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Abstract

The dynamics of cerebellar neuronal networks is controlled by the underlying building blocks

of neurons and synapses between them. For which, the computation of Purkinje cells (PCs),

the only output cells of the cerebellar cortex, is implemented through various types of neural

pathways interactively routing excitation and inhibition converged to PCs. Such tuning of

excitation and inhibition, coming from the gating of specific pathways as well as short-term

plasticity (STP) of the synapses, plays a dominant role in controlling the PC dynamics in

terms of firing rate and spike timing. PCs receive cascade feedforward inputs from two

major neural pathways: the first one is the feedforward excitatory pathway from granule

cells (GCs) to PCs; the second one is the feedforward inhibition pathway from GCs, via

molecular layer interneurons (MLIs), to PCs. The GC-PC pathway, together with short-term

dynamics of excitatory synapses, has been a focus over past decades, whereas recent

experimental evidence shows that MLIs also greatly contribute to controlling PC activity.

Therefore, it is expected that the diversity of excitation gated by STP of GC-PC synapses,

modulated by strong inhibition from MLI-PC synapses, can promote the computation per-

formed by PCs. However, it remains unclear how these two neural pathways are interacted

to modulate PC dynamics. Here using a computational model of PC network installed with

these two neural pathways, we addressed this question to investigate the change of PC fir-

ing dynamics at the level of single cell and network. We show that the nonlinear characteris-

tics of excitatory STP dynamics can significantly modulate PC spiking dynamics mediated

by inhibition. The changes in PC firing rate, firing phase, and temporal spike pattern, are

strongly modulated by these two factors in different ways. MLIs mainly contribute to variable

delays in the postsynaptic action potentials of PCs while modulated by excitation STP. Nota-

bly, the diversity of synchronization and pause response in the PC network is governed not

only by the balance of excitation and inhibition, but also by the synaptic STP, depending on

input burst patterns. Especially, the pause response shown in the PC network can only

emerge with the interaction of both pathways. Together with other recent findings, our

results show that the interaction of feedforward pathways of excitation and inhibition,
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incorporated with synaptic short-term dynamics, can dramatically regulate the PC activities

that consequently change the network dynamics of the cerebellar circuit.

Author summary

It is well known that the dynamics of neuronal networks are controlled by various types of

neural pathways that are interactively routing excitation and inhibition converged to post-

synaptic neurons. In addition, gating of a specific neural pathway is enhanced by short-

term plasticity of the synapses between neurons. However, it remains unclear how a com-

bination of these factors, the strengths of excitation and inhibition, and their short-term

dynamics respectively, contributes to the dynamics of single cells and neuronal networks.

Using a network model of cerebellar Purkinje cells embedded with the feedforward excit-

atory pathway from granule cells and feedforward inhibition pathway of molecular layer

interneurons. We show that the dynamics of firing rate, firing phase, and temporal spike

pattern are notably yet differently modulated by these two pathways. At the single cell

level, excitatory short-term plasticity nonlinearly modulates the input-output relationship

of firing activity. At the network level, the diversity of synchronization and pause response

is governed not only by the balance of excitation and inhibition, but also by synaptic

short-term dynamics. Only when both neural pathways are incorporated, there is a strong

pause response shown in the network. Our results, together with recent in vivo experi-

mental observations in the cerebellum, show that the interaction of feedforward pathways

of excitation and inhibition, together with synaptic short-term dynamics, can dramatically

change the network dynamics of Purkinje cells.

Introduction

The dynamics of single neurons and neuronal circuits are controlled by various types of neural

pathways involving excitatory and inhibitory neurons. It is generally suggested that the com-

putation in neuronal circuits requires a balanced excitation (E) and inhibition (I) in synaptic

transmission through regulation of neuronal excitability [1–5]. In the cerebellum, fine-tuning

of E-I balance also plays an important role in cerebellar development and motor coordination

[6–8]. Purkinje cells (PCs), as the only output cells of the cerebellum, leverage E-I balance for

controlling their dynamics from different neural pathways, involving excitatory inputs from

granule cells (GCs) and inhibition inputs from molecular layer interneurons (MLIs) [6, 8, 9].

A sequence of inhibitory inputs through MLIs can rapidly terminate the membrane depo-

larization of PCs induced by direct excitatory inputs from GCs [10, 11]. In this way, correlated

E and I inputs can prevent saturation of the postsynaptic spiking activity and extend its

dynamic range for coding of a stimulus. Moreover, developmental changes in the strength of

synapses from MLIs to PCs can result in an 11-fold decrease in overall postsynaptic currents

[12]. Such a large variation of MLI-PC synaptic strength implies that the MLI activity must be

coordinated to efficiently inhibit the activity of PCs. As a result, even a single MLI can dramati-

cally change the PC activity [13].

The neuronal circuit in the cerebellum, as one of the densest networks, employs massive

synaptic connections installed with their short-term dynamics for computation [10, 14–16].

One important mechanism for modulating neural excitability is the influence of synaptic

transmitter release by synaptic short-term plasticity (STP) at various types of synapses [17–19].
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STP can make synaptic efficacy decreased (synaptic depression) or increased (synaptic facilita-

tion) according to inputs from repetitive presynaptic activity [20, 21]. Previous work observed

that a wide range of synaptic change was correlated strongly with the strength of GC-PC syn-

apses [22]. As a result, massive mossy fibers from GCs to PCs installed with STP can strongly

contribute to the neural dynamics of PCs, which then provide a computational basis for a wide

range of behaviors, from motor control to cognition [23, 24].

Therefore, the diversity of excitation gated by the STP of GC-PC synapses, modulated by

strong inhibition from MLI-PC synapses, can play an important role in the PC dynamics.

Recently, it has been demonstrated that coordinated excitation and inhibition from synaptic

short-term dynamics converged to PCs lead to a wide diversity of PC firing dynamics [18, 19].

However, it is still not clear how the interaction of two neural pathways, the large variation of

MLI strength in the feedforward inhibitory pathway, together with the STP of excitation raised

in GC-PC synapses in the feedforward excitatory pathway, can influence the E-I balance for

changing single PC firing dynamics and network behaviors of the PC circuit.

In this work, we addressed this question using a computational model of a neural network

consisting of GCs, MLIs, and PCs. Specifically, we incorporated two neural pathways from

GCs to PCs. The first one is the feedforward excitatory pathway from GCs to PCs. The second

one is the feedforward inhibition pathway from GCs, via MLIs, to PCs. We aim to clarify the

specific contribution of excitatory GC-PC synaptic STP and inhibitory MLI-PC strength to

downstream PC dynamics. We show that the nonlinear characteristic of excitatory GC-PC

STP dynamics can significantly affect PC dynamics in terms of firing rate, firing phase, and

temporal spike pattern, which are modulated by MLI inhibition. In particular, excitatory STP

enables nonlinear gain modulation. Notably, we demonstrate that the change of synchroniza-

tion in the network is governed not only by the E-I balance but also by the synaptic STP

depending on input burst patterns, whereas the pause response of the network emerges from

the tight interaction of two neural pathways. Together with other recent findings, our results

show that the interaction of neural pathways of excitation and inhibition dramatically modu-

late the neural dynamics of PCs that consequently change their network behaviors.

Methods

Single cell models

PCs and MLIs were modeled as modified integrate-and-fire neurons [25] that were also used

for modelling of cerebellar cells [26]. The membrane potential V obeys the equation:

Cm
dV
dt
¼ � gLðV � ELÞ � INa � Inoise � gAHPzAHPðtÞðV � EKÞ � IsynðtÞ ð1Þ

where Cm is membrane capacitance, gL is leak conductance and EL is leak resting potential.

The sodium current was given by INa = −gLΔT exp[(V − VT)/ΔT] with ΔT = 3 mV and the fir-

ing threshold VT drawn randomly for each neuron using a Gaussian distribution. When the

membrane potential reaches the threshold VT at the spike tspk, V is set to 40 mV for a duration

of the spike as τdur = 0.6 ms. After the spike, at t = tspk + τdur, repolarizing potential is set to

Vrest, and an afterhyperpolarization (AHP) conductance is activated. The gating variable zAHP

follows the dynamics dzAHP/dt = (1 − zAHP)/xAHP − zAHP/τAHP. The resource variable xAHP

obeys the dynamics dxAHP=dt ¼ � xAHP=tAHPx
þ dðt � tspike � tdurÞ, where tAHPx

¼ 1 ms. The

refractory period is set as tref = 2 ms. To mimic the ongoing activity in our simple point neuron

models, a noisy excitatory current Inoise = (V − VE)gN was injected with a slowly fluctuating

conductance gN, described by an Ornstein-Uhlenbeck process,
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tNdgN=dt ¼ � gN þ sN
ffiffiffiffiffi
tN
p bðtÞ, where σN = 0.12 nS, τN = 1000 ms, and b(t) is white noise with

unit variance density.

Similarly, GCs were modeled as previously based on experimental data [15], whose mem-

brane potential V obeys the equation:

Cm
dV
dt
¼ � glðV � ELÞ exp ð� ðV � ELÞ=5Þ � Inoise � gAHPzAHPðtÞðV � EKÞ � IsynðtÞ ð2Þ

where the model components have the similar meanings as the PC and MLI model. All the

parameters of neural models of PCs, MLIs, and GCs have the same values, except those listed

in Table 1, where the adjustment of parameters for individual cell types were based on previous

studies [8, 15, 18, 27].

Synapse models

For synaptic currents, Isyn of MLIs represents the total excitatory input arriving from GCs. Isyn
of PCs receives excitatory input from GCs and inhibition input from MLIs. Isyn of GCs repre-

sents excitatory input from mossy fibers (MFs). All the synaptic currents were modeled with a

similar form as:

Isyn ¼ gmaxrðtÞYðV � EsynÞ ð3Þ

where Esyn = 0 mV is for excitatory AMPA and NMDA synapses, and Esyn = −80 mV is for

inhibitory GABA synapses. The scaling factor Y is a nonlinear voltage-dependent function for

NMDA: Y = 1/(1+ exp(−(V − 84)/38)). Otherwise, Y = 1 for other types of synaptic receptors.

The gating variable r was described by

r0 ¼ � r=tdecay þ a:sð1 � rÞ

s0 ¼ � s=trise þ Ru
X

k

dðt � tspkÞ
ð4Þ

where, Ru is to represent short-term synaptic plasticity with a simple phenomenological model

that describes the kinetics of plasticity, such that it treats short-term depression and facilitation

as two independent variables, R and u, respectively [20, 28].

R0 ¼ ð1 � RÞ=trec � RUdðt � tnÞ

u0 ¼ ðU � uÞ=tfac þ Uð1 � uÞdðt � tnÞ
ð5Þ

Totally, we mainly used four types of synaptic connections between neurons: the excitatory

MF-GC, GC-MLI, and GC-PC synapses, and the inhibitory MLI-PC synapse. All types of syn-

apses show a varying heterogeneity of short-term plasticity with mixed fast and slow time

scales. When STP is switched off for GC-PC and MLI-PC synapse, the variables R = 1 and u =

U are held fixed without dynamic updates. Synaptic delays in all synapse are included as 1 ms.

In addition, MLI-PC synaptic delays are heterogeneous with a Gaussian distribution (mean as

Table 1. The parameters of single cell models.

Neuron C(pF) gL(nS) EL(mV) VT(mV) Vrest(mV) gAHP(nS) EK(mV) τAHP(ms)

PC 250 12.5 -70 −50 ± 1 -70 4 -100 20

MLI 20 1 -50 −45 ± 2.25 -50 4 -100 20

GC 4.9 1.5 -90 −50 ± 2.5 -65 1 -90 3

https://doi.org/10.1371/journal.pcbi.1008670.t001
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1 ms and SD as 0.2 ms). In case of studying the effect of recurrent inhibition, the MLI-MLI

inhibitory synapse was also included. Synaptic parameters for each type of synapse in the

model were constrained by experimental measurements as shown in Fig 1B [12, 15, 22, 29].

Postsynaptic currents recorded with current clamps at PCs from experimental data were fitted

by models. Specifically, we used the following data: the postsynaptic GC-MLI current under a

10-spike stimulation clamped at -60 mV for MLIs [19]; unitary GC-PC current clamped at -70

mV for PCs [22]; unitary MLI-PC current clamped at 0 mV for PCs [12]; unitary MLI-MLI

current clamped at -50 mV for MLIs [30]. The parameters values are described in Table 2.

Through the study, two key parameters are focused: the MLI-PC synaptic weight WMLI for

varying inhibition strength; the initial efficiency Uexc of GC-PC synapses for varying excitation

Fig 1. PC dynamics controlled by excitation and inhibition. (A) Schematic illustration of feedforward excitatory GC-PC short-term

plasticity (STP) pathway and inhibitory GC-MLI-PC pathway on a PC. Granular cells (GCs, red), molecular intermediate neurons

(MLIs, blue) and Purkinje cells (PCs, black). (B) Postsynaptic currents of four types of synapses from experimental data fitted by

models. (C) The PC network with 50 PCs (black), 1000 GCs (red), and 500 MLIs (blue). For illustration, only 3 PCs are shown. (D) PC

in response to the GC-PC input. (Left) EPSPs triggered by a single GC spike by varying GC-PC synaptic STP amplitudes Uexc (0.05–

0.75 with a 0.05 increment). (Middle) EPSPs triggered by a train of 10 spikes at 200 Hz at two different values of U: Uexc = 0.06 for

facilitation and Uexc = 0.42 for depression, with (light blue) and without (purple) STP switched on. (Right) STP described by the ratio

EPSPn/EPSP1 showing facilitation or depression in a train of a varying number of burst spikes under different U (0.02-0.7, fixed burst

frequency at 200 Hz). (E) Similar to D but for IPSPs triggered by the MLI-PC input. Single IPSPs induced by different strengths WMLI

(0.5–7 with a 0.5 increment).

https://doi.org/10.1371/journal.pcbi.1008670.g001
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strength. By default, we set WMLI = 3.5 nS and Uexc = 0.4 as guided by experimental data in

Fig 1, unless those values mentioned differently in the work below. To further analyze the

impact of MLI inhibition on PC network dynamics, we also systematically varied the initial

efficiency Uinh for MLI-PC synaptic STP.

PC network model

A network model was set up with 50 PCs, 1000 GCs, 500 MLIs and 500 MFs, where each PC

receives synaptic input from 100 GCs and 8 MLIs randomly, each MLI receives input from 4

random GCs. When studying the impact of MLI inhibition on PC network dynamics, we sys-

tematically varied two parameters: the number of MLIs targeting a PC for increasing overall

inhibition, and the number of MLI-MLI connections for recurrent inhibition before converg-

ing to PCs. Therefore, for each PC, there are two input pathways: one direct excitatory input

from GC-PC pathway, and another inhibitory input from GC-MLI-PC pathway. The sche-

matic network is illustrated in Fig 1. The spike firing of each GC was generated by injecting a

sequence of MF-like spikes as described previously [15]. Each individual GC was activated

with different types of spike input patterns, such as Poisson firing, regular firing, modulated

firing, and burst firing. Irregular Poisson spike trains were generated based on the method

described in [15]. Regular patterns were generated with the same interspike intervals. The

input patterns before and after burst are either Poisson or regular spike trains across the popu-

lation of GCs. The GCs modulation firing inputs were induced by the same probability distri-

bution modulated sinusoidally in time for every trial as in [15]. It is worth noting that each GC

was activated with a different onset time, so that all GCs were activated heterogeneously over

the time course, except the burst stimulation, where all GCs were activated at the same time.

Simulations were run in C++ VS2015 with a time step of 0.1 ms.

Data analysis

Data collected after simulation was loaded in MATLAB for further analysis. Simulations were

run in four major different conditions: the baseline, i.e., PC model running without MLI inhi-

bition and without STP in GC-PC synapses, and three other conditions with MLI on, GC-PC

STP on, or both on.

Gain and offset of the I-O function. PC firing rates (F) as a function of GC inputs were

fitted with the following Hill function as previously [31]:

FðGCÞ ¼
Fmax

1þ ðGC50=GCÞ
n þ F0 ð6Þ

Table 2. Synaptic parameters for each synapse in the model.

Synapse Strength Synaptic dynamics short-term plasticity

Pre-Post type gpeak(nS) α(1/ms) τrise(ms) τdecay(ms) U τrec(ms) τfac(ms)

GC-MLI AMPAfast 3.2 3 1 1.5 0.1 100 50

NMDA 9.6 0.35 5 20 0.07 50 100

GC-PC AMPAfast 0.5 3 1 1.5 Uexc 50 400

AMPAslow 0.7 0.3 3 8 Uexc 50 400

MLI-PC GABAAfast WMLI 3 1 10 0.1 100 800

GABAAslow 1.5 � WMLI 0.35 5 100 0.05 800 100

MF-GC AMPAfast 1.2 3 0.3 0.8 0.5 12 12

AMPAslow 2.4 0.3 0.5 5 0.5 12 12

NMDA 2.88 0.35 8 30 0.05 - -

MLI-MLI GABAAfast 3.1 3 1 2.5 0.5 - -

https://doi.org/10.1371/journal.pcbi.1008670.t002
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where n is the exponent factor, F0 the firing rate offset, and Fmax the maximum firing rate.

GC50 is the value of GC at which F reaches half maximum. To investigate changes in the

input-output relationship of PC firing caused by MLI and/or STP, the change of PC response

was quantified by ΔGain calculated as follows [31]:

DGain ¼ ð
F0þx � F0 � x

F0
� x

Þ ð7Þ

where F0 is the average slope of the fits between 5% and 75% its maximum value. +x and -x

denote different conditions of with/without STP and/or MLI, e.g. ±STP or ±MLI. A shift along

the input axis corresponds to an additive operation, while a change in slope corresponds to a

multiplicative operation, or gain change. Offset shifts (ΔOffset) were defined as the difference

between the half-maximum values of the fits in the conditions +x and -x.

Spike train analysis. To characterize the temporal structure of spike trains, we used

three characteristics of spike trains as previously [32]: interspike intervals (ISIs), coefficient

of variation (CV) of ISIs), and local regularity CoV2 = 2|ISIn+1 − ISIn|/(ISIn+1 + ISIn) for a pair

(n, n+1) of ISIs.

Synchronization. To characterize network dynamics, the synchronization index for the

whole population of PCs was calculated for burst stimuli. Using spike trains of all PCs with a 1

ms time bin, the coefficient of cross-correlation between any two PCs was calculated, i.e., CCij

is the correlation coefficient between PC i and j. Then the network synchronization is given

by,

Knet ¼
2
PN� 1

i¼1

PN
j¼iþ1

CCij

NðN � 1Þ
ð8Þ

where N is the number of the PCs in the network. The average Knet, based on the firing rate

over a time windows, was calculated for a period of post-burst stimulation in different

parameters of burst setting. We used 20, 30 and 40 ms for bursts of 2, 5 and 7 spikes at

200 Hz, and 200, 100, 50 and 40 ms for busts of 50, 100, 200 and 300Hz with 10 spikes,

respectively.

Pause response. Under the condition of both MLI and GC-PC STP switched on, burst

stimulus triggers a prominent pause response after burst in the population spikes of PCs,

which is defined by a time interval where there is no spikes in PCs, typically, it is from the off-

set of burst to the onset of next wave of population spikes in PC network.

Phase shift. To quantify the phase shift in the output PC spike train relative to the fre-

quency of sinusoidal modulation of GC input spike train, the average PC firing rate over the

whole population was fitted by a sinusoidal function Asin(2πft + ϕ) + C, where C is the offset

of firing rate, and the modulation phase shift at frequency f is thus fully specified by the phase

shift ϕ of the sinusoidal component, since the initial phase of input stimulus was set as 0 in all

simulations.

Results

PC dynamics in response to GC input

PC has a unique feature with high-frequency firing activity as the primary information carrier

affecting the activity of downstream neurons. The way a neuron transfers information can be

represented by its input-output relationship, which is affected by synaptic inputs. Here we

examine how inhibitory MLIs and excitatory GC-PC STP are cooperated to affect the PC

dynamic sensitivity in response to the GC input.
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For each PC, there are two streams of synaptic inputs coming to its dendrites as illustrated

in Fig 1A. There is a feedforward inhibitory pathway, the synaptic GC-MLI-PC connection,

which consists of GC-MLI synapses with AMPA and NMDA receptors activated by GCs, and

MLI-PC synapses with GABA receptors activated by MLIs. Then each PC also receives another

feedforward excitatory pathway, the synaptic GC-PC connection consisting of slow and fast

AMPA receptors activated by GCs. In addition, there are recurrent connections between

MLIs. These four types of synaptic currents can be constrained by experimental measurement

shown in Fig 1B (see Methods). To study the network dynamics of PCs, we set up a network

with 50 PCs, 1000 GCs, and 500 MLIs illustrated in Fig 1C, where all types of neurons were

implemented with modified integrate and fire models and synapses were modeled with short

term plasticity (see Methods). The weights of all synapses were drawn from a Gaussian distri-

bution to consider the variability. For each PC, randomly generated network connections were

used but with randomized synaptic weights so that the summation of synaptic inputs induces

different responses for different PCs (S1 Fig).

When a sequence of mossy fiber spike inputs is delivered, GCs are activated to enable two

synaptic pathways onto PCs playing different roles in controlling the firing dynamics. For

which, we consider two key features, the excitation of the STP in GC-PC synapses in Fig 1D,

and the inhibition strength from MLIs in Fig 1E, as previous evidence show that inhibition

from a single MLI can efficiently change PC dynamics [13], and the presynaptic STP can dra-

matically affect PC activity [18]. We will show that these two factors contribute to PC activity

in different ways.

The single spike response of a PC can be gradually changed by the strength of excitation

and inhibition, where synaptic strength is regulated by the synaptic weight together with the

initial efficacy parameter U of STP. When varying Uexc and WMLI systematically, one can

change the amplitude of EPSP (excitatory postsynaptic potential) and IPSP (inhibitory post-

synaptic potential) recorded at a PC in Fig 1D and 1E). The short-term dynamics of GC-PC

and MLI-PC synapses depend on the STP parameters, e.g., the initial efficacy U as in Fig 1D

and 1E and time constants, and the input burst frequency (S2 Fig). The parameter U controls

the amplitude of synapse release from facilitation to depression in terms of short-term dynam-

ics. With a train of burst spikes at 200 Hz, synapses are facilitating when Uexc <0.1 and Uinh

<0.15 in our model. As the MLI inhibition is more prominent with a large variation of the

strength [13], we fixed Uinh as 0.1 but changed the weight of MLI-PC synapses to investigate

the interaction of inhibition and excitation. However, PC responses vary significantly for dif-

ferent formats of STP dynamics in our study, and the results presented in this work are robust

to the change of STP parameters as shown below. We therefore set the default values asWMLI =

3.5 nS and Uexc = 0.4, unless those changed in the following study.

PC input-output relationship modulated by excitatory STP

In the cerebellum, outside inputs are represented by a sequence of mossy fiber spikes convey-

ing efferent information into a high-dimensional, sparse code of a large population GCs in the

network [16, 33, 34]. In the default case, there is no MLI inhibition (MLI off) and no GC-PC

STP onto PCs (STP off, i.e., no short term dynamics on GC-PC synapses), while other types of

synapses are still dynamic and subjected to the change following the STP rule (See Methods).

We aim to examine how these two factors, MLI inhibition, and GC-PC STP, are interacted to

change the balance of excitation and inhibition and modulate the dynamics of downstream

PCs.

The first fundamental feature of neural computation is the input-output relationship, i.e.,
I-O function, of PC firing. To investigate this, we used a wide range of input frequencies and
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different types of stimulation, which are represented by GC firing activities. Within the context

of the I-O function, there are two types of changes in the shape mostly observed for single neu-

rons. The first one is the additive change, where there is a shift of the I-O curve without chang-

ing the shape. Another one is the multiplicative change, or gain change, where the I-O

function is reduced or increased by a multiplicative factor.

We first leave out MLI inhibition and study the effect of STP of GC-PC synapses by inject-

ing a sequence of Poisson spike trains at different frequencies. Enabling STP can suppress

excitatory input conductance and reduce the number of spikes in PCs (Fig 2A), which nonli-

nearly depends on the GC input, such that total excitation Gexc is boosted at lower frequencies

but suppressed higher input frequencies (Fig 2B). Compared to the baseline, adding MLI

inhibition produces an approximate additive change of the I-O function with reduced firing.

However, using STP can nonlinearly change the I-O function as in Fig 2C. Our default values

(Uexc = 0.4 and Uinh = 0.1) generate depressing excitation on GC-PC synapses and facilitating

inhibition on MLI-PC synapses. It has been suggested from experimental data that these syn-

apses could behave in an opposite way [18, 19, 35]. We implemented our model with an oppo-

site pair of values (Uexc = 0.08 and Uinh = 0.2) giving facilitating excitation and depressing

inhibition, and found the similar results for nonlinear gain control with GC-PC STP (S3 Fig).

Furthermore, the similar results still hold when the MLI-PC STP was switched off (S3 Fig).

This confirms the above observation as the effect of STP in GC-PC synapses, rather than the

detailed profiles of facilitation or depression in the GC-PC STP. We then characterized the

change in slope (ΔGain) and the shift in the half maximal response (ΔOffset) of the I-O rela-

tion using fits to Hill functions as previously [31] (see Methods). Results in four conditions in

Fig 2D reveals that GC-PC STP has a greater effect on gain modulation, which is more promi-

nent when both STP and MLI are switched on. Thus, excitatory STP can greatly enhance gain

modulation aided by MLI inhibition.

In STP, facilitation needs lower values of U, whereas depression for higher values of U.

Thus, fixed U values change scaling of synaptic currents, as well as profiles of STP. More-

over, STP also depends on input frequency, such that at higher input frequencies, dynamical

variables of STP, particularly resource variable R saturates with a limited dynamic range to

regulate synaptic currents. As a result, differences of gain control is more prominent at

lower frequencies. To further characterize the effect of excitation STP and MLI inhibition

on the PC I-O function, we systematically varied the strengths of STP Uexc and inhibition

WMLI, respectively. In the absence of STP, there is a limited effect of inhibition when chang-

ing WMLI as in Fig 3A (top). However, when STP is presented, a sequence of increased inhi-

bition results in a dramatic change of PC firing (Fig 3A, bottom). Under the same amount of

inhibition increment, there is a larger step of gain change with STP than the case without

STP.

Similarly, we leave out MLI inhibition while changing Uexc by turning STP on and off

respectively. Without STP, decreasing excitation strength shows a similar profile as increasing

inhibition, as shown by the total excitation Gexc in Fig 3B (top). The gain change is well dis-

played, in particular with larger difference for 10-50 Hz GC inputs, whereas less difference at

higher frequencies due to saturation of short-term dynamics (Fig 3B, bottom). This is due to

that when STP is present, low synaptic efficacy shows more facilitation whereas high synaptic

efficacy shows more depression, which can compensate for the overall change of total excita-

tion (see S4 Fig for lower values of Uexc). These dynamic behaviors are also shown in the pro-

files of each individual synaptic component of GC-PC synapses (S5 Fig). Therefore, these

results confirm that GC-PC synaptic STP with the aid of MLI inhibition can significantly

enhance gain modulation of PC firing dynamics.
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PC firing phase modulated by excitatory and inhibitory pathways

Modeling studies suggest that synaptic short-term plasticity can contribute to the phase shift

in neural dynamics in response to time-varying inputs at the single cell level [36, 37]. Recent

experimental findings in the cerebellum suggest that there is a diversity of phase shifts in dif-

ferent types of cerebellar neurons [38]. Here we investigate how MLI inhibition and STP of

GC-PC excitation affect PC responses under oscillating inputs at the population level.

Sinusoidally-modulated inputs with different frequencies were injected into GCs, then

drove the PC population firing activity fitted by a sinusoidal curve shown in Fig 4A. When

increasing input driving frequency, there is a corresponding increase in the modulated phase

shift. Relative phase shifts are easily seen when these fitted sinusoids are overlapped in Fig 4B

in the baseline case. Most of the input frequencies generate a phase delay lag of PC firing,

except for very low frequency, here 1 Hz modulation. The input with 30 Hz completely

Fig 2. Inhibition-mediated gain modulation of PC firing dynamics enhanced by excitatory short-term plasticity. (A) (Top) Sum of excitatory

conductance Gexc onto a PC in the baseline condition (STP off) and a test condition with STP. The input is 100 independent synaptic trains using

Poisson stimulation at 50 Hz. (Bottom) PC membrane potential traces with and without STP. Vertical ticks indicate spike times. (B) Average Gexc

changing over a range of GC rates with and without STP. Gexc was averaged over the time course and all GCs connected to a PC. (C) PC input-output

relationship in four conditions, with/without STP and/or MLI. Each point is mean±SD (n = 50). Poisson stimulation was used. Lines in (B) and (C) are

fits to a Hill function. (D) Heterogeneous gain and offset changes due to STP (±STD) and MLI (±MLI) from fits in (C).

https://doi.org/10.1371/journal.pcbi.1008670.g002
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reverses the phase in PC firing. Compared to the baseline, phase shifts induced by MLI and

STP are different in Fig 4C. MLI inhibitory inputs directly delay PC spike timing and drive

large phase delays in PCs, especially, on higher input frequencies. However, excitatory STP

results in a relative decrease in the phase shift in response to the same input. Pairing STP with

MLI results in a balanced state where the phase shift shows a compromised change as an aver-

age of two factors. By varying excitation Uexc and inhibition WMLI, there is a wide range of sys-

tematical phase shifts under a sequence of input frequencies from 0 to 30 Hz in Fig 4D. At the

low level of synaptic efficacy as 0.05, strong inhibition inputs trigger few spikes. Otherwise, at

other synaptic efficacy values, the increased inhibition dramatically delays phase shift. How-

ever, the opposite effect is found for STP of excitation.

As phase shift is related to the time scale of neural dynamics [15], we examined the detailed

dynamics with varying time constants of STP. Combinations of facilitation and recovery time

constants, ranging from a few to hundreds of milliseconds, enable information transmission

over a very wide range of interspike intervals [39]. Fig 5A shows the PC response with different

facilitation and recovery time constants at 10 Hz modulation frequency. The change in the

phase shift in Fig 5B shows that increasing the recovery time constant results in increased

phase shifts at all frequencies. However, increasing the facilitation time constant results in

increased phase shifts at a higher modulation frequency (large than 10 Hz), whereas decreased

phase shifts at low modulation frequency inputs (less than 10 Hz). Fig 5C shows the systematic

change of phase shift for combinations of facilitation and recovery time constants across differ-

ent input frequencies.

These results suggest that MLI inhibition is sufficiently strong to increase phase delays,

whereas STP of GC-PC excitation results in reduced phase delays. Within the STP, the

Fig 3. The gain change of PC firing significantly depending on GC-PC STP. (A) PC firing modulated by different levels of MLI

inhibition strength without STP (top) and with STP (bottom) at Uexc = 0.4. (B) Excitatory conductance modulated by different levels of

GC-PC synaptic efficacy Uexc without STP (top) and with STP (bottom).

https://doi.org/10.1371/journal.pcbi.1008670.g003

PLOS COMPUTATIONAL BIOLOGY PC dynamics through E-I pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008670 February 10, 2021 11 / 29

https://doi.org/10.1371/journal.pcbi.1008670.g003
https://doi.org/10.1371/journal.pcbi.1008670


recovery time constant has a greater impact on phase shift than the facilitation time constant.

In this way, the balance between excitation and inhibition cooperatively shapes the modulation

of PC responses in the network.

PC temporal spike pattern affected differently by excitation and inhibition

Apart from firing rate, spike temporal pattern has been suggested to play an important role in

information processing of neuronal dynamics [40]. Inhibition can control the temporal win-

dow of PC discharge and cause highly variable delays in the membrane potential dynamics of

neurons [11]. Moreover, STP can induce complex contingencies on the temporal patterns of

neural activity [39] and contribute to temporal filtering of synaptic transmission [28]. Here, by

Fig 4. PC phase modulation affected by MLI and STP. (A) PC population firing rate (n = 50) in response to GC inputs sinusoidally-modulated with 1, 10, 20 and 30

Hz, from 100 independent input spike trains. Solid color lines are fitted with sinusoidal functions. (B) Normalized fitting curves from (A) show phase shifts relative to

the input. (C) Phase shift as a function of input frequency in four different conditions (left), and the corresponding changes of phase shifts relative to the baseline

(right). (D) Phase shift changed over a range of excitation Uexc and inhibition WMLI. (Left) Phase shift over a sequence of input frequencies with different levels of

excitation and inhibition in three conditions. (Right) Phase shift changed by combined MLI and STP, where each inner rectangle represents a PC phase shift

spectrum over the same sequence of input frequencies (0-30 Hz).

https://doi.org/10.1371/journal.pcbi.1008670.g004
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varying inhibition WMLI and excitation Uexc, we investigate the impact of these factors on the

temporal pattern of PC spikes (Fig 6).

As expected, stronger inhibition increases a systematical delay of PC action potentials (Fig

6A and 6B)). However, larger excitation in STP results in contingencies in spike latency such

that spike times can be shifted in both ways (Fig 6C and 6D)). Characteristics of the temporal

structure of spike patterns, interspike interval (ISI), coefficient of variation (CV) of ISIs and

local regularity (CoV2, see Methods), show a larger variation and higher values with both STP

and MLI on (Fig 6E). Presumably, these variations could greatly enhance the dynamic range of

the PC response. Taken together, these results suggest that the mixture of inhibition and exci-

tation installed with STP can change PC spike patterns in a dynamic coding fashion. Then we

will explore this role at the network level.

PC network dynamics in response to burst input

Finally we investigate how MLI and STP reshape high-frequency bursts of GC activity into PC

spike activity. Occurring at a much shorter time scale with a few spikes, a burst at a very high

frequency of a few hundred Hz can change the PC response remarkably [41]. Fig 7A shows an

illustration of the burst stimulus protocol, where a sequence of 3 or 7 spikes at 100 Hz was

Fig 5. PC phase modulated by timescales of short-term dynamics of GC-PC synapses. (A) Histograms of spikes in GCs (top) and PCs (bottom) in

response to an input spike train sinusoidally-modulated at 10 Hz, with three examples of time constants of recovery τrec (fixed τfac = 400 ms) and facilitation

τfac (fixed τrec = 50 ms). (B) Phase shift as a function of input frequency for (left) τrec and (right) τfac, with similar settings as in (A). (C) Phase shift in the

parameter space of τrec and τfac. Each inner rectangle represents a PC phase shift spectrum changing over different modulation frequencies (0-30 Hz).

https://doi.org/10.1371/journal.pcbi.1008670.g005

PLOS COMPUTATIONAL BIOLOGY PC dynamics through E-I pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008670 February 10, 2021 13 / 29

https://doi.org/10.1371/journal.pcbi.1008670.g005
https://doi.org/10.1371/journal.pcbi.1008670


delivered to each GC, together with the corresponding traces of EPSPs and EPSCs ((excitatory

postsynaptic current)) recorded at a PC. Enabling GC-PC synaptic STP has a strong effect of

short-term depression under Uexc = 0.4, compared to the baseline case without STP.

To study the effect of burst input on the PC network, we used a background 20 Hz Poisson

spikes first, then a sequence of 5 spikes at 200 Hz was injected into all the GCs in the network

to mimic the synchronization of GCs in the granular layer [42] as in Fig 7B. As a consequence,

the spike pattern and averaged population firing rate of PCs are triggered. Compared to the

baseline without MLI and STP, PC responses are differently tuned by MLI and STP, separately

or simultaneously. When both MLI and STP are on, PCs show a prominent response feature:

following a burst input, there is a silent period of several tens of milliseconds, named as a

Fig 6. PC temporal spike patterns affected by MLI and STP. (A) Schematic illustration of feedforward MLI inhibition and GC excitation when GC-PC STP is off.

(B) PC membrane potential traces gradually delayed by different levels of MLI inhibition with an input of 10 Hz Poisson spikes. (C, D) Similar to (A, B) but for MLI

off and STP on with varying excitation at different levels of Uexc. (E) Interspike interval (ISI) distribution of the population PC spikes under four different settings

with/without excitatory STP and/or MLI (left). (Right) The change of ISI, CV (coefficient of variation), and CoV2 (local regularity) over a range of GC inputs,

averaged over the population of PCs (mean±SD, n = 50).

https://doi.org/10.1371/journal.pcbi.1008670.g006
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pause characterized by the length of the time interval of PC activity after the burst [43]. Pause

response remains when switching off the MLI-PI STP in the model (S6 Fig), and is not

depending on the specific choice of GC-PC STP parameters, even using an opposite pair of the

synaptic U values that give facilitating GC-PC synapses and depressing MLI-PC synapses

Fig 7. PC network dynamics in response to burst input. (A) Schematic illustration of GC-PC and GC-MLI-PC pathways receiving burst inputs. (Left) GCs

stimulated by bursts with 3 and 7 spikes at 100 Hz. (Right) EPSPs and EPSCs recorded from PCs for different burst inputs in the baseline condition (red) and

with STP on (green). (B) GC spike raster triggered by a burst input of 5 spikes at 200 Hz, only 50 GCs are shown (top). (Bottom) The corresponding spike

rasters of 50 PCs (left), and averaged PC population firing profiles in different conditions. Note that the pause response indicated as the time interval between

two arrows in the condition of +STP+MLI only.

https://doi.org/10.1371/journal.pcbi.1008670.g007
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(S6 Fig). More detailed analysis shows that during burst inputs, GC-PC synapses become effec-

tively depressed and excitability on PCs is reduced by STP. When MLIs are applied and there

is a balanced level of inhibition on PCs, pause can be generated (S7 Fig). These results suggest

that the interaction of both neural pathways on PCs, resulting in balanced excitation and inhi-

bition, is necessary to generate pause response.

A unique feature of network dynamics is the synchronization of a neural population. Syn-

chronized PC activity, affecting either accurate timings or rate changes in the downstream

nuclei [44], has been suggested to result from the upstream GCs [45]. We conducted experi-

ments on varying the duration of the burst with a fixed number of spikes, to test the burst effect

on the PC response. Consistent with the previous observation that input bursts at frequencies

up to 300Hz allow PC firing to persist at the network level [41], we found that activation of

GCs with 10 stimulus spikes at 50, 100, 200 and 300 Hz, can trigger different types of PC firing

dynamics, depending on MLI and/or STP included or not. The PC population firing rate tends

to be sustained in the baseline, whereas, MLI builds up dynamics over stimulus, STP generates

sharp and transient dynamics, and using MLI and STP together makes the dynamics more

transient (Fig 8A and S8 Fig).

To quantify the synchronization of PC firing in response to burst inputs, the index Knet was

calculated by cross-correlation of the firing rate profiles between a pair of PCs (see Methods).

Fig 8B and 8C) shows the temporal change of Knet in different conditions with/without MLI

Fig 8. PC synchronization controlled by excitation and inhibition. (A) PC population firing rate in different conditions. (Right) The corresponding MLI population

firing rate when MLIs are triggered by GCs. The burst input here is 10 spikes at 50Hz. (B) Time course of PC network synchronization computed from the population

PC firing rate, in response to input bursts with 10 spikes at 50, 100, 200 and 300 Hz under different conditions. (Right) The corresponding time course of MLI

population synchronization. (C) Similar to (B) but for burst inputs at 200 Hz with 2, 5 and 7 spikes, respectively. Colored shadows indicate burst duration. The

background noise are Poisson spikes at 20Hz. The time scale bar in (A) applied in all the plots.

https://doi.org/10.1371/journal.pcbi.1008670.g008

PLOS COMPUTATIONAL BIOLOGY PC dynamics through E-I pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008670 February 10, 2021 16 / 29

https://doi.org/10.1371/journal.pcbi.1008670.g008
https://doi.org/10.1371/journal.pcbi.1008670


and STP, separately or simultaneously, and under different protocols of burst inputs varying

either bust duration in terms of the frequency with a fixed number of spikes, or burst spikes

with a fixed frequency. Under burst inputs consisting of a sequence of 10 spikes at 50, 100, 200

and 300 Hz, the change of synchronization shows different behaviors in the network of PCs

and MLIs. In general, MLIs show a systematically increasing synchronization with higher fre-

quencies, whereas synchronization of PCs varies according to burst frequency. In contrast, PC

synchronization is changed systematically with the increasing number of spikes at a fixed fre-

quency (Fig 8C and S9 Fig), where the PC network was triggered using the different bursts

with 2, 5, 7 spikes at 200 Hz. These results suggest that the interaction of inhibitory MLIs and

excitatory STP can modulate synchronization in different ways.

To obtain a detailed map of the change in PC network synchronization triggered by bursts

within the parameter space of inhibitory MLI WMLI and excitatory STP Uexc, we quantified the

gain of synchronization defined as the relative change calculated by the averaged Knet of test

conditions (with/without MLI and STP) subtracted by that of the baseline. Fig 9A shows that

there is a large variety of changes across conditions. Generally speaking, weaker inhibition

results in decreased synchronization, except the case for the burst with 2 spikes at 200Hz,

where spikes are too few to obtain the significant change. Similarly, we computed the pause

response as in Fig 9B. It is clear that the change of pause is more systematic. The network

develops a systematic pause with longer duration after burst input with increased MLI inhibi-

tion, which is expected due to that inhibition prolongs the pause period. In addition, low excit-

atory synaptic efficacy tends to enhance pause duration when inhibition strength is fixed,

since the excitation is too weak at low values of Uexc and inhibition is more stronger.

So far we varied excitation and inhibition using excitatory STP strength Uexc and inhibitory

MLI strength WMLI. Total excitation and inhibition are contributed by a set of four parame-

ters, weights of GC-PC and MLI-PC synapses and their STP strengths. We then systematically

vary the parameters of STP in both Uexc excitatory and Uinh inhibitory synapses. In contrast to

the nonlinear behaviors shown above, the paired change of U values results in a linear behavior

of the gain of synchronization (Fig 10A). Such that excitation and inhibition have an opposite

effect on the gain: higher excitation reduces gain, whereas higher inhibition increases it. How-

ever, the U strength of excitatory plays a dominant role in controlling of pause response as

shown in Fig 10B, where there is little effect of Uinh. Therefore, a large variation of MLI inhibi-

tion strength, rather than short-term dynamics of MLI-PC synapse, is essential to the nonlin-

ear tuning of PC network dynamics.

The results above indicate that it is MLI inhibition that plays an important role in PC net-

work dynamics. We then systematically vary inhibition strength by increasing the number of

MLI-PC synapses per PC from 1 to 8 MLIs (Fig 11A). Consistent with previous results, stron-

ger inhibition generates a large change for PC synchronization. Depending on the burst proto-

col, there is more or less synchronization changing over MLI inhibition. However, the pause

response is systematically large with stronger inhibition. Another feature for MLIs is that there

are recurrent connections between MLIs [30]. We then generate different recurrent connec-

tions between MLIs by increasing the number of MLIs-MLIs synapses per MLI, while fixing

the inhibition level using 8 MLIs per PC (Fig 11B). There is no systematic change across differ-

ent levels of recurrent MLI connection. Thus, it is the inhibition strength from MLIs that

determines PC synchronization and pause response.

Taken together, these findings suggest that both synchronization and pause response in the

PC network are affected by MLI inhibition and GC-PC synaptic STP with the transition from

facilitation to depression. However, the major role in controlling pause response is MLI inhibi-

tion, where short-term dynamics of MI-PC synapses and recurrence of MLIs less affect the

pause response of PC network dynamics.
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Discussion

In this study, using a network consisting of Purkinje cells with their upstream excitatory gran-

ular cells and inhibitory molecular layer interneurons under different stimulation protocols of

mossy fiber spiking inputs, we explored how the spiking dynamics of PCs are modulated by

two neural pathways from GCs to PCs: direct excitatory GC-PC pathway and feedforward

inhibitory GC-MLI-PC pathway. We focused on GC-PC synaptic short-term plasticity and

Fig 9. The change of PC synchronization and pause response in the parameter space of excitation and inhibition. (A) The gain of synchronization changed in

different ways with WMLI and Uexc under bursts with different spikes and frequencies. Each inner rectangle in each panel represents a single gain value of

synchronization under one burst protocol. (Top) Bursts with 2, 5 and 7 spikes at 200 Hz. (Bottom) Bursts with 10 spikes at 50, 100, 200 and 300 Hz. In all plots, note

that there is no STP but static excitation with Uexc = 0.4 in the last row of the matrix. Similarly, there is no MLI inhibition in the first column of the matrix. Thus the

first point at the left-bottom corner of the matrix is the baseline. The gain was defined as the relative change calculated by the average Knet compared to that in the

baseline. (B) Similar to (A) but for pause response induced by bursts.

https://doi.org/10.1371/journal.pcbi.1008670.g009
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strong MLI-PC inhibition to regulate PC spiking activity at the level of single cells and net-

works. On the single-cell level, the input-output firing dynamics, temporal spiking pattern,

and phase shift, are nonlinearly modulated by these two factors. On the network level, the

synchronization and pause response are modulated by excitation and inhibition. Notably,

nonlinear gain control is achieved by excitatory STP, and pause response is controlled by the

interaction of both neural pathways.

Fig 10. PC synchronization is controlled by STP of both excitation and inhibition, whereas PC pause response is less dependent on STP of inhibition. (A) The

gain of synchronization regulated differently by STP of ML-PC inhibition Uinh and excitation GC-PC Uexc under bursts with different spikes and frequencies. Each

inner rectangle in each panel represents the gain of network synchronization under one burst protocol. (Top) Bursts with 2, 5 and 7 spikes at fixed 200 Hz. (Bottom)

Bursts with 10 spikes at 50, 100, 200 and 300 Hz. Note that the gain was defined as the relative change calculated by the average Knet with STP subtracted by that

without STP. (B) Similar to (A) but for pause duration induced by bursts.

https://doi.org/10.1371/journal.pcbi.1008670.g010
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Inhibition-mediated PC dynamics modulated by short-term plasticity of

excitation

Inhibition is a unique feature for shaping neural dynamics in neuronal circuits [46]. In the cer-

ebellum, the role of MLIs is significant in shaping PC dynamics [13, 14], with strong synaptic

strength changing up to 11 folds for postsynaptic PCs [12]. PCs receive direct MLI inhibitory

inputs from stellate cells at pericellular terminals known as spiny dendrites, and also from bas-

ket cells that terminate on the smooth shafts of dendrites [47]. A large variety of inhibitory

strength depends on the specific location rather than specific types of cells. Although there are

various types of short-term dynamics in MLI-PC synapses [18, 19], the determinate role in

controlling PC dynamics is more dramatic when turning on or off a single MLI, which can

alter downstream PCs significantly shown by in vivo experiments [13]. MLIs also show sponta-

neous firing activities in the absence of excitatory inputs [48, 49], which make inhibition more

prominent to PCs. Thus, it is expected that the effect of the MLI inhibition strength is more

significant in the PC network [13].

On the other hand, the excitation to PCs is controlled by the short-term dynamics of

GC-PC synapses [18, 22]. There is a large variation of synaptic modifications due to different

release probabilities of GCs, such that short-term plasticity of GC-PC synapses can lead to a

wide range of changes in release probability [22]. Therefore, here we stressed MLI inhibition

and GC-PC synaptic STP together and studied how short-term plasticity of excitation changes

the dynamics of MLI-medicated PCs. MLIs are highly sensitive to excitatory inputs [29], such

that increased weight of inhibition can narrow the time window for the integration of excit-

atory inputs. As a result, different contributions of MLI and GC-PC STP could affect the time

window, especially changing the precise synchronous firing time of PCs.

Fig 11. PC synchronization and pause response controlled by MLI inhibition. (A) PC network with no recurrent MLI inhibition. (Left) Illustration of the PC

network receiving different numbers of MLIs. PC synchronization (top) and pause response (bottom) affected by MLI inhibition with stronger weight or more

number of MLI-PC synaptic connections per PC, under burst inputs with different spikes and frequencies. Inner rectangles in each panel represent the gain of

synchronization under one burst protocol. The gain of synchronization was defined as the relative change of the average Knet. (B) Similar to (A) but for the PC network

with recurrent MLIs included, such that each MLI receives 1-8 MLIs recurrently. Here in all plots, each PC receives 8 MLIs.

https://doi.org/10.1371/journal.pcbi.1008670.g011
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Input-output function of PC firing

How neurons respond to stimuli is one of the central questions in neural coding. The stimu-

lus-response, or input-output, relationship of single neurons is a fundamental feature for neu-

ral dynamics. A change in the gradient input-output function of a neuron, termed gain

modulation, is associated with several factors, including shunting inhibition, synaptic noise,

and dendritic morphology [50–53]. Here, we investigated the contribution of synaptic input to

gain modulation taking into account the effect of MLI inhibition and STP of excitation, which

can modulate PC discharges in response to GC inputs. Our findings show that the effect of

inhibition is an approximate additive change of gain modulation, which is related to the fast

onset of feedforward inhibition that can rapidly limit excitatory postsynaptic potentials to

reduce responsiveness to inputs [10, 11]. In contrast, excitatory STP enhances gain changes

due to highly nonlinear synaptic behavior. However, short-term depression and facilitation

modulate gain changes differently, since short-term depression is functionally like low-pass fil-

tering, whereas short-term facilitation acts as high-pass filtering. Thus, the way of gain modu-

lation can be altered by controlling of STP even with the same input.

The functional role of STP in nonlinear gain control is generally demonstrated [54] and also

observed in GC recordings with dynamics-clamp inputs mimicking synaptic spiking inputs [31].

Consistent with these observations, we found nonlinear gain control exists in a wide range of

model settings parameters of short-term dynamics of synapses. Linear PC I-O function could be

a specific case of nonlinear gain control under certain conditions [55]. Our results suggest that

the diversity of nonlinear gain control in different degrees could enhance neuronal computation

using different coding strategies and make the cerebellar microcircuit as an adaptive filer [56].

Phase modulation of PC firing

The impact of synaptic dynamics on the phase of neuronal responses is potentially significant

in a wide range of neuronal systems, particularly for sensory processing and generating motor

outputs in the cerebellum [15, 38, 57]. Here we found that PC phase modulation at the popula-

tion level can be determined by the input frequency, but can also be adjusted by inhibitory

MLI and excitatory STP differently.

Phase modulation by inhibition is sensitive to the input frequency and exhibits in-phase at

low frequency and phase lag at high frequency, especially for higher inhibition intensity, which

is due to that inhibition can delay spike timing. In contrast, phase modulation by excitatory

STP exhibits phase lead at high frequency. As STP can show both depression and facilitation,

depressing synapses trigger spikes after a long period of presynaptic inactivity, whereas facilita-

tion synapses are most effective at transmitting at the end of a burst of activity [39]. Our results

indicate that combined inhibition and excitatory STP act on spike times in a nonlinear way,

which then extends the PC encoding capability to modulate the phase to downstream neurons.

Synchronization of PC firing

For neural temporal codes involving spike pattern and temporal structure in spike trains, pre-

vious studies suggest that PC synchronization has a great effect on the computation carried

out by downstream neurons [27, 44, 45, 58, 59]. There are several proposed mechanisms con-

tributing to PC synchronization, including GC inputs, ephaptic coupling between PCs, and

PC axon collaterals [27, 60–64]. It is possible that a combination of multiple mechanisms

could corroborate to generate the synchronization of PC firing [64].

One of the main contributions to the synchronization of PC simple spikes is the excitation

input from GCs [45, 61]. GC synchronization is a general phenomenon that could be induced

by Golgi cells [65, 66]. Here we delivered a burst protocol mimicking the effect of GC
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synchronized spikes [42] and investigated how they are propagated to PCs. We then studied

how the precise PC synchronization is affected by the STP of GC-PC synapses and strong inhi-

bition from MLIs. We found that GC bursts can trigger PCs to generate a significant level of

synchronization, mainly due to the slow spillover component of GC-PC synapses that provides

persisting excitation inputs. As a result, excitation slowly returns to baseline, and there is enough

time to accumulate excitation continually approaching the spike threshold. For instance, with a

300 Hz burst, the interspike interval is only about 3 ms that makes the slow spillover component

staying at a high level to easily produce a spike for the next incoming stimulus.

In more realistic scenarios, excitation and inhibition are entangled. Our results here suggest

that PC synchronization could result from different effects of excitatory STP and MLI inhibi-

tion on precise temporal dynamics of simple spikes, which then are modulated by the balance

of excitation and inhibition, together with input burst spike patterns, such as the duration and

number of spikes in a burst.

Pause response in PC firing

Another unique feature of temporal spiking pattern is the pause response shown here for PCs.

A delayed and adaptively timed pause in PCs simple spike firing is thought to play an essential

role in the computation performed by PCs [67–70], as well as modulate downstream deep cer-

ebellar nucleus neurons [71]. This type of response has been ascribed to intrinsic mechanisms

and long-term depression of parallel fibers converged to PC synapses [43, 70, 72–75].

Here, we investigated how pause response is elicited by GC-PC and GC-MLI-PC neural

pathways. The pause is more likely to appear when both neural pathways are incorporated,

which is presumably due to that the offset of inhibition is regulated by short-term dynamics of

excitability. Burst input can induce a significant pause that is enforced by MLIs. Overall, all the

four parameters of MLI-PC inhibition, the number of synapse, number of MLI-MLI recurrent

connection, synaptic weight, and synaptic short-term dynamics, could contribute, in different

ways, to the change of MLI-PC synaptic transmission. However, consistent with the previous

findings [74], the main factor is the enhancement of MLI-PC synaptic weight that increases the

duration of pause response and provides evidence that spike pauses are mainly regulated by

MLI. We also observed that MLI-PC and MLI-MLI inputs regulate the pause in an opposite

fashion, and the input frequency has no significant effect on pause, while the pause duration

increase as the inhibition strength increases, which is consistent with experimental results [76].

Limitations

Here we explored how PC dynamics can be modulated by synaptic inputs from two neural

pathways. It is also known that neuronal dynamics can be modulated by various intrinsic

properties. One of which is neuronal morphology. Especially PCs have a complex morphologi-

cal structure in which parallel fibers and climbing fibers are targeted at different parts of the

dendritic tree [8, 77]. Although the complex dendritic tree can be reduced to a simple structure

while preserving basic characteristics of firing activity [78], the PC dynamics is suggested to

branch-specific due to the distribution of ion channels [77]. These intrinsic mechanisms can

dramatically regulate PC dynamics. For instance, Ca2+-activated K+ channels behave like a

high-pass filter that allows PC to respond GC high frequency inputs [79]. For MLI inhibitory

synaptic inputs on PCs, it is also suggested that the input from stellate cells is often located at

spiny dendrites, whereas basket cells are more on the soma and smooth dendrites [47], which

induce different inhibition strengths to PCs. Here we mimicked a wide range of inhibition

strengths by varying the strength of MLI-PC synapses. However, these explicit components,

dendritic locations of synapses and ion channels, are not explored in this study.
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In the cerebellar granular layer, Golgi cells provide inhibition input for GCs and form both

feedforward and feedback inhibition loops to regulate GC dynamics [80]. It has been suggested

that GC network dynamics of synchronization and oscillation are related to the feedback loop

between GoC and GC [65, 66, 81], and gap junctions between GoCs that can promote syn-

chronous oscillatory patterns [26]. Therefore, Golgi cells could contribute to the modulation

of PC dynamics [80, 82, 83]. Further studies are needed to explore the role of Golgi cells,

together with GCs and MLIs, in regulating PC dynamics.

Here we only considered the dynamics of PC simple spikes. Another unique feature is that

PCs also receive strong excitation from climbing fibers represented by distinctive responses

known as complex spikes, which play an important role in cerebellar learning [77]. Moreover,

climbing fibers also regulate the dynamics of MLIs via synaptic spillover [84] and neighbor

PCs via ephaptic coupling [85]. Therefore, they could potentially contribute to the PC network

dynamics [13]. Further work is needed to elucidate these unaddressed questions.

Supporting information

S1 Fig. Related to Fig 1. The variability of PC responses in the network induced by the ran-

domization of parameter setting in the model. (A) Membrane potential traces of three exam-

ple PCs triggered by 20 Hz Poisson spikes. (B) The corresponding ISI (interspike interval)

distribution. (C) The input-output relationship represented by PC firing a function of input

GC spikes. Here the simulation is conducted in the baseline condition, where there is no inhib-

itory MLI (MLI off) and no excitatory STP on GC-PC synapses (STP off, i.e., synaptic dynam-

ics is not subjected to the modulation of short term plasticity).

(TIF)

S2 Fig. Related to Fig 1. The dynamics of short-term plasticity (STP) with different settings

of parameters and stimulation protocols. (A) The STP dynamics with different parameters

of time constants: τfac for facilitation and τrec for depression, under two settings of initial effi-

cacy U for GC-PC synapses and MLI-PI synapses. (Left) EPSPs triggered by a train of 10 spike

at 200 Hz at Uexc = 0.06 for facilitation and Uexc = 0.42 for depression, with different facilita-

tion time constants (τfac) and recovery time constants (τrec). (Right) Similar to EPSPs but for

IPSPs with Uinh. (B) STP described by the ratio PSPn/PSP1 (EPSPs, top; IPSPs, bottom) show-

ing facilitation or depression triggered by a train of different burst spikes at 50, 100 and 300 Hz

with a wide range of U values (0.02-1).

(TIF)

S3 Fig. Related to Fig 2. Nonlinear gain control of the PC I-O curves with different set-

tings. (A) The profiles of PC firing with an opposite (in contrast to the default values) pair of

STP initial efficacy U values: Uexc = 0.08 for GC-PC facilitation and Uexc = 0.02 for MLI-PC

depression, under different conditions. Here STP refers to GC-PC STP, and MLI refers to

MLI-PC inhibition. Baseline without STP and MLI (-STP-MLI); STP ON without MLI

(+STP-MLI); STP off with MLI but no MLI-PC STP (-STP+MLI(-STP)); STP off with MLI

and MLI-PC STP (-STP+MLI(+STP)); STP on with MLI but no MLI-PC STP (+STP+MLI

(-STP)); STP on with MLI and MLI-PC STP (+STP+MLI(+STP)). Each point is mean±SD

(n = 50). (B) Similar to A but GC-PC synapses are depressing and MLI-PC synapses are facili-

tating. Here the STP of MLI-PC synapses is switched off, compared to Fig 2. WMLI-PC = 3.5 nS

gives strong inhibition and depresses PC firing (left). The I-O profiles are more visible with

WMLI-PC = 1.2 nS. Lines are fits to a Hill function.

(TIF)
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S4 Fig. Related to Fig 3. The PC I-O curves affected by GC-PC STP and MLI inhibition in

different ways. (A) The total excitation input Gexc as a function of GC input at various levels

of synaptic efficacy Uexc (0.01-0.09) without short-term facilitation (STF) (left) and with STF

(right). (B) The gain change without and with STP for different levels of inhibition (left), and

without and with inhibition for different levels of STP Uexc (right), compared to the baseline

for each case. The MLI inhibition weights are changed by a scaling factor as shown in the axis

index. The default parameter values are used here, such that +STP means Uexc = 0.4, and

+MLI means WMLI = 3.5 nS.

(TIF)

S5 Fig. Related to Fig 3. The I-O function of each individual component of GC-PC synap-

ses. (A) Excitation Gexc of AMPA slow component (left) and AMPA fast component (right) as

a function of GC input at various levels of synaptic efficacy Uexc (0.1-0.75) without short-term

depression (STD) (top) and with STD (bottom). (B) Similar to (A) but for lower values of Uexc

(0.01-0.09) without short-term facilitation (STF) (top) and with STF (bottom).

(TIF)

S6 Fig. Related to Fig 7. Synchronization and pause in the PC network under different set-

tings. (A) The PC network shows similar behaviors with (blue) and without (red) MLI-PC

STP. (B) Similar to Fig 7, but with an opposite pair of U values: Uexc = 0.08 for GC-PC facilita-

tion and Uexc = 0.2 for MLI-PC depression, in contrast to Fig 7. Without short-term depres-

sion in MLI-PC synapses, the inhibition is too strong to suppress PC firing, which indicates

the need of a balance of excitation and inhibiting, as also revealed by Figs 9–11.

(TIF)

S7 Fig. Related to Fig 2 and S6 Fig. Time courses of the excitatory conductance and short-

term variable. Time courses of PC population firing rate (red), total excitatory conductance

averaged over all PCs (Gexc, green) and raster plots of excitatory conductance of each PC, and

short-term plasticity R variable averaged over all PCs (blue) and raster plots of R of each PC.

The same pairs of U values under different settings as in S6 Fig GC-PC synapses are depressed

due to STP, and R variable reduced to be close to 0 during burst inputs.

(TIF)

S8 Fig. Related to Fig 8. PC firing rate under different burst frequencies. PC population fir-

ing rate under bursts of 10 spikes at 100, 200, and 300 Hz in four different conditions, baseline,

with MLI, with STP, and with both MLI and STP. The background Poisson stimulation fre-

quency is 20 Hz. The PC population firing rate tends to be sustained in the baseline. Adding

MLI tends to build up dynamics over stimulus, in particular for high frequencies. Adding STP

tends to make dynamics transient and decay over stimulus. Using MLI and STP together

makes the dynamics more transient, so that the first peak is more prominent.

(TIF)

S9 Fig. Related to Fig 8. PC firing rate under different burst spikes. PC population firing

rate under bursts of 200 Hz with 2, 5, and 7 spikes in four conditions. The background Poisson

stimulation is 20 Hz.

(TIF)
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13. Arlt C, Häusser M. Microcircuit Rules Governing Impact of Single Interneurons on Purkinje Cell Output

In Vivo. Cell Reports. 2020; 30(9):3020–3035. https://doi.org/10.1016/j.celrep.2020.02.009 PMID:

32130904

14. Billings G, Piasini E, Lőrincz A, Nusser Z, Silver RA. Network structure within the cerebellar input layer

enables lossless sparse encoding. Neuron. 2014; 83(4):960–974. https://doi.org/10.1016/j.neuron.

2014.07.020 PMID: 25123311

15. Zampini V, Liu JK, Diana MA, Maldonado PP, Brunel N, Dieudonné S. Mechanisms and functional roles
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30. Rieubland S, Roth A, Häusser M. Structured connectivity in cerebellar inhibitory networks. Neuron.

2014; 81(4):913–929. https://doi.org/10.1016/j.neuron.2013.12.029 PMID: 24559679

31. Rothman JS, Cathala L, Steuber V, Silver RA. Synaptic depression enables neuronal gain control.

Nature. 2009; 457(7232):1015–1018. https://doi.org/10.1038/nature07604 PMID: 19145233

32. Payne HL, French RL, Guo CC, Nguyen-Vu TB, Manninen T, Raymond JL. Cerebellar Purkinje cells

control eye movements with a rapid rate code that is invariant to spike irregularity. Elife. 2019; 8:

e37102. https://doi.org/10.7554/eLife.37102 PMID: 31050648

33. Marr D. A theory of cerebellar cortex. Journal of Physiology. 1969; 202(2):437. https://doi.org/10.1113/

jphysiol.1969.sp008820 PMID: 5784296

34. Albus JS. A theory of cerebellar function. Mathematical biosciences. 1971; 10(1-2):25–61. https://doi.

org/10.1016/0025-5564(71)90051-4

PLOS COMPUTATIONAL BIOLOGY PC dynamics through E-I pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008670 February 10, 2021 26 / 29

https://doi.org/10.1016/j.celrep.2020.02.009
http://www.ncbi.nlm.nih.gov/pubmed/32130904
https://doi.org/10.1016/j.neuron.2014.07.020
https://doi.org/10.1016/j.neuron.2014.07.020
http://www.ncbi.nlm.nih.gov/pubmed/25123311
https://doi.org/10.7554/eLife.15872
https://doi.org/10.7554/eLife.15872
http://www.ncbi.nlm.nih.gov/pubmed/27642013
https://doi.org/10.1016/j.neuron.2019.01.044
http://www.ncbi.nlm.nih.gov/pubmed/30790539
https://doi.org/10.1038/nn.3974
http://www.ncbi.nlm.nih.gov/pubmed/25821914
https://doi.org/10.1523/JNEUROSCI.3270-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29720550
https://doi.org/10.7554/eLife.41586
http://www.ncbi.nlm.nih.gov/pubmed/31081751
https://doi.org/10.1073/pnas.95.9.5323
https://doi.org/10.1073/pnas.95.9.5323
http://www.ncbi.nlm.nih.gov/pubmed/9560274
https://doi.org/10.1146/annurev.physiol.64.092501.114547
http://www.ncbi.nlm.nih.gov/pubmed/11826273
https://doi.org/10.1523/JNEUROSCI.22-22-09668.2002
https://doi.org/10.1523/JNEUROSCI.22-22-09668.2002
http://www.ncbi.nlm.nih.gov/pubmed/12427822
https://doi.org/10.1146/annurev-neuro-080317-061948
http://www.ncbi.nlm.nih.gov/pubmed/29986160
https://doi.org/10.1038/s41583-018-0002-7
http://www.ncbi.nlm.nih.gov/pubmed/29643480
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
http://www.ncbi.nlm.nih.gov/pubmed/14684865
https://doi.org/10.1016/j.neuron.2008.11.028
http://www.ncbi.nlm.nih.gov/pubmed/19146818
https://doi.org/10.1016/j.neuron.2008.05.008
https://doi.org/10.1016/S0166-2236(03)00034-1
https://doi.org/10.1016/S0166-2236(03)00034-1
http://www.ncbi.nlm.nih.gov/pubmed/12591219
https://doi.org/10.1038/nn970
http://www.ncbi.nlm.nih.gov/pubmed/12411959
https://doi.org/10.1016/j.neuron.2013.12.029
http://www.ncbi.nlm.nih.gov/pubmed/24559679
https://doi.org/10.1038/nature07604
http://www.ncbi.nlm.nih.gov/pubmed/19145233
https://doi.org/10.7554/eLife.37102
http://www.ncbi.nlm.nih.gov/pubmed/31050648
https://doi.org/10.1113/jphysiol.1969.sp008820
https://doi.org/10.1113/jphysiol.1969.sp008820
http://www.ncbi.nlm.nih.gov/pubmed/5784296
https://doi.org/10.1016/0025-5564(71)90051-4
https://doi.org/10.1016/0025-5564(71)90051-4
https://doi.org/10.1371/journal.pcbi.1008670


35. Bao J, Reim K, Sakaba T. Target-Dependent Feedforward Inhibition Mediated by Short-Term Synaptic

Plasticity in the Cerebellum. Journal of Neuroscience. 2010; 30(24):8171–8179. https://doi.org/10.

1523/JNEUROSCI.0276-10.2010 PMID: 20554867

36. Chance FS, Nelson SB, Abbott LF. Synaptic depression and the temporal response characteristics of

V1 cells. Journal of Neuroscience. 1998; 18(12):4785–4799. https://doi.org/10.1523/JNEUROSCI.18-

12-04785.1998 PMID: 9614252

37. McDonnell MD, Graham BP. Phase changes in neuronal postsynaptic spiking due to short term plastic-

ity. PLoS computational biology. 2017; 13(9):e1005634. https://doi.org/10.1371/journal.pcbi.1005634

PMID: 28937977

38. Barmack NH, Yakhnitsa V. Functions of interneurons in mouse cerebellum. Journal of Neuroscience.

2008; 28(5):1140–1152. https://doi.org/10.1523/JNEUROSCI.3942-07.2008 PMID: 18234892

39. Abbott LF, Regehr WG. Synaptic computation. Nature. 2004; 431(7010):796. https://doi.org/10.1038/

nature03010 PMID: 15483601

40. Onken A, Liu JK, Karunasekara PPCR, Delis L, Gollisch T, Panzeri S. Using Matrix and Tensor Factori-

zations for the Single-Trial Analysis of Population Spike Trains. PLoS Computational Biology. 2016;

12(11):e1005189. https://doi.org/10.1371/journal.pcbi.1005189 PMID: 27814363

41. Van Beugen BJ, Gao Z, Boele HJ, Hoebeek F, De Zeeuw CI. High frequency burst firing of granule cells

ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding. Fron-

tiers in Neural Circuits. 2013; 7(4):95. https://doi.org/10.3389/fncir.2013.00095 PMID: 23734102

42. Honda T, Yamazaki T, Tanaka S, Nagao S, Nishino T. Stimulus-dependent state transition between syn-

chronized oscillation and randomly repetitive burst in a model cerebellar granular layer. PLoS computa-

tional biology. 2011; 7:e1002087. https://doi.org/10.1371/journal.pcbi.1002087 PMID: 21779155

43. De Schutter E, Steuber V. Patterns and pauses in Purkinje cell simple spike trains: experiments, model-

ing and theory. Neuroscience. 2009; 162(3):816–826. https://doi.org/10.1016/j.neuroscience.2009.02.

040 PMID: 19249335

44. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei.

Nature. 2012; 481(7382):502–505. https://doi.org/10.1038/nature10732
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pattern recognition by Purkinje cells. Neuron. 2007; 54(1):121–136. https://doi.org/10.1016/j.neuron.

2007.03.015 PMID: 17408582

71. Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of action by the Purkinje cells of the cerebel-

lum. Nature. 2015; 526(7573):439–442. https://doi.org/10.1038/nature15693 PMID: 26469054
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