness (less than 20th percentile)
in the number of different species produced, which could see regular shocks to the production system reducing the country’s
capacity to reliably meet greater domestic demand.
Example 2: Country-scale analysis, Japan
When evaluating vulnerabilities (impacts of climate change on mariculture at the country-scale reported in electronic sup-
plementary information, figure S1), Japan exhibits high levels of seafood consumption per capita (i.e. greater than 80th
percentile based on all countries’ data*) with medium variance (between the 40th and 60th percentiles based on data from
all countries), rendering the population and export commodities vulnerable to fluctuations in seafood trade and supply.
However, this risk is offset by low vulnerability to the impacts of climate change in domestic mariculture production, charac-
terized by high production quantities (greater than 80th percentile), low variance in production (less than 20th percentile of
data from all countries) and high diversity across mariculture sectors and the species produced (the production diversity
value is greater than 80th percentile of the full dataset), which can indicate greater stability and resilience [20,23]. Japan
also has low and low–medium vulnerability scores for projected changes to finfish production from climate change and for
the GFSI Natural Resources and Resilience score (less than 20th percentile and between the 20th and 40th percentiles respect-
ively for the relevant datasets). That said, the coastal waters of Japan are at a high risk from coastal eutrophication (scoring
above the 80th percentile for coastal nutrient pollution), an environmental stressor that can exacerbate climate change effects,
such as warming waters, and reduce the marine environment’s overall resilience [24].

Leverage opportunities for Japan appear to be diverse and numerous (opportunity for levereage at the country-scale
reported in electronic supplementary information, figure S2), suggesting a suite of strategies may be available to realize
the development of climate-smart approaches. Reducing imported seafood by increasing domestic aquaculture production
may present an opportunity to decrease the footprint of seafood consumption by shortening supply chains, thereby reducing
GHG emissions associated with post-farming activities (e.g. offshore processing and transportation). Although high quan-
tities of emissions can typically be attributable to production (e.g. emissions associated with on-farm activities) [5],
increasing globalization of seafood products and trade (e.g. importation of feed, re-importation of raw or value-added pro-
duct previously exported or export of products to remote markets) [23] might undermine otherwise low emissions profiles.
Strategic development of bivalve shellfish and seaweed aquaculture to promote ecosystem recovery (e.g. nutrient removal
[25,26]) could provide a valuable leverage opportunity for Japanese mariculture, contributing to reducing coastal
eutrophication and in turn increasing local marine environmental resilience to climate change impacts and cumulative stres-
sors. Japan scores high for leverage opportunity through factors that can enable mariculture development and adaptation
(greater than 80th percentile based on all countries’ data, for each indicator), including sound regulatory quality, logistics
performance and investment into research and development, indicating the country is well-placed to implement practices
that proactively address climate risk and grow positive climate outcomes from industry activity.

*Percentiles used to classify indicator data into measures of vulnerability and leverage opportunity (low through high), provided in
parentheses, are included as examples and apply to the country and regional descriptions of indicators classifications throughout §3. See
Materials and Methods, and Supplementary Methods and Supplementary table 1 in the electronic supplementary material for description
of the designation of ‘low’, ‘low–medium, ‘medium’, ‘medium-high’ and ‘high’ classifications.
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indicators of vulnerability and leverage and associated datasets.
This process was informed by an understanding of the types of
data and databases used in the literature to inform similar
climate and aquaculture analyses and the expert opinion of the
authors through a series of workshops directed by structured
questions and resolutions. During these workshops, information
and datasets for potential indicators were reviewed, decisions on
indicators to be included and excluded at each step in the
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exploratory process were resolved, and the direction of the
relationship of the indicators was agreed.

To determine the indicators used, we first identified high-
level themes considered most relevant to climate change vulner-
ability (food production, seafood consumption, climate change
impacts, development status and resource resilience) and the
opportunity to leverage gains in GHG emissions (potential for
GHG emissions reduction, ecosystem services, production and
supply chains and leverage enablers associated with governance
and adaptive capacity). These themes represent key factors
associated with different parts of the mariculture production
system. But the impacts of climate change, and pathways to miti-
gate its effects, are also influenced by social and economic
factors, hence a range of indicators associated with interlinked
social and economic vulnerabilities and mitigation approaches
were therefore also included (e.g. national seafood consumption,
governance and adaptive capacity). Drawing on examples from
the literature, a broad list of indicators that could potentially be
used to assess more discrete aspects of these themes was then
generated. Each potential indicator was screened for available
data that could enable assessment to a country-scale. To foster
access and visibility of the existing information on mariculture
and climate change, we favoured the use of open source, readily
available datasets, in particular United Nations and World Bank
data, including Food and Agriculture Organization (FAO) stat-
istics for aquaculture production and consumption of fish and
fishery products, and the Human Development Index (HDI)
and Global Food Security Index (GFSI). Composite scores or
indices were also favoured for some indicators, such as projected
climate impacts, because these indices would facilitate the con-
sideration of a range factors within that dataset (e.g. the GFSI
includes data on a range of factors associated with food afford-
ability, availability, quality and safety, and Natural Resources
and Resilience; the projected climate impacts in Froehlich et al.
[38] include consideration of sea surface temperature, chlorophyll
and ocean acidification [38]). From this process, 29 indicators of
vulnerability (N indicators = 15) and leverage (N indicators =
14) were identified as highly relevant and available for analysis.
Data on all 29 indicators were collated and a pairwise test was
used to check for correlation. Eight indicators were excluded
on the basis of being highly correlated with other similar indi-
cators (greater than 0.8), or due to there being insufficient
resolution in the dataset to enable assessment to a country-
scale (see electronic supplementary information for methods
and results associated with the correlation test and description
of the indicators excluded). In addition, where the length of the
time-series and comprehensiveness of the data permitted, we
initially generated summary values for each indicator over two
distinct time periods (2000–2009 and 2010–2017). Data for the
two time periods were found to be strongly positively correlated
for all indicators assessed. The results presented in the final
analysis were, therefore, based on the later time period only
and these values should be viewed as also representative of the
data for the first time period. Twenty-one indicators were
adopted for final analysis (table 1).
(b) Indicators of vulnerability
To assess mariculture in each country, data were collated on the
portfolio of each country’s production between 2000 and 2017
(marine fishes, diadromous fishes, crustaceans, molluscs, aquatic
plants and miscellaneous animal species) from the FAO Global
Fishery and Aquaculture Production Statistics v.2019.1.0 (using
FishStatJ, v.3.05.3). From these data we derived measures for
the mariculture production indicators, specifically: mean
annual production (indicator 1.1.1), variance in production (coef-
ficient of variation of the mean annual production in a given time
period; 1.1.2) and mean total aquaculture production per capita,
as a basic illustration of the scale of production within a country
relative to its population (1.1.3). A more diverse food production
portfolio can make production more stable over time, which can
increase resilience [19,20]. Aquaculture is a diverse activity with
a large number of species produced at a global level. However,
the type and number of species produced across all countries
vary considerably. We measured a country’s diversity in pro-
duction across different mariculture sectors (1.1.4) using the
Shannon’s H diversity metric [46] (see electronic supplementary
information for further description of methods used to assess
each indicator), based on species richness and annual total pro-
duction quantities for each species from the FAO production
data. As well as assessing the diversity of the production portfolio,
we also considered a country’s ‘evenness’ in production, to pro-
vide insight into countries where the portfolio may be diverse in
terms of the total number of species produced but still vulnerable
to shocks, because production is disproportionately biased toward
high volumes from a small number of species. Pielou’s J evenness
metric [47] was used to assess this indicator (1.1.5), using the
maximum number of species produced in a region as the denomi-
nator. Adopting the maximum number of species within a region
for this measure, rather than the global maximum, prevented a
disproportionate influence from countries from other regions
that produce very small or very large numbers of species, and
therefore the likelihood that regional trends in evenness would
be obscured (e.g. by comparing the diversity of production in
Asian countries with that of small island nations in the Southwest
Pacific).

Seafood is a popular commodity and an important source of
protein and nutrition. This can expose countries with a depen-
dence on seafood to production- or trade-related shocks [19].
The FAO Food Balance Sheet dataset [39] was used to generate
mean apparent consumption of fish and fishery products (kg)
per capita per year (1.2.1) and variability around the mean
(1.2.2), for the two time periods 2000–2009 and 2010–2013
(2013 being the last year of data available at the time these
data were downloaded).

Climate change impacts to aquaculture production were con-
sidered based on data from a recent study [38], which projected
changes in capacity of coastal aquaculture sectors under altered
temperature and pH conditions. We used country-level projec-
tions to 2050 of the percentage change in production, positive
or negative, from this study for bivalves (1.3.1) and finfish (1.3.2).

The HDI score for each country (1.4.1) was included as an
indicator of human capacity, and therefore vulnerability [30],
using the most recent assessments of HDI data available (2017).
To understand patterns associated with declining or unchanged
HDI scores for countries that had high and medium-high vulner-
ability, we also assessed their trend in HDI scores from 1990–
2017. This was done by extracting the slope coefficient from a
linear model of the HDI score over time, excluding countries
with less than three years of data. Smaller coefficient values rep-
resented a stagnation of the HDI score, or a smaller change over
time, thus providing an indication of countries that may be par-
ticularly at risk from both low HDI scores (those ranking as high
or medium-high vulnerability) and unchanged or minimal pro-
gress in realizing human development outcomes (see also
electronic supplementary information and Results). Because
this assessment was only undertaken for countries scoring high
and medium-high for HDI score, we did not include the HDI
trend classification in the primary results, but rather as a sup-
plemental analysis (see electronic supplementary information,
table S5).

To understand threats to the resilience of coastal natural
resources, we used a measure of long-term change in the dis-
charge of dissolved inorganic nitrogen to coastal areas (1.5.1).
Coastal eutrophication is a key contributor to cumulative effects
that can decrease ecosystem health and reduce resilience, and
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will compound the impacts of climate change [24]. The over-
whelming majority of mariculture occurs in the coastal zone,
and so this threat is especially relevant to industry activity in
this environment. Eutrophication data were normalized accord-
ing to the area of a country’s Exclusive Economic Zone to
provide a more repetitive measure of this threat at a country-
scale.

The composite GFSI score was also included as an indicator
because this index measures a country’s overall food security
based on a variety of contributing sub-scores of exposure in the
natural assets crucial to food security; water, land and oceans.
The natural resource and resilience scores (Category 4 of the
GFSI index) are a risk adjustment factor representing a country’s
exposure to climate impacts and included measures of exposure
to 28 factors, such as changes in temperature, drought, flooding,
storm severity and sea-level rise. We used the natural resource-
related risk and vulnerability score as an indicator to incorporate
an understanding of broader climate change influences in the
ocean and on land (1.5.2), because land-based effects, such as
drought, can generate impacts to aquaculture where there is a
reliance on terrestrial inputs (e.g. impacts on crops used for
feed or runoff through catchments) [27].
7:20210128
(c) Indicators of leverage
Annual per capita CO2 emissions were obtained from the World
Bank, ‘Our World in Data’ (2.1.1), and summarized to generate
a mean for each country over two time periods, 2000–2009 and
2010–2017. Countries that have greater CO2 emissions per capita
provide a prospect to target transformative change in GHG
emissions reductions. As a highly traded commodity,
the consumption and production of seafood also require con-
sideration of associated GHG emissions and opportunities for
reductions (e.g. reductions in ‘food miles’). We included scores
for the seafood ‘consumption footprint’ (kg per capita) generated
in a recent study [44] that account for multiple inputs and out-
puts, including the use of feed for aquaculture. An aggregated
score of the consumption footprint that measures aquaculture
and fish meal (as a requirement for the production of some aqua-
culture products), but excluding measurement of the footprint of
wild-caught fisheries consumption, was adopted (2.1.2).

Improving supply chains that may be GHG emissions-inten-
sive could provide a leverage point to close the ‘diet gap’ [32].
Increasing consumption of domestic mariculture products may
therefore present an opportunity to reduce GHG emissions by,
for example, reducing excessive transport of products (e.g. impor-
tation of locally produced feed) or the importation of goods that
can be produced locally. As an indicator of a country’s gross mar-
iculture supply chain, and the opportunity to reduce supply chain
emissions, we calculated the proportion of domestic mariculture
production in relation to imported seafood products (using the
FAO data) for each year from 2000–2017. We assessed changes
in the proportion of production versus imports over time using
the slope coefficient from a linear model of each country’s pro-
portional values. The slope coefficient was used to indicate the
direction (+ or −) and the magnitude of any trend in pro-
duction:import quantities through time (2.1.3).

The potential to leverage environmental co-benefits from
mariculture through ecosystem services was considered using
the global Restorative Aquaculture Opportunity Index [25] for
seaweed (2.2.1) and bivalve shellfish production (2.2.2). This
index accounts for a range of local environmental, socio-econ-
omic and human health factors that create impacts to marine
areas and can enable restorative aquaculture outcomes. We also
assessed the potential for growth in low emissions aquaculture
sectors (a reduction associated with ‘yield gap’ [32]), using the
average of the proportion of a country’s mean total mariculture
production per annum for the aquatic plant and mollusc
aquaculture sectors (2.2.3). Life cycle analyses of sector or
species-specific GHG emissions for aquaculture have identified
aquatic plant and mollusc aquaculture, particularly bivalves, as
having comparably low GHG emissions in comparison to other
sectors [1,4,48].

The quality of governance—its scope and useability—can
influence how vulnerable the aquaculture industry is to climate
change [28]. Regions and countries that are more prepared for
or more capable of responding and adapting to the impacts of cli-
mate change will have better capacity to implement ongoing
strategies in aquaculture production systems, which will reinforce
improvements in resilience through positive change in the absorp-
tive, adaptive and transformative capacity of a community [30].
Good governance and investment into infrastructure, knowledge
and capacity can support effective, sustainable development
[49,50]. We viewed these factors as ‘enablers’ of this opportunity,
and therefore leverage. The capacity to leverage the existing
status of these key enablers was assessed using indicators of over-
all regulatory quality (2.4.1) and logistics performance (2.4.2) from
the World Bank (the World Governance and Development Indi-
cators), and research and development expenditure as a
percentage of a country’s gross domestic product (2.4.3).
(d) Analysis and visualization
Data processing and visualization were undertaken using R stat-
istical software [51]. The FAO’s system of regional and country
classification was used to aggregate data for assessment, focusing
only on coastal countries (i.e. those with opportunity for maricul-
ture). A semi-qualitative approach is commonly adopted in
aquaculture vulnerability assessments due to limitations in the
comparability of raw data across factors and numeric scales. In
this approach, a range of datasets that can measure sensitivity,
exposure and adaptive capacity are often pooled and classified
into ranks or scores to generate more comparable metrics
[14,28]. The datasets used in this study required the same
approach, and it enabled us to consider vulnerability and leverage
using a consistent measure. Our analysis compared data across the
countries assessed rather than measuring the actual effect of a vul-
nerability and leverage indicator per se (e.g. a measure of the effect
of climate change on production). This approach further enabled
comparison at multiple spatial scales, but the results must there-
fore be viewed as relative to the cohort of countries assessed
and the indicators used. Additionally, we sought to understand
the opportunities available for directing climate-smart approaches,
hence our interpretation of ‘vulnerability’ and ‘leverage’ may
differ from the interpretation of these factors in a study with a
different focus, such as human development. For instance,
depending on the context, high mariculture production quantities
can be interpreted as making a country more vulnerable to climate
change, because the degree of exposure and sensitivity to climate
change can increase with higher production volumes [14,16] or, as
per our assessment, more resilient and adaptive, contributing to
absorptive capacity and improving the ability to recover from
impacts. Weighting of the indicators used was considered
during development of the study with a number of methods
explored, but a weighting was not applied due to the difficulty
in using this approach in a consistent way that is relevant at mul-
tiple spatial scales (global- to country-level), and the risk of
inappropriately weighted indicators having an undue influence
on the assessment.

To enable comparison across indicators and datasets we
rescaled all data using a linear approach, converting raw data
to a common numerical scale. This changed the lowest value of
each indicator to 0 and the highest value to 10, rescaling all
other values proportionately, such that the distribution of the
dataset and the relative differences between country scores
were preserved. During re-scaling, indicators with an inverse
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relationship to vulnerability and leverage were reversed to align
all datasets along a common scale, with 0 being the ‘worst’ score
(highest vulnerability or lowest leverage opportunity) and 10 the
‘best’ (lowest vulnerability or highest leverage opportunity). Re-
scaled values for each indicator and aggregate regional scores,
based on median values from all countries in a given region,
were then classified according to five groups (low, low–medium,
medium, medium–high and high) using the quantiles of the data
distribution and break points every 20th percentile (see electronic
supplementary information, table S1). Classification using quan-
tiles was preferred over a cluster-based approach, due to some
indicators being affected by outlying high values in a small
number of countries (e.g. China’s extremely high mariculture
production quantities in comparison to other countries).

The distribution of country and regional indicator scores of
vulnerability and leverage were explored using scatterplots of
median values and the median classified indicator scores (low
through high) and country and regional heat maps. We also
identified countries that were consistently classified as either
high or low for vulnerability or leverage, based on a threshold
of consistency. Each region was assigned an overall ranking for
their relative aggregate score across all vulnerability and leverage
indicators, with ‘consistency’ defined as≥ 40% of indicators
being classed as high or low for vulnerability or leverage (see
details on optimizing this threshold in the supplementary
methods). By mapping the consistency of scoring we were able
to look for spatial patterns, and identify countries and regions
that were, for example, particularly vulnerable or of a high lever-
age position.
3. Results and discussion
(a) A global view of vulnerability and opportunity
Our results highlight that there may be opportunities to lever-
age climate-smart outcomes associated with mariculture
throughout most of the world, both in countries that have
had sustained high production over a long period of time
and countries that have little-to-no existing mariculture
activity. However, the number and nature of these opportu-
nities differ markedly within and between regions, along
with each country’s vulnerability (figure 1a). Across all
countries, median classified scores for all indicators tended
to fall into the low–medium and medium classes (figure 1b).
Europe, Northern America and to a lesser degree Asia, had
a higher number of countries exhibiting median classifi-
cations of medium, medium-high and high across all
indicators. This result emphasizes that while global discus-
sion on climate-smart approaches could motivate and
facilitate the design of industry-wide applications, effective
responses will require locally contextualized solutions, to
address needs, constraints and best leverage local prospects
[52–54].

A small cohort of countries with consistently low vulner-
ability and high opportunity for leverage may be better
positioned to implement the climate change mitigation path-
ways assessed here, and potentially more likely to generate
good outcomes from climate mitigation strategies in the
short term (figure 2a,b, and electronic supplementary infor-
mation, table S6). These countries—Australia, Canada,
France, Italy, Japan, Republic of Korea, New Zealand,
Norway and the United States of America—could benefit
from an immediate focus on developing climate-smart mari-
culture, and generate higher, globally valuable outcomes.
Many of these countries are among the world’s highest
GHG polluters; the USA, Australia and Canada ranking 1st,
2nd and 3rd respectively for CO2 emissions per capita, with
Japan 5th and France 10th [55]. Amidst growing concerns
over continued increases in the rate and magnitude of climate
change, these countries must invest in widespread and
immediate climate change mitigation solutions, including sol-
utions linked to food systems. Using their low vulnerability
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and high leverage position (figure 3a,b) they could also pro-
vide regional and global value to the growth of climate-
smart mariculture by leading the development, testing and
advocacy of the underwriting mechanisms needed to support
climate solutions throughout seafood industries, such as
R&D investment, market development, advancements in
feed and technology, and policy [6].

Countries identified as not having either consistently high
or consistently low vulnerability or leverage represented a
large cohort. In these ‘variable’ countries (figure 2a,b) certain
aspects of the mariculture production system may be particu-
larly vulnerable to climate change, or a smaller number of
opportunities may be available for leverage (electronic sup-
plementary information, figure S1 and figure S2). For
instance, a country may have relatively high mean annual
production (associated with low vulnerability in this indi-
cator), adding a degree of resilience or adaptive capacity to
the production system despite higher projected impacts
from climate change. But high production can also be classed
as high vulnerability where there is a reliance on a single
sector or species (i.e. low diversity or evenness in the species
produced), which can increase exposure to climatic factors
and vulnerability [20]. This has been illustrated in other
studies where diversified food systems have been identified
as having the potential to respond to high climate impacts,
such as the fisheries-dependent countries Norway, Denmark,
Ireland and the UK [27].
(b) Regional trends
Effective regional policies that target key, often systemic, vul-
nerabilities and build on unique prospects will be needed to
make progress on the interlinked challenges and inherent
trade-offs that countries face in addressing climate change
[56,57]. Regional classifications and overall rankings of aggre-
gated vulnerability and leverage opportunity scores across all
indicators identified Northern America and Europe as
regions with comparably lower vulnerability and higher
opportunity to leverage gains from mitigating approaches,
these regions ranking 1st and 2nd respectively for both cat-
egories (figure 3a,b and table 2). These regions (and many
of the countries therein; see electronic supplementary
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information, figure S1 and figure S2) had less vulnerable mar-
iculture industries due to greater production quantities, less
variance in production and higher diversity and evenness
across the range of species cultured. Vulnerability in maricul-
ture can also be associated with the effectiveness of
governance at multiple spatial scales [15,28]. Northern Amer-
ica and Europe exhibited higher rankings for human
development, and so while threats from climate change
exist, their capacity to withstand and respond to these threats
may be greater. This result is consistent with the known
importance of socio-economic factors in aquaculture,
especially governance and regulation, which influence
whether countries engage with mariculture and its sustain-
able development [49,50]. Using existing platforms of good
governance to build momentum for global, regional and
local applications to enhance industry or sector-wide transfor-
mative capacity could be a way to support industry and
communities to move beyond solely coping strategies in
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response to climate change and engagemore easily with adap-
tive and transformative approaches, which will increase
resilience [30].

Focusing on the role of more economically develo-
ped regions and countries in climate mitigation is
warranted. Low-income countries tend to emit less GHGs
than their share by population, while upper-middle and
high-income countries emit more, some significantly more,
such as the USA and Australia [43]. Yet, in pursuing cli-
mate-smart mariculture, regions and countries with
apparently higher vulnerability and lower opportunity for
leverage (as assessed here) must not be overlooked; those
most at risk to the impacts of climate change are often
those with the least capacity to respond [58]. Our analysis
highlights challenges for the Near East and Africa especially,
the Near East ranking as most vulnerable to climate change
and 5th for leverage, and Africa as 6th for leverage and 5th
for vulnerability, alongside Latin America and the Caribbean
(figure 3a). These rankings largely reflect the less developed
and more variable status of mariculture in these areas and
high vulnerability according to the GFSI and HDI. Across
all leverage indicators, these regions had low median lever-
age opportunity (figure 3b), despite individual countries
within each region having opportunities associated with a
range of specific pathways (see electronic supplementary
information, figure S1). In particular, despite having substan-
tial suitable area for mariculture in Africa [21] mariculture in
this region faces increasing constraints as a result of compe-
tition with agriculture and a lack of availability of resources
to support both industries [59]. This pressure will likely be
exacerbated by the effects of climate change [27]. Also,
countries in the Near East region such as Qatar, Kuwait, Bah-
rain and the United Arab Emirates have some of the world’s
highest rates of GHG emissions per capita, but these countries
also have some of the least developed mariculture industry
and currently nominal production in low GHG emissions sec-
tors (i.e. bivalves and seaweed). Investment into
technological or nature-based solutions to climate change
via mariculture will likely first need to address key develop-
ment issues, such as R&D into species best suited to local
environmental conditions (additional description of
regional-scale trends and potential policy implications is pro-
vided in the electronic supplementary results and country-
scale scores grouped by regions are displayed for vulner-
ability in the electronic supplementary information, figure
S1 and leverage, figure S2).
(c) Implementing climate-smart strategies
Food industries that seek to be more resilient to climate
change while synonymously pursuing economic outcomes
can be viewed as ‘climate-smart’ [60]. Climate-smart aquacul-
ture is an approach that ‘addresses the triple challenges of
increasing productivity and adapting to climate change
while reducing or removing greenhouse gas emissions (miti-
gation), where possible’ [61]. The strategies assessed here are
already under discussion or in development in some geogra-
phies [53]. But their broader-scale adoption will be affected
by the policies and capacity of national governments and
their collaboration with industry and community. Political
will is needed to engage with the transformative change
that is required to halt the likely extreme impacts of climate
change [58]. In climate-smart mariculture this could be
influenced by the development of appropriate incentives,
such as food or climate taxes and subsidies or fostering
market-based motivations [6,53]. Incentives could be directly
linked to GHG emissions reduction targets (e.g. our indicator
2.1.1) or to broader sustainability actions that might enhance
or reinstate lost natural capital. Examples of the latter include
the potential for mariculture to restore water filtration and
nutrient extraction via bivalve or seaweed culture (2.2.1 and
2.2.2), which can support the preservation or restoration of
marine habitats that sequester and store carbon, especially
seagrasses, mangroves and salt marshes [26]. Market factors
will also play a role in the efficacy of climate-smart strategies
linked to dietary preferences. For example, as a comparatively
low-cost and low-GHG emissions source of protein, bivalves
could be a significant contributor to food security [62]. But
shifting food production from higher-GHG emissions sources
(2.3.1) to these products will require changes in consumption
and demand, which might require the influence of a ‘price
mechanism’ (i.e. an economic stimulus [6]) or government
investment into the development of local markets. Market-
based developments could be used to drive change through
multiple pathways, an example here being supporting a
reduction in long seafood supply chains (2.1.2 and 2.1.3).

Climate-smart pathways could also have pros and cons
associated with the environmental setting in which they are
applied, and they could still generate environmental impacts
despite having a benefit for climate change mitigation.
Implementation of mitigation strategies linked to mariculture
must therefore include an understanding of habitat suitability
(for sectors or species) under projected climate change (1.3.1,
1.3.2 and 1.5.2, also [21,22,63]) and work to address persistent
negative impacts from industry activity, such as the occur-
rence of pathogens and pests, the introduction of non-
native species to new areas, and impacts to water quality
[64]. The contribution that mariculture could make to cumu-
lative environmental stress, especially coastal pollution and
eutrophication, should also be viewed ‘in light of’ the impacts
these factors have on the industry itself [24] (1.5.1). Localized
impacts to mariculture will also need to be considered, par-
ticularly the potential for higher mortalities and
antimicrobial resistance in tropical areas [65]. In some areas
mariculture might conceptually be able to return a benefit
in climate mitigation, e.g. through the production of a high
volume of seaweeds, but the negative effects of increasing
production in certain species could risk exacerbating the
prevalence of diseases or pathogens. Adopting an ecosystem
approach to mariculture [66] and pursuing aquatic biosecur-
ity using a ‘One Health’ lens, which aligns aquatic health to a
broader set of metrics including animal welfare and human
health [67], will be critical in responding to the manifold
effects of climate change.

In implementing approaches to climate change mitiga-
tion, it must also be recognized that there is a risk of
displacing climate-related impacts across sectors or locations.
For example, production of popular finfish species such as
salmonids can be more energy intensive in land- than sea-
based systems [68]. As such, the effects of expanding pro-
duction on land, in an attempt to lessen nutrient-based
impacts on marine habitats and species, could result in
increasing GHG emissions [69]. The nature of such trade-
offs will be influenced by local factors, including the avail-
ability of renewable energy and biofuels, the type and
quality of infrastructure and the source of supporting services
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and their energy intensity. The effects of local factors are illus-
trated by the potential to increase production from lower
GHG emissions sectors (2.3.1). While these sectors typically
generate lower levels of GHG emissions than others [4],
excessive transport (e.g. to and from a hatchery, processing
or market facilities located large distances from production
sites) and energy-intensive facilities could undermine this
value unless renewable energy sources are used [69]. Displa-
cement of climate-related impacts could also occur in the
expansion or transition of mariculture feed. Decoupling fed
finfish mariculture from wild fisheries would increase fish-
eries sustainability, but shift pressure onto agriculture until
gaps in technology for production of alternatives can be
addressed [6,53,70]. Any increase in demand for land-based
feed is likely to increase GHG emissions from land-use
change, the use of water resources and infrastructure, and
operations [1,2]. Furthermore, predicted increases in the fre-
quency or severity of drought and flooding are highly
likely to negatively impact land-based food production.
These impacts will create additional, interlinked challenges
for mariculture that is reliant on land-based crops [27,71].

Unintended consequences could also be generated by
rushed or inappropriate development of mariculture to
increase food and nutritional security where alternatives
may be more immediately available. In particular, improved
management of fisheries to address overexploitation and
the effects of climate change could enhance fishing yields
and profits under a range of predicted climate scenarios
[6,72], and in some cases may be more appropriate than scal-
ing-up mariculture production. Also, as they do in
fisheries, traditional owners and small-scale operators in
aquaculture play a vital role in food security, and there is a
pressing need to increase the recognition and visibility of
these actors in aquatic food systems [73]. Data currently avail-
able for aquaculture largely reflect an industrialized view of
this food production system, and because of the reliance on
this data in our assessment our analysis perpetuates this
(industrialized) perspective. An important step in the devel-
opment of climate-smart mariculture will be the inclusion
of statistics at a sub-national scale, including locally contex-
tualized data such as rates of participation in and
production from mariculture by traditional owners. Ensuring
that the participation of traditional owners in current but also
past production is appropriately reflected in global datasets
will support more effective and equitable outcomes. Here,
addressing the perennial gap of low or inconsistent reporting
across seafood industries and sustained misrepresentation of
mariculture statistics [14,33,36], and broadening this base of
knowledge to be more inclusive of the contribution of
small-scale operators in particular, will increase accessibility
to data at successively finer scales and enable all actors to
share knowledge and discoveries for effective development
of climate-smart approaches. Regions particularly affected
by data deficiencies in our assessment were the Southwest
Pacific, Africa and the Near East (see electronic supplemen-
tary information, figures S1 and S2), which, as we highlight
above, are home to countries that will be most affected by cli-
mate change and potentially have the lowest capacity to
respond.
4. Conclusion
Global attention and investment from those best placed to deli-
ver substantial gains from climate mitigation solutions could
yield high-impact results: results that will have flow-on
benefits for countries most at risk from the impacts of climate
change. While we found that opportunities exist to leverage
climate outcomes associated with mariculture throughout
most of the world—and that these opportunities must be fos-
tered to ensure the drivers of climate change can be alleviated
and the resilience of industry and communities increased—
Northern America, Europe and a small cohort of countries
within and outside of these regions, such as Australia, do
have a considerable impact on global GHG emissions.
These same regions and countries have comparatively higher
opportunity for leverage combined with comparatively
lower vulnerability. Consequently, their investment into the
immediate development and adoption of climate-smart mari-
culture strategies could be influential, in-so-far as delivering
the greatest gains in climate mitigation, but also in motivating
political and industry will for broader and effective change.
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