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Prospects of animal models and
their application in studies on
adaptive immunity to
SARS-CoV-2
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National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key
Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of
Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine
Center, Peking Union Medical College, Beijing, China
The adaptive immune response induced by SARS-CoV-2 plays a key role in the

antiviral process and can protect the body from the threat of infection for a

certain period of time. However, owing to the limitations of clinical studies, the

antiviral mechanisms, protective thresholds, and persistence of the immune

memory of adaptive immune responses remain unclear. This review

summarizes existing research models for SARS-CoV-2 and elaborates on the

advantages of animal models in simulating the clinical symptoms of COVID-19

in humans. In addition, we systematically summarize the research progress on

the SARS-CoV-2 adaptive immune response and the remaining key issues, as

well as the application and prospects of animal models in this field. This paper

provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of

the adaptive immune response and lays the foundation for the development

and application of vaccines and drugs.
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Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus
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respiratory syndrome coronavirus; NHP, nonhuman primate; ACE2, angiotensin-converting enzyme 2;

hACE2, human ACE2; URT, upper respiratory tract; TMPRSS2, transmembrane serine protease 2; cTfh,

circulating T follicular helper cells; CTL, cytotoxic T lymphocyte; BRM, tissue-resident memory B; TRM,
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) has been circulating since the end of 2019 and has

infected more than five hundred million people and killed more

than six million people (https://coronavirus.jhu.edu/map.html),

which has had an impact on global public security and the global

economy (1, 2). Although the development of vaccines and

drugs has hindered the spread and pathogenic process of the

virus, the emergence of a tremendous number of mutant strains

(more than eight million), especially the delta and omicron

strains, has reduced the protection afforded by existing vaccines

and drugs, resulting in breakthrough infection (3–6). In response

to the rapid spread of SARS-CoV-2, some countries, such as

Ireland, Denmark, Sweden, the United Kingdom, and Iceland,

hope to prevent infection and spread by raising the threshold of

“herd immunity”, gradually regarding SARS-CoV-2 as similar to

influenza and even implementing open-ended nonquarantine

precautions. However, it cannot be ignored that we still know

very little about SARS-CoV-2. Unlike severe acute respiratory

syndrome coronavirus (SARS-CoV) and Middle East respiratory

syndrome coronavirus (MERS-CoV) which were rapidly

contained (7, 8), it remains to be investigated whether SARS-

CoV-2 can be treated as influenza-like for prevention. Moreover,

whether the emergence of new variants will increase the harm to

public health safety remains worth exploring. Furthermore, how

protective the existing vaccines and drugs are against the new

variants and the durability of vaccine protection remain to

be studied.

SARS-CoV-2 infection can initiate innate and adaptive

immune responses. However, early studies have shown that

patients with coronavirus disease 2019 (COVID-19) have

extensive innate immune dysfunction (9–11), regarding type I

and type III IFN responses, which are impaired and delayed,

further increasing the clinical risk of patients (12, 13). At

present, there is no evidence that the innate immune response

can directly and completely control the early infection by SARS-

CoV-2. The initiation of an adaptive immune response is critical

for controlling SARS-CoV-2 infection and protecting the body

from reinfection over time. Despite the uneven data cohort,

overall, virus-specific antibody titers in people recovering from

SARS-CoV-2 infection can be maintained for at least 4-6 months

(14–16), and specific cellular immune responses last longer (17–

19). The protective effect of SARS-CoV-2 primary infection on

reinfection has received special attention. Follow-up studies on

clinical patients have found that primary infection has a certain

protective effect on the secondary infection (20).

The animal model is a very useful tool for clinical research

on COVID-19. Various animal models of SARS-CoV-2

infection, including nonhuman primates (NHPs), rodents, etc.

(21–30), have been developed and used to simulate the clinical

pathology of the disease observed in humans and to test the
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preclinical effects of vaccines and drugs (31–35). Although

animal models may not be able to recapitulate all the

characteristics of human infection (36), they have more

human-like characteristics than in vitro cell models and

organoid models and can be used to indicate the pathogenesis

of virus pathogenesis and immune protection mechanisms and

can be used in other related research. In this study, we elaborated

the research progress on SARS-CoV-2 in vitro and in vivo

research models and adaptive immunology. In addition, we

further summarized the application, advantages, and prospects

of existing animal models in SARS-CoV-2 adaptive

immunology research.
Classification and application of
SARS-CoV-2 infection models

An in-depth understanding of SARS-CoV-2-related

immunology is inseparable from the establishment and use of

infection models. To date, three types of models have been

established and applied in SARS-CoV-2-related research,

including cells and organoids as well as animal models. They

have different application scopes and advantages in related

research (Figure 1), which are elaborated on in this section.
Cell lines

As a classic method to study viruses in vitro, cell lines are

crucial for understanding the biology, growth kinetics, and
FIGURE 1

Models of SARS-CoV-2 infection. Three kinds of model can be
used to study SARS-CoV-2, including in vitro model cell line,
organoid, and in vivo animal models. In contrast with in vitro
models, animal models can simulate virus-host interactions
observed in human clinical research and have unique advantages
in their application.
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tropism of SARS-CoV-2 infection. Compared with primary

human bronchial epithelial cells, which can better reflect the

characteristics of infection (37), passaged cell lines have a series

of advantages such as infinite proliferation, high stability, low

cost, and simple operation, and can be applied to virus infection

and replication research. Human angiotensin-converting

enzyme 2 (ACE2) has been identified as a key receptor for

SARS-CoV-2 to bind and invade cells (38), so a variety of cell

lines expressing ACE2 receptors have become effective tools for

the study of SARS-CoV-2 (Figure 1), such as Vero E6 cells (39),

HEK-293T cells (39), Huh7 cells (40), Caco-II cells (41), and

Calu3 cells (40). Especially in Vero E6 cells, the lack of type I

interferon (IFN-I) and the high expression of the receptor ACE2

make it a cell line widely used to obtain high titers of virus

particles of SARS-CoV-2 (42, 43). The cytopathic effects

produced in virus-infected cell lines can be monitored for

preclinical in vitro drug screening. However, the reliability of

cell-based experimental results remains to be further

investigated. For example, the antimalarial compounds

chloroquine and hydroxychloroquine (HCQ) are effective in

inhibiting the virus in cell lines, but less effective in primary

cells and animal models (44–47). Therefore, although cell lines

are convenient for studying SARS-CoV-2 in vitro, the obtained

results still need to be further validated in primary cells and

animal models. More importantly, deficiency immune-mediated

or multicellular interactions are key factors limiting the

application of cellular infection models.

Human organoids

Compared with cell lines with good homogeneity, human

organoids are more complex 3D structures composed of a variety

of cells, which can better simulate the physiological state of normal

human organs, so they are more suitable for the study of SARS-

CoV-2 infection and tropism and drug screening in vitro (48). To

date, a large number of human organoids have been developed and

used in SARS-CoV-2-related research (Figure 1), including lung

organoids (49), bronchial organoids (50), kidney organoids (51),

liver ductal organoids (52), intestinal organoids (53) and blood

vessel organoids (54). Human organoids may allow observation of

viral cell tropism, while exhibiting the accumulation of

inflammatory cells and antiviral factors, reproducing the

pathological symptoms after SARS-CoV-2 infection, which is

crucial for understanding the pathogenesis of COVID-19 (55).

Inevitably, the limitations of organoids prevent a deep

understanding of severe COVID-19, possibly due to their lack of

modulation of relevant immune components, including

macrophages and natural killer cells. Furthermore, similar to the

cell model, although neither can reproduce the pathogenic process

of viral infection seen in vivo and the systemic antiviral infection

process of the human body, they are good models for the

convenient study of SARS-CoV-2 in vitro.
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Animal models

Compared with in vitro models, animal models for SARS-

CoV-2 are more complex, but they can yield more reliable

clinical data on virus-host interactions (Figure 1). In detail,

research on transmission routes, investigation of infection and

pathogenic mechanisms, clinical evaluation of vaccines and

drugs, elucidation of the host immune response and immune

memory, the study of coinfection, and evaluation of

complications, etc., requires the use of animal models

(Figure 1) (56). Therefore, the rational development of animal

models is crucial for gaining an in-depth understanding of

SARS-CoV-2. To date, animal infection models that have been

developed and are suitable for SARS-CoV-2-related research fall

into five categories: small rodents, ferrets, cats, Tupaia

belangeris, and NHPs.

Small rodents, including hamsters and genetically

engineered mice, have many advantages such as easy

operation, fast reproduction, and low cost, so they are widely

used in research on the efficacy of antiviral drugs, vaccines, and

immunotherapy. In particular, hamsters can be naturally

infected by SARS-CoV-2 and show typical clinical symptoms,

such as weight loss and multiple tissue and organ damage (57–

59). Based on these characteristics, the hamster model has been

applied to a series of studies, including transmission route (58),

variant strain pathogenicity (60), and antibody therapy (61).

Due to the limited specificity of the ACE2 receptor, wild-type

mice are less sensitive to most variants of SARS-CoV-2, and

only to the beta variant (62). Sensitization of mice by

adenovirus expressing human ACE2 (Ad5-hACE2) is a fast

and efficient method for susceptibility modeling and has been

widely applied (63–66). Furthermore, genetically engineering

mice to express the human ACE2 (hACE2) receptor is an

effective way to increase their susceptibility to other variants of

SARS-CoV-2. However, different genetically engineered mice

have different clinical manifestations of disease due to

differences in the modification and expression of the hACE2

receptors. For example, humanized mice expressing hACE2

under the epithelial cell-specific cytokeratin-18 (Krt 18)

promoter (67), a universal chicken beta-actin (b-actin)
promoter (68), or the human hepatocyte nuclear factor-3/

forkhead homolog 4 (HFH4) promoter (25) are highly

susceptible to SARS-CoV-2, develop severe pathological

damage resembling COVID-19 symptoms in human lungs,

and die rapidly. However, mouse models with only ACE2

replaced show only mild pathology and are confined to the

lungs and intestine (24). Other nonprimate model animals,

including cats (69, 70), ferrets (71), and Tupaia belangeris (72,

73), are susceptible to SARS-CoV-2 but do not produce severe

clinical symptoms, so they may be potential intermediate hosts

and ideal models for studying transmission in the absence of

severe clinical symptoms.
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The gold standard animal model that is closest to human

genetics, anatomy, and immunology and is suitable for SARS-

CoV-2 is the NHP model, mainly including African green

monkeys (74), marmosets (23, 26, 75), baboons (75),

cynomolgus macaques (23, 26) and rhesus macaques (26, 29,

30). They play a very important role in the study of the

pathogenesis of COVID-19 and the development of vaccines

and antiviral drugs. At present, it has been confirmed that the

immune response of the NHP model after SARS-CoV-2

infection recapitulates the key features of COVID-19 in

humans (76, 77). Therefore, the NHP model is the best model

for evaluating drugs (78), neutralizing antibodies (79), and

multiple vaccines (adenovirus, DNA, mRNA, inactivated, and

subunit vaccines) (31, 80–85).
Animal models mimic the clinical
features and pathogenesis
of COVID-19

COVID-19 is a series of clinical syndromes caused by SARS-

CoV-2 in humans, including asymptomatic infection, mild-to-

moderate upper respiratory tract infection, pneumonia, acute

respiratory distress syndrome (ARDS), hyperinflammatory

disease, and long-term neurological and cognitive dysfunction

(86). The pathogenesis of COVID-19 is complex and its severity

and pathogenicity are closely related to various factors, such as

age, complications, and genetic or acquired factors (87–90).

Evidence suggests that SARS-CoV-2 is highly persistent and

dangerous to those with weakened immune systems, especially

elderly patients with cardiovascular disease, diabetes,

hypertension, and some other serious chronic diseases (86, 88,

91–93). In particular, elderly individuals >65 years old showed

similar lymphopenia, neutropenia, inflammation, and

coagulation-related index elevation (90, 94–98). While most

young and pediatric patients are asymptomatic or have mild

symptoms, many of them experience persistent fatigue,

anhedonia, muscle weakness, sleep problems, anxiety and even

depression, difficulty concentrating, myalgia, and arthralgia,

autonomic function obstacles, etc. (89, 99–101). Although the

mechanism remains unclear, SARS-CoV-2 may cause

irreversible damage to the brain, based on the evidence that

SARS-CoV-2 can infect the central nervous system and brain

cells (102–104).

Viral tropism depends on the susceptibility and

permissiveness of specific host cells. Some studies suggest that

SARS-CoV-2 induces an inflammatory response in the lower

respiratory tract leading to lung injury (Figure 2), confirming

that the lung is the main site of infection by SARS-CoV-2 (105,

106). Unlike SARS-CoV, SARS-CoV-2 can efficiently infect

the upper respiratory tract (URT), such as nasopharyngeal

and oropharyngeal tissues, increasing its infectivity and
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pathogenicity (Figure 2) (107–110). In addition, the gut is

another target of SARS-CoV-2, and patients with COVID-19

often report suffering from gastrointestinal diseases (Figure 2)

(111, 112). It is generally believed that the classical mechanism of

SARS-CoV-2 infection targeting host cells occurs through the

interaction between the viral surface structural protein Spike and

the cell surface protein ACE2 (38). In addition, the function of

the Spike protein requires the assistance of transmembrane

serine protease 2 (TMPRSS2) (38, 113). Although it has been

reported that other receptors or cofactors are also involved, such

as the endosome/lysosomal cysteine proteases cathepsin B and L

(CTSB, CTSL) (38), CD147 (114, 115), Neuropilin 1 (116, 117)

and DPP4 (118, 119), whether these factors are necessary for

SARS-CoV-2 invasion remains to be further confirmed. At least

at the level of host protein expression, it has been determined

that ACE2/TMPRSS2 are coexpressed in multiple tissues,

including nasal epithelial cells (120), the alveolar epithelium

(mainly type 2 alveolar cells), the bronchial branch epithelium

(120, 121), the intestinal tract (122, 123) and the nervous system

(124). This finding is also in line with the infection

characteristics of SARS-CoV-2 and the clinical characteristics

of patients.

Animal models can mimic the clinical symptoms of COVID-

19 in humans and are good models for studying the pathogenesis

caused by SARS-CoV-2. A study showed that hACE2-HB-01

transgenic mice exhibited significant weight loss, supported viral

replication, and displayed lymphocyte and monocyte infiltration

in the alveolar interstitium and macrophage accumulation in the

alveolar space after infection with SARS-CoV-2 (24), which
FIGURE 2

Clinical features of COVID-19. Based on the receptor (ACE2/
TMPRSS2) binding specificity of the Spike protein, SARS-CoV-2
can infect multiple tissues and organs, especially the respiratory
tract, lung and intestine. COVID-19 can cause significant lung
inflammation, intestinal disturbances, and nerve damage,
including loss of smell.
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recapitulate clinical patient findings (125). Furthermore, many

studies have shown that Krt18-hACE2, b-actin-hACE2, and
HFH4-ACE2 transgenic mice die rapidly after infection with

SARS-CoV-2. Their lungs have high viral loads and severe

interstitial lesions caused by inflammatory immune cell

infiltration, with marked thrombosis and anosmia and

neuroinvasive symptoms, consistent with human COVID-19

(25, 68, 126–128).

In the hamster model, SARS-CoV-2 infection has been

found to cause weight loss, ruffled fur, postural changes, and

symptoms similar to those of human COVID-19, such as

dyspnea, olfactory epithelial cell and neuron damage, severe

lung pathology, and lymphopenia (59, 129, 130). Furthermore,

older hamsters exhibit more pronounced weight loss than

younger hamsters (131). Although virus titers are higher in

young mice, rapid clearance of the virus can be observed (131).

In addition, SARS-CoV-2 infection can occur in hamsters

through direct contact, aerosol transmission, and oral

transmission, so this model is often used to evaluate the

airtightness of surgical masks (58, 132, 133). Moreover,

hamsters can be a valuable tool to study the correlation

between SARS-CoV-2 pathogenicity and age.

Ferrets are considered the best model for asymptomatic or

mild diseases in humans and are frequently used in transmission

studies. Multiple studies have shown that ferrets infected with

SARS-CoV-2 experience rapid transmission before peak viral

load and body temperature, while the virus replicates primarily

in the upper respiratory tract of ferrets without causing severe

disease, which is consistent with the characteristics of individuals

during asymptomatic periods (21, 134, 135). Multiple additional

studies showed that ferrets can mimic both direct and indirect

transmission of COVID-19 in humans (71, 134, 135). A profile

of inflammatory cytokines similar to that in humans, including

the expression of genes encoding IL-6, IL-1b, CCL2, and CCL8,

was observed in the airways of ferrets after infection (136). In

addition, compared with juvenile and adult ferrets, aged ferrets

have higher viral loads, longer shedding times, more severe

inflammatory cell infiltration in the lungs, and more clinical

symptoms (137). In another model animal, Tupaia belangeri,

higher titers were also observed early after infection in young

tree shrews but for a longer duration in elderly tree shrews (73).

In addition, evidence of an inflammatory process in the lungs

was found in all age groups, and infiltration was similar to that

observed in humans and monkeys (72).

The NHP model is the closest model to humans. At present,

NHP models applied to SARS-CoV-2 research mainly include

African green monkeys (74), marmosets (23, 26, 75), baboons

(75), cynomolgus macaques (23, 26), and rhesus macaques (26,

29, 30). Among them, rhesus monkeys showed clinical

symptoms similar to COVID-19 patients after infection,

including increased expression of inflammatory cytokines and

chemokines, decreased blood oxygen levels, and decreased white

blood cell and lymphocyte counts (26, 29, 30, 75, 77).
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Meanwhile, several studies have also shown that lower doses

of SARS-CoV-2 infection in African green monkeys than those

infected with rhesus monkeys can still cause significant viral

replication and lung lesions, which indicates that SARS-CoV-2

also has pathogenic potential in African green monkeys (74,

138). In addition, although there are fewer studies on baboons,

one study showed that baboons are sensitive to SARS-CoV-2

infection and develop extensive pathological changes after

infection (75). For marmosets and cynomolgus monkeys, the

clinical symptoms of SARS-CoV-2 infection were mild and

manifested as mild pneumonia (23, 26, 75). Although different

monkey species in the NHP model differed in susceptibility and

pathogenicity to SARS-CoV-2, overall they did not develop the

characteristic cytokine storm syndrome and respiratory distress

or even death similar to severe COVID-19 patients (23, 29, 139).

In summary, NHP models, especially rhesus monkeys, African

green monkeys and baboons, play a very important role in the

testing of vaccines and antiviral drugs and the study of

virus mechanisms.
The adaptive immune response and
immune memory against
SARS-CoV-2

Dysregulation of the innate immune response is closely

associated with failure to control primary SARS-CoV-2

infection and a high risk of fatal COVID-19 (9–11). Although

the adaptive immune response develops slower than the innate

immune response, it responds to pathogens in an antigen-

specific manner to generate protective immunity capable of

protecting the host from reinfection with SARS-CoV-2 (140–

142). This indicates that the adaptive immune response,

including the action of B cells, CD4+ T cells, and CD8+ T

cells, plays a key role in the antiviral process (Figure 3). This

subsection will elaborate on the adaptive immune response

elicited by SARS-CoV-2 and the key role of animal models in

facilitating related research.
Humoral immune response against
SARS-CoV-2

Neutralizing antibodies produced by adaptive humoral

immune responses play a unique role in inhibiting virus

invasion and killing target cells (143). Studies have shown that

approximately 90% of the sera collected from COVID-19

patients on the 10th day after infection carry specific

antibodies against the Spike and N proteins (Figure 3) (144–

148), and specific antibodies against the Spike protein, especially

the receptor-binding domain (RBD), can exert a significant

neutralizing effect (61, 148, 149). Neutralizing antibody levels
frontiersin.org
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peak within the next 3-5 weeks and then decrease, reaching the

lower threshold of detection within months (Figure 3) (14, 16,

150–152). Although neutralizing antibody titers drop rapidly,

these antibodies still act immediately when the virus re-enters

the host. Residual neutralizing antibodies on the mucosal surface

can directly block the initial infection of host cells while

circulating neutralizing antibodies can further prevent the

occurrence of infection (Figures 4A, B). One study showed

that a neutralizing titer equivalent to 20% of the mean titer

during the recovery period was sufficient to provide 50%

protection (153). In addition, non-neutralizing virus-specific

antibodies may contribute to immune control of infection by

increasing clearance of free virus or by targeting infected cells for

immune clearance (through antibody-dependent cytotoxicity

and other mechanisms) (154–156), although this phenomenon

is difficult to quantify (157, 158). The mechanism may occur

through Fc receptor-related functions in serum. Previous studies

have confirmed that neutralizing antibodies with Fc receptor-

binding ability are more protective in mice, while Fc-dependent

antibody effector activity in non-surviving humans has been

found to be reduced (82, 154, 159). Moreover, non-neutralizing

antibody Fc effector functions such as complement activation,

cytotoxicity, and phagocytosis have also been shown to protect

model animals (154, 156).

The specific antiviral effects exerted by neutralizing

antibodies make them potential therapeutic drugs in the clinic.

One study demonstrated that administration of SARS-CoV-2-

specific monoclonal antibodies in the early stages of infection in

patients with mild-to-moderate COVID-19 accelerated the virus

clearance and reduced clinical risk (Figure 4B) (160, 161). It has

also been found in animal models that human neutralizing

antibodies can protect hamsters and mice, reduce clinical

symptoms and even prevent infection (59, 61, 154, 162). In
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addition, the administration of neutralizing antibodies in NHP

models can yield prophylactic and protective effects (79, 162,

163). However, the clinical manifestations of specific

monoclonal antibodies administered to critically ill patients are

quite different, and some studies have shown that increasing

antibody levels can improve clinical outcomes (164, 165), while

other studies have reported poorer clinical outcomes (Figure 4B)

(166, 167). This discrepancy may be related to the antibody-

dependent enhancement of COVID-19 (168), which is

supported by in vitro and animal experiments (169–175).

Interestingly, SARS-CoV-2 neutralizing antibody titers are

independent of primary COVID-19 disease severity (145, 176,

177). Based on various animal models, neutralizing antibody

titers (and total anti-Spike antibody titers) were further

confirmed to be positively correlated with COVID-19 disease

severity (Figure 4B) (149, 178). One possible reason is that high

neutralizing antibody titers are associated with severe disease

and underlying extrafollicular B-cell responses (179).

Neutralizing antibody is a double-edged sword, but whether

they are necessary to control SARS-CoV-2 infection remains

controversial. One study showed that COVID-19 patients with

agammaglobulinemia and no circulating B cells still fully

recovered from infection (180), and B-cell depletion therapy in

COVID-19 cases have also shown some efficacy (181–183).

Furthermore, some convalescent patients have not had
FIGURE 3

Persistence of adaptive immune responses to SARS-CoV-2.
Following infection with SARS-CoV-2, an adaptive immune
response is initiated. The viral load peaks at one week, CD4+ and
CD8+ T cells peak at 1-2 weeks, and antibody levels peak at 3-5
weeks. The persistence and protective thresholds of immune
memory in cellular and humoral immune responses are currently
unknown. The association of preexisting immunity elicited by
cross-reactive T-cell immune responses with asymptomatic
infection remains to be further investigated.
BA

FIGURE 4

Antiviral mechanism of the adaptive immune response to SARS-
CoV-2. (A) In vivo distribution of virus-specific adaptive immune
responses, including circulating and tissue-resident adaptive
immune responses. The relationship between circulating
immune responses and tissue-resident immune responses
remains to be further investigated. The role of lung tissue-
resident immune responses in the fight against SARS-CoV-2
infection is worth investigating. (B) Mechanisms of adaptive
immune responses against SARS-CoV-2 and their relationship to
disease severity.
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detectable neutralizing antibodies against the virus throughout

the disease course (18, 145, 184, 185), which supports the view

that a humoral immune response may not be necessary to

control SARS-CoV-2 infection.

Nonetheless, most of the current COVID-19 vaccine efforts

are still focused on the induction of the production of

neutralizing antibodies (186–188). The favorable therapeutic

effect of neutralizing antibodies in clinical and animal models

(59, 160, 162) and the increase in the number of B cells in

convalescent patients (189) make the development of vaccines

more promising. However, SARS-CoV-2 has a high level of

genetic variability, producing mutant strains such as the alpha

strain, beta strain, gamma strain, delta strain, zeta strain, and

omicron strain, and the total number of mutants has exceeded

11 million (https://ngdc.cncb.ac.cn/ncov/release_genome).

Among them, the number of omicron strains has reached

nearly 4 million, and the number is growing continuously.

Mutations focused on the Spike protein, especially the RBD,

have received widespread attention, as they can allow immune

evasion by reducing or even failure of the protection afforded by

neutralizing antibodies (190–194). In addition, the high

glycosylation level of Spike proteins promotes this effect (195–

197). Notably, there are reports that partially neutralizing

antibodies can cross-protect against multiple variants (198,

199), providing some promising reports for vaccine

development. However, the absence of neutralizing antibodies

does not mean that immunity is invalid, and the antiviral effects

of neutralizing antibodies at different stages of the disease still

need to be further confirmed by clinical data. Specifically, when

the neutralizing antibodies produced during primary infection

or vaccine immunization disappear, will the neutralizing

antibodies secreted by immune memory B cells in a short

period during reinfection provide timely effective protection?

Furthermore, whether neutralizing antibodies are sufficient to

provide complete protection in the absence of a cellular immune

response remains to be supported by data. At present, such data

are lacking in clinical practice, and it is also difficult to perform

targeted research, so the corresponding clinical data must be

obtained only via animal models with insufficient T-cell

immune responses.
Cellular immune response against
SARS-CoV-2

As an important part of the adaptive immune response, the

cellular immune response also plays an important role in

countering SASR-CoV-2 infection. Neutralizing antibody titers

are independent of the severity of primary COVID-19 (16, 145,

149, 176–178), while the magnitude of virus-specific T-cell

responses is highly correlated with disease severity (Figure 4B)

(18, 145, 200, 201). In addition, T-cell responses have been

detected in almost all COVID-19 patients (18, 19, 145, 202),
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and resolution of primary SARS-CoV-2 infection.

Although the data are not completely consistent, some

studies have confirmed that CD4+ T cells exhibit a more

prominent response and detection rate to SARS-CoV-2 than

CD8+ T cells (18, 19, 203) and are associated with the control of

primary SARS-CoV-2 infection (145, 177), especially circulating

T follicular helper cells (cTfhs) (145). This may be related to the

function of cTfhs, which play a key role in the development of

long-term humoral immunity through the germinal center

response and are essential for the development of most

neutralizing antibody responses as well as memory B cells and

long-term humoral immunity (Figure 4B) (203–205). At present,

many studies have shown a correlation between the intensity of

the SARS-CoV-2-specific antibody response and the CD4+ T-

cell response (19, 206). In addition, CD4+ T cells can also

differentiate into other effector cells with more direct

antipathogen activity, Th1 cells, which function mainly by

secreting IFNg (Figure 4B) (19, 145, 207, 208). CD4-cytotoxic

T lymphocytes (CTLs) are a related cell type with direct

cytotoxic activity, and although some studies have observed

CD4-CTL transcriptional signatures (209), their function

remains unclear. Notably, Th2 cells are extremely rare in

patients with COVID-19 (18, 19, 145) and appear only in

critically ill patients (210). Whether this is related to the

aggravation of disease in critically ill patients remains to

be explored.

SARS-CoV-2-specific CD4+ T-cell responses can be detected

as early as 2-4 days after infection (Figure 3) (145, 177, 208) and

can produce specific responses to almost all viral proteins,

especially the Spike, M, and N proteins, during the recovery

period, which are correlated with protein expression levels (19).

This finding is very promising, as most of the current vaccine

candidates focus on Spike (211). In addition, studies based on

earlier animal models of SARS-CoV and MERS-CoV infection

confirmed that in the absence of antibodies or CD8+ T cells,

adoptive transfer of CD4+ T-cells has a protective effect (212).

This finding suggests that the cellular immune response,

especially the CD4+ T-cell immune response, may be the key

to controlling SARS-CoV-2. In addition, in-depth studies of

CD4+ T cell responses based on the NHP model also

reconfirmed that SARS-CoV-2 was able to induce a robust

germinal center CD4+ T follicular helper cell response (213).

CD8+ T cells can kill infected cells and are also critical for

clearing viral infections. Studies have shown that CD8+ T cells in

patients with COVID-19 are usually observed within 7 days of

symptom onset, with level peaking at 14 days (Figure 3) (210,

214), and are more activated than CD4+ T cells (142, 215, 216).

Furthermore, some studies have demonstrated that CTL

reactivity is associated with improved clinical outcomes in

COVID-19 patients (Figure 4B) (145, 203, 210, 214, 217).

Similar to SARS-CoV-2-specific CD4+ T-cells, CD8+ T cells

develop rapidly in the acute phase (145) and produce good
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antigen specificity against the Spike, N, M, and ORF3a proteins

of SARS-CoV-2 (18, 19, 185, 202, 218). Moreover, several studies

have reported that intensive care unit (ICU) patients have

significantly fewer CD8+ T cells than CD4+ T cells, which

appears to be associated with COVID-19-related disease

severity and mortality (91, 219–222). Therefore, many vaccines

are devoted to stimulating T cell responses and achieving good

anti-SARS-CoV-2 infection effects in animal models, including

mRNA vaccines (223–225), lentiviral vaccines (226), adenovirus

vaccines (83, 227, 228), etc.

Although the T-cell response may be the key to controlling

and resolving primary SARS-CoV-2 infection, it is worrisome

that approximately 82.1% of SARS-CoV-2 patients develop

lymphopenia (229), and the degree of reduction of circulating

T-cell levels is as high as 80% (11, 230). This finding suggests

that the cellular immune response is suppressed, affecting the

clinical recovery process (91, 222, 231). The mechanism leading

to lymphopenia in SARS-CoV-2 patients is still unclear and

remains to be explored via animal model studies. Nonetheless,

SARS-CoV-2 variant strains do not escape T-cell immunity as

they escape humoral immunity (190–193) because the T-cell

epitopes of SARS-CoV-2 are very extensive and involve almost

all viral proteins (19, 232–235). In addition, several studies have

also shown that T-cell immunity induced by the SARS-CoV-2

vaccine can cross-recognize multiple mutant strains (236, 237),

which may be promising for vaccine design and development.

Based on the above results, we are optimistic about the relevant

research on T-cell epitope vaccines in animal models and

determining whether they can achieve the immune protection

effect across variant strains. In addition, the current direction

should also advance research on antibody-independent T-cell

immune protection and immune memory. From previous

experience, the adoptive transfer of CD4+ T cells has a

protective effect against SARS-CoV and MERS-CoV infection

(212), but data on SARS-CoV-2 are very scarce. It is urgent to

study the immune protection and immune memory of CD4+ T

cells or CD8+ T cells alone or in combination using genetically

engineered mouse models lacking humoral immune responses

or other models based on short-term antibody clearance of

humoral immune responses.
Cross-immune response against
SARS-CoV-2

Large-scale survey studies have shown that approximately

20-40% of SARS-CoV-2-infected people suffer from the

asymptomatic disease (238–240), and asymptomatic disease is

linked to age (Figure 3). The incidence of asymptomatic

manifestations was 19.7% in elderly individuals and 46.7% in

children (Figure 3) (241). However, the mechanism of this

discrepancy remains unclear but may be related to preexisting

cross-reactive immune responses. SARS-CoV-2 is a member of
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coronaviruses (HCoVs) HCoV-OC43, HCoV-HKU1, HCoV-

229E, and HCoV-NL63, which cause the common cold, as

well as SARS-CoV-1 and MERS-CoV. Studies on cross-

reactive humoral immune responses confirm that cross-

neutralizing antibodies to Spike proteins are extremely rare

(148, 242–245). Surprisingly, cross-reactive memory T cells are

frequently present, detectable in 28%–50% of the population

(Figure 3) (19, 207, 208, 218, 246, 247), and the vast majority are

cross-reactive CD4+ memory T cells (19). Their recognition

epitopes are mostly located in common cold-causing

coronaviruses. Although cross-reactive memory CD8+ T cells

have been observed less frequently (19), they are still biologically

relevant (184). The marked differences in cross-reactive CD4+ T-

cell and CD8+ T-cell responses may be related to the restricted

presentation pattern of major histocompatibility complex class I

and II molecules (248, 249). Interestingly, some studies have

shown that cross-reactive CD8+ T-cell responses are mainly

localized in tissues but are rarely detected in the circulatory

system and may represent the first line of defense in adaptive

immune responses (Figure 4A) (250, 251). In a mouse model,

studies have also confirmed the existence of cross-reactive T cells

after SARS-CoV-2 infection, and mainly cross-reacted with

SARS-CoV but not MERS-CoV (65).

Currently, the clinical importance of preexisting cross-

reactive T-cell responses in the control of SARS-CoV-2

infection and the impact on herd immunity thresholds are

controversial, as the protective mechanisms remain unclear

(246, 252). Some studies, after controlling for age and other

factors, have found that SARS-CoV-2 patients with a confirmed

HCoV infection in the past 3 years had a significantly lower risk

of being admitted to the ICU (253). In addition, individuals with

strong HCoV-specific T cells may acquire excellent protective

cellular immunity after exposure to SARS-CoV-2 (253). Other

studies argue that HCoV-specific T cells generally have a low

affinity for SARS-CoV-2 peptides (254, 255), making it difficult

to play a role in controlling SARS-CoV-2 infection. Regardless of

which perspective is correct, further research is urgently needed

to map the cross-reactive memory T cells against SARS-CoV-2

induced by different coronaviruses based on animal models

under strictly controlled conditions to evaluate their cross-

protection efficiency. This research direction has important

implications for the control of disease spread and the potential

for herd immunity.
Tissue-resident immune response
against SARS-CoV-2

The circulating adaptive immune response plays a key role

in the body’s defense against SARS-CoV-2 infection, but there

are very limited reports on the functions of tissue-resident

immune cells residing in nonlymphoid tissues including the
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lung and URT. Compared with circulating central memory cells

and effector memory cells, tissue-resident memory cells respond

faster, so the presence of tissue-resident memory cells may be

critical for efficient target recognition and immune recall (256,

257). For SARS-CoV-2 infection, some studies have shown that

circulating immune responses largely reflect local immune

responses, and IgG and IgA antibodies against Spike in saliva

have been found to correlate with antibodies in the blood

(Figure 4A) (258). However, the neutralizing ability of

secretory IgA produced by tissue-resident memory B (BRM)

cells is stronger than that of circulating IgA, which may be

related to its function and dimeric structure (Figure 4A) (259,

260). The respiratory tract is the main tissue invaded by SARS-

CoV-2, so it is urgent to confirm the protective effect of BRM cells

in respiratory tissues against reinfection. Intranasal lentiviral

vector-mediated antibody delivery reduces SARS-CoV-2

infection in aged and immunocompromised mice, further

confirming that antibodies play a non-negligible role in

mucosal immunity (261). Over the years, intranasal

vaccination has been shown to induce airway IgA and reduce

viral load in the early stages of viral infection (262). Therefore,

several SARS-CoV-2 intranasal vaccines including lentiviral

vaccine (226), adenovirus vaccine (83, 227, 228), and

adjuvant-assisted subunit vaccines (263, 264) were developed.

Based on animal models, it can elicit systemic and pulmonary

antibody responses and significantly reduce pulmonary viral

load and local lung inflammation (83, 226–228, 263).

Tissue-resident memory T (TRM) cells may also play a key

role locally against SARS-CoV-2 viral infection. Studies have

shown that SARS-CoV-2 infection can stimulate the production

of TRM cells in local tissues (nasal cavity and lung), and their

quantity and degree of activation are associated with clinical

protection (265, 266); these cells can last for at least 10 months

or more (Figure 4) (267). Another study based on

bronchoalveolar lavage samples from COVID-19 patients

showed that there were more T cells in the lungs in moderate

cases than in severe cases (201), which may be related to the

degree of T-cell response impairment and the number of

infiltrating cells (268). Studies based on cross-reactive TRM

cells have also reported that CD8+ TRM cells may act as the

first line of defense in the adaptive immune response against

SARS-CoV-2 infection (Figure 4A) (250, 251). Other studies

have presented the opposite view, arguing that TRM cells in lung

tissue are not sufficient to produce anti-infective protection

against SARS-CoV-2 (269, 270). A study based on the NHP

model demonstrated that vaccine-induced strong neutralizing

antibody and CD8+ T-cell responses can protect the lungs from

SARS-CoV-2 infection and viral replication early in infection

(days 2-4) (271). The same results were also confirmed in mice

(83, 226, 263). These findings suggest that local tissue-resident

memory cells are beneficial in antiviral responses (Figure 4A).

However, the relationship between tissue-resident and

circulating memory cells and their migration during SARS-
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CoV-2 infection remains unclear. Although some studies have

shown that tissue-resident memory CD8+ T cells can shape local

and systemic secondary T-cell responses (272, 273), more

evidence related to SARS-CoV-2 is still needed.

However, studies on the actual protective effects of BRM and

TRM cells are difficult to perform in the clinical setting because it

is difficult to separate pulmonary BRM and TRM cells and the

interference of many uncontrollable external factors cannot be

excluded. Therefore, the animal model of SARS-CoV-2 infection

has become a good model for studying tissue-resident immune

responses, which can provide conditions for investigating the

protective effect and immune memory of tissue (including nasal

cavity and lung)-resident immune responses. Notably, tissue-

resident immune responses and immune memory can be

initiated only by natural infection and nasal vaccination, while

other vaccination routes are difficult to efficiently initiate such

responses. We are optimistic about research on the

immunoprotective effect of the tissue-resident immune

response in the initial stage of SARS-CoV-2 infection. This

aspect is important because if the tissue-resident immune

response is sufficient to protect the body from infection in the

early stages of SARS-CoV-2 infection, the vaccine should be

replaced and the nasal route is recommended. On the one hand,

this route of vaccination is expected to prevent the introduction

of pathogens and damage, and on the other hand, it can

effectively hinder viral spread. However, evaluation of the

effectiveness of the corresponding vaccine has higher

requirements for the animal models of simulated infection,

such as the need for sensitivity to aerosol or low-dose nasal

infection, while animal models of high-dose infection and

intratracheal infection cannot be used to evaluate nasal

inoculation vaccines. Krt18-hACE2, b-actin-hACE2, or HFH4-

ACE2 transgenic mice, golden hamsters, etc., are good animal

models for studying tissue-resident immune responses.
Immune memory and protection
against reinfection

Immune memory is the source of protective immunity

against SARS-CoV-2 reinfection, and it is one of the issues

that has been widely studied. Therefore, in addition to

measuring circulating antibody levels, evaluating specific

memory B- and T-cell persistence may be critical for

understanding and predicting the persistence of protection

against SARS-CoV-2 infection.

Multiple studies have shown that the frequency of

circulating memory B cells in COVID-19 patients continued to

increase during the first few months, peaking at 6 months

(Figure 3) (16, 274). Moreover, the generated memory B-cell

pool for Spike proteins is predominantly IgG and more potent

(16, 274). The measurement of T-cell immune memory at 6

months post-infection showed that the positive ratios of
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memory CD4+ T cells and memory CD8+ T cells were 90% and

70%, respectively, and the proportion of memory CD4+ T cells

was nearly double that of memory CD8+ T cells (16, 150, 275).

However, the half-lives of both may be 3-5 months. Through

long-term follow-up monitoring of recovered patients, it has

been found that the persistence of SARS-CoV-2-specific T-cell

responses is better than that of humoral immunity (17). Virus-

specific memory T cells can still be detected when the serum

antibodies of patients with asymptomatic infection and mild

disease are negative (18, 275). In fact, based on previous studies

on SARS-CoV (218, 276, 277) and MERS-CoV (278), memory T

cells specific for SARS-CoV-2 are expected to be maintained for

many years (150). Although the impact of specific immune

responses mediated by memory T cells on the pathogenesis of

COVID-19 is unclear, based on the results of the assessment of

cross-reactive T cells (19, 279), preexisting cross-immune

memory may confer resistance to asymptomatic infected

individuals. This information will help guide the design of

broad-spectrum protective vaccines.

Indeed, whether the immune memory of patients recovering

from COVID-19 can protect against reinfection with SARS-

CoV-2 remains an open question. It is worrisome that some

studies have reported secondary infections. In a comprehensive

analysis of more than 133,000 cases, 54 were thought to be

reinfections with SARS-CoV-2 at least 45 days after initial

infection, and only four were infections with a different variant

(280). Another survey study of more than 43,000 participants

found that the reinfection rate in seropositive individuals was

only 5%. In addition, by examining more than 500,000 people, it

was found that patients after recovery from COVID-19 had

80.5%protection for up to 7 months, although protection was

observed in only 47% of patients over 65 years of age (281).

Although the infection rate is low, a seroepidemiological study

also suggested that reinfection is possible 6 to 8 months after

infection (282–284), especially since the rapid mutation of the

virus may further increase the risk of reinfection (284, 285).

SARS-CoV-2has been spreading continuously for nearly 3 years

since it was first reported, and it has been regarded as influenza in

manycountries,withnopreventativemeasures.Therefore, itmaynot

be eliminated as quickly as SARS-CoV and MERS-CoV (7, 8). The

maintenance time and protection threshold of vaccines and immune

memory generated after infection need to be further studied.

Although it is difficult to perform relevant experimental studies in

clinical practice, because animal models simulate the main clinical

symptomsofCOVID-19patients (36), they have becomea good tool

to study the SARS-CoV-2 immune response and immune memory.

The NHP model, in particular, has unique advantages in clinical

research (29). Studies have found that primary infection with SARS-

CoV-2 in the NHPmodel protects against high-dose viral challenge

for at least 28-35 days, and re-exposure drives memory immune

responses that include high levels of binding neutralizing antibodies

(29, 30). Furthermore, depletion of CD8+ T cells resulted in a partial

loss of protection against rechallenge, including protection against
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reinfection by CD8+ TRM cells in the URT (Figure 4A) (286).

However, the role of antigen-specific CD4+ T memory cells in anti-

SARS-CoV-2 function still deserves further study in animal models.

The study of the SARS-CoV-2 vaccine based on animal

models can not only mitigate clinical risks but also provide

conditions for the in vivo testing of vaccines and the design of

immunization programs. Therefore, a variety of vaccines,

including adenovirus vector vaccines (84, 85), DNA vaccines

(84), mRNA vaccines (81), inactivated vaccines (31), and

subunit vaccines (80), have been validated in animal models.

However, whether vaccine-induced immune responses and

immune memory are more effective in controlling infection

than natural immunity remains a matter of concern (287).

Current studies have demonstrated that both vaccination and

infection produce up to 95% protection (288–292); however,

peak neutralizing antibody responses produced by the vaccine

ranged from approximately 1/2 to four times those in

convalescent patients (153, 233, 293). Antibody decay rates did

not differ significantly between vaccinated and naturally infected

patients, with half-lives around 60 days (153). Repeated boosting

with the vaccine may be beneficial to generate a longer period of

protection than natural immunity. Although SARS-CoV-2 can

evade immunity and reduce vaccine-induced protection by

altering the epitopes recognized by neutralizing antibodies

(190–193), omicron strains have evolved to exert low

pathogenicity and high transmissibility (4–6, 294). This creates

a complex situation, and it remains to be seen whether a new and

more pathogenic SARS-CoV-2 will emerge in the future.

Therefore, expanding protection against different variant

strains may be an important requirement for next-

generation vaccines.
Conclusions and future perspectives

The global COVID-19 pandemic has caused a global recession

and tremendous casualties. Although preventive vaccines for

COVID-19 are being developed at an unprecedented rate, we still

face many challenges owing to the large genome and high levels of

genetic variationofSARS-CoV-2.Currently, there is noevidence that

the innate immune response can control primary SARS-CoV-2

infection. Conversely, the loss of control of the innate immune

response caused by SARS-CoV-2 immune escape and immune

hijacking may correlate with severe clinical disease (9–11).

Adaptive immune responses have demonstrated unique

advantages in controlling SARS-CoV-2 infection and clinical

disease severity (140–142). However, there are still many mysteries

regarding the role of adaptive immunity in controlling SARS-CoV-2

infection.The rapiddevelopmentofSARS-CoV-2animalmodelshas

provided us with a good platform to simulate human clinical studies

to understand the mechanism of virus infection and host immune

effects,which play an irreplaceable key role in testing the effectiveness

of vaccines and drugs.
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At present, a variety of animal models ranging from rodents to

NHPs have shown clinical symptoms similar to those of human

COVID-19when infectedwithSARS-CoV-2.However, there is still a

gap between animal models and humans in terms of clinical

characteristics, and it is difficult to comprehensively summarize the

clinical symptoms of COVID-19 patients. However, the application

of animal models provides a wealth of insights into SARS-CoV-2

pathogenesis, especially as the NHP model can faithfully reproduce

COVID-19 pathology in humans. Althoughmuch research has been

devoted to the adaptive immune response to SARS-CoV-2, there are

still many unanswered questions that need to be further explored

using animal models.
Fron
• What is the mechanism of lymphopenia caused by

SARS-CoV-2 infection? Are there certain viral proteins

that antagonize adaptive immune responses?

• Are neutralizing antibodies, CD4+ T cells, or CD8+ T

cells necessary for the control of primary viral infection?

• What are the immune protection thresholds and

persistence of humoral and cellular immune responses

induced by vaccines and infections?

• How does aging affect resistance to SARS-CoV-2

through adaptive immunity?

• Is preexisting cross-immunity sufficiently effective

against infection and high pathogenicity caused by

SARS-CoV-2?

• What is the antiviral mechanism at play in asymptomatic

patients? Is it related to preexisting cross-immunity?

• What is the role of tissue, especially lung-resident,

immune responses in anti-SARS-CoV-2 activity and

their relationship to circulating immune responses?
In conclusion, although the pathogenicity of omicron

variants has been greatly reduced, the long-term existence and

high mutation frequency of SARS-CoV-2 require constant

attention to its threat to humans. Even though both SARS-

CoV-2 and influenza virus can cause respiratory diseases, SARS-
tiers in Immunology 11
CoV-2 far exceeds influenza virus in many aspects, such as

mutation rate, transmission characteristics, and induction of

mortality. We need a better understanding of SARS-CoV-2 to

better prevent the establishment of future novel variants of

SARS-CoV-2.
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