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Leukotriene synthesis in neutrophils is critical for host survival during infection. In particular,
leukotriene B4 (LTB4) is a powerful neutrophil chemoattractant that plays a crucial role in
neutrophil swarming. In this work, we demonstrated that preincubation of human
neutrophils with Salmonella typhimurium strongly stimulated LTB4 production induced
by the bacterial chemoattractant, peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine
(fMLP), while the reverse sequence of additions was ineffective. Preincubation with
bacterial lipopolysaccharide or yeast polysaccharide zymosan particles gives weaker
effect on fMLP-induced LTB4 production. Activation of 5-lipoxygenase (5-LOX), a key
enzyme in leukotrienes biosynthesis, depends on rise of cytosolic concentration of Ca2+

and on translocation of the enzyme to the nuclear membrane. Both processes were
stimulated by S. typhimurium. With an increase in the bacteria:neutrophil ratio, the
transformation of LTB4 to ω-OH-LTB4 was suppressed, which further supported
increased concentration of LTB4. These data indicate that in neutrophils gathered
around bacterial clusters, LTB4 production is stimulated and at the same time its
transformation is suppressed, which promotes neutrophil swarming and elimination of
pathogens simultaneously.
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INTRODUCTION

Neutrophils (polymorphonuclear leukocytes, PMNLs) are the most abundant leukocytes circulating
in mammalian blood. They are the first immune cells recruited by invading pathogens or damaged
cells, playing a central role in both inflammation and host defense (Metschnikoff 1891; Kobayashi
et al., 2018). Peptides containing N-formylated methionine, which is a hallmark of bacterial
translation, are the primary neutrophil chemoattractants during bacterial infection (Snyderman
and Pike 1984). Neutrophils express formyl peptide receptors (FPR1 and FPR2) for these peptides
(Ye et al., 2009; Dahlgren et al., 2016). N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), a
prototype N-formylated peptide, is a potent ligand for FPR1, a strong neutrophil chemoattractant,
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and macrophage activator (Schiffmann et al., 1975; Snyderman
and Pike 1984; Ye et al., 2009; Dorward et al., 2015; Dahlgren
et al., 2016). FPRs play a critical role in defense against bacteria by
recruiting inflammatory cells to sites of infection.

Activated neutrophils penetrate the endothelium of blood
vessels and infiltrate tissues to form inflammation focuses. The
tissues in these focuses, as well as resident macrophages and
neutrophils, themselves, release secondary chemoattractants to
attract more leukocytes and amplify inflammation. The first
secondary chemoattractant produced in inflammation focuses
is leukotriene B4 (LTB4) (Brandt and Serezani 2017), and
neutrophils from mice lacking the specific LTB4 receptor BLT1
were not able to swarm and cluster to a focal damage site
(Lammermann et al., 2013). The synthesis of LTB4 from
arachidonic acid is catalyzed by 5-lipoxygenase (5-LOX),
which is activated by various inflammatory mediators
(Radmark and Samuelsson 2010; Radmark et al., 2015;
Haeggstrom 2018).

Neutrophil production of LTB4 and the release of another
chemoattractant, chemokine CXCL2 (C-X-C motif chemokine
ligand 2), is responsible for the collective coordinated behavior of
neutrophils, called swarming, which is important for protection
against severe pathogen infection (Lammermann et al., 2013; de
Oliveira et al., 2016; Rocha-Gregg and Huttenlocher 2021).
During swarming hundreds of individual neutrophils respond
with coordinated chemotaxis and self-amplified clusters
formation. Early recruitment of neutrophil is initiated by
pathogen-associated molecular patterns (PAMPs), including
N-formyl peptides, and damage-associated molecular patterns
(DAMPs), which are released mainly from damaged cells
(Venereau et al., 2015). Some of the early recruited (“pioneer”)
neutrophils are activated to produce LTB4 (Lammermann et al.,
2013). LTB4, in turn, dramatically amplify fMLP-induced
neutrophil polarization and chemotaxis (Afonso et al., 2012),
completing the self-amplification cycle. In addition, LTB4
stimulates bacterial phagocytosis by neutrophils (Mancuso
et al., 2001).

Neutrophil swarming provides a significant boost to the
accumulation of neutrophils at sites of injury or infection and
serves for engulfing microbes and their clusters that are too
large for individual neutrophils to kill (Hopke et al., 2020).
Swarming is only triggered against targets above a certain size
threshold (Reategui et al., 2017). Swarming of neutrophils can
exacerbate inflammation and tissue damage, so a mechanism
is needed to control the excessive swarming. Very recently, it
was found that desensitization of G protein-coupled
receptors (including FPRs) significantly contributes to the
self-limitation of swarming (Kienle et al., 2021). Another
possible control mechanism was described much earlier,
when it was shown that fMLP is degraded at the cell
surface of neutrophils (Yuli and Snyderman 1986).

Understanding the mechanisms that control the formation of
LTB4, an important stimulus for swarming, when exposed to the
chemoattractant N-formyl peptides in the presence of bacteria,
will provide insight into the prevention and treatment of
inflammatory diseases. In this study, we analyzed fMLP-
induced leukotriene synthesis modulated by the interaction of

neutrophils with the Gram-negative bacteria Salmonella
typhimurium.

MATERIALS AND METHODS

Hank’s balanced salt solution with calcium and magnesium but
without Phenol Red and sodium hydrogen carbonate (HBSS),
Dulbecco’s phosphate-buffered saline (PBS) with magnesium but
without calcium, fibrinogen from human plasma, N-Formyl-L-
methionyl-L-Leucyl-L-Phenylalanine (fMLP) and N-t-Boc-L-
Methionyl-L-Leucyl-L-Phenylalanine (Boc-MLP) were
purchased from Sigma (Steinheim, Germany). Dextran T-500
was from Pharmacosmos (Holbæk, Denmark).

Neutrophil Isolation
Human polymorphonuclear leukocytes (PMNLs) were isolated
from freshly drawn blood with citrate anticoagulant.
Experimental and the subject consent procedures were
approved by the Bioethics Committee of the Lomonosov
Moscow State University, Application # 6-h, version 3,
Bioethics Commission meeting # 131-d held on May 31, 2021.
Leukocyte-rich plasma was prepared from the donor blood by
sedimentation in the presence of T-500 Dextran. Granulocytes
were obtained as described (Aleksandrov et al., 2006). Cell
viability was checked by trypan blue exclusion. PMNLs
(96–97% purity, 98–99% viability) were stored at room
temperature in Dulbecco’s PBS containing 1 mg/ml glucose
(no CaCl2).

Preparation of Bacteria
Bacteria (S. typhimurium IE 147 strain) were obtained from the
Collection of Gamaleya National Research Center of
Epidemiology and Microbiology (Moscow, Russia). Bacteria
were grown in Luria–Bertani broth to a concentration of
1 × 109 colony-forming units (CFU)/mL. In this study not
opsonized and opsonized bacteria were used. Bacteria were
opsonized immediately before the experiment for 30 min in
20% (v/v) fresh serum from the same donor whose blood was
used to isolate neutrophils. Repeated centrifugation in Dulbecco’s
solution was used to wash the bacteria.

Determination of 5-LOX Product Formation
in Cells
PMNLs (1 × 107/6 ml HBSS/Hepes) were preincubated at 37°C in
CO2 incubator for 10 min, then bacteria, or zymosan, or reagents
were added, as indicated. The incubation was stopped by adding
of an equal volume of methanol (−18°C) with 90 ng prostaglandin
B2 as internal standard. The water-methanol extracts stored at
−18°C. After centrifugation, the water-methanol extracts were
purified by solid-phase extraction on Sep-Pak C18 cartridges
(500 mg; Macherey-Nagel, Dueren, Germany), as described
(Viryasova et al., 2016). The purified samples were injected
into a 5 μm, 250 × 4.6 mm Nucleosil® C18 column (Macherey-
Nagel GmbH) and subjected to RP HPLC. Products of the 5-LOX
pathway included 5S, 12R-dihydroxy-6,14-cis-8,10-trans-
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eicosatetraenoic acid (LTB4), iso-LTB4 (5S, 12SR-all-trans-
diHETE) (t-LTB4), ω-OH-LTB4, ω-COOH-LTB4 and 5S-
hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HETE).
Major 5-LOX metabolites were identified by comparing
retention times with those of known compounds, as previously
described (Viryasova et al., 2014). The compounds were
quantified by comparison of peak areas with the internal
standard prostaglandin B2 (Cayman Chemical, Ann Arbor,
United States).

Analysis of 5-LOX Subcellular Localization
by Immunofluorescence Microscopy
PMNLs (2 × 106/mL HBSS/HEPES) were incubated without
stimuli, as well as in the presence of non-opsonized bacteria,
fMLP, or under conditions of sequential addition of bacteria and
the formyl peptide. The incubation time was 20 min, additional
stimulation with fMLP took another 5 min. The treatment was
carried out at 37°S in microcentrifuge tubes with continuous
stirring. After the expiration of incubation time, treated
suspensions were placed on uncoated glasses of confocal
dishes for 5 min, the supernatants were carefully removed, and
the settled cells were fixed with 4% paraformaldehyde solution for
10 min at room temperature. Fixed cells were permeabilized with
0.1% Triton X-100 for 10 min at room temperature, followed by
blocking with 1% BSA in PBS. The samples were then incubated
overnight at 4 °C with rabbit polyclonal anti-5-LOX antibody (1:
50 in blocking solution) (Cayman Chemical, Michigan,
United States). Samples were rinsed with blocking solution,
followed by staining with Oregon Green 488 goat anti-rabbit
antibodies (1:100 in blocking solution) (Thermo Fisher Scientific,
Waltham, MA, United States) for 1 h at 4°C. DNA was stained
with 0.5 μg/ml Hoechst 33342 (Thermo Fisher Scientific,
Waltham, MA, United States). The cells were visualized by a
Zeiss Axiovert 200M fluorescence microscope equipped with
100× oil immersion objective.

Calcium Influx Analysis
Freshly isolated PMNLs were loaded with Fluo-3, AM dye
(Thermo Fisher Scientific, Waltham, MA United States)
accordingly to manufacturer’s protocol. Briefly, cells were
incubated with 5 μM Fluo-3 AM ester in Ca2+-free Dulbecco′s
PBS for 60 min at room temperature, followed by washing with
PBS. The labeled cells were then seeded in fibrinogen-coated 96-
well plates (1 × 106/ml of HBSS/HEPES) and incubated according
to the experimental protocol at 37°C in 5% CO2. A suspension of
unstained cells was used as blank. Changes in fluorescence
intensity upon excitation at 488 nm and emission at 535 were
monitored for at least 70 s after each stimulus injection.
Manipulations were performed on a ClarioStar fluorescence
microplate reader (BMG Labtech, Cary, NC, United States).

Scanning Electron Microscopy
For scanning electron microscopy, cells were fixed for 30 min in
2.5% glutaraldehyde, postfixed for 15 min with 1% osmium
tetroxide in 0.1 M cacodylate (pH 7.3), dehydrated in an
acetone series, and processed by conventional scanning

electron microscopic techniques, as described (Galkina et al.,
2015).

Statistics
Results are presented as mean ± SEM. Analysis of statistical
significance for multiple comparisons was performed using
GraphPad Prism 9.2.0 software. Differences with
p-values <0.05 were considered statistically significant.

RESULTS

fMLP Boosts Leukotriene Synthesis in
PMNL Pre-exposed to Bacteria
We observed a strong stimulation of leukotriene synthesis
induced by formyl-peptide when neutrophils were pre-
activated by either opsonized (OS) or non-opsonized S.
typhimurium (S). The most effective was 30 min pre-treatment
with bacteria followed by 10 min with fMLP (S_fMLP and
OS_fMLP; two treatments divided by lower dash) (Figure 1B).
In the case of non-opsonized bacteria, the stimulating effect of
fMLP was even more pronounced,—addition of fMLP to infected
cells increased leukotriene synthesis by more than two orders of
magnitude. With OS we had 10-fold stimulation of LT
biosynthesis at fMLP adding after bacteria. The time of
interaction with bacteria prior to fMLP stimulation was
important; in our assay, the synthesis of leukotrienes reached
its maximal level after 30–40 min of neutrophil incubation with
bacteria (Supplementary Figure 1). On Supplementary Figure 1
presented all 5-LOX metabolites that we detected in our assay.
The main 5-LOX products are LTB4 and ω-OH-LTB4.

Pre-exposure to LPS, the surface marker of bacteria, was not
efficient (Figure 1B). Importantly, pretreatment with fMLP did
not stimulate leukotriene synthesis initiated by non-opsonized
(fMLP_S) or opsonized (fMLP_OS) S. typhimurium (Figure 1B).
When using opsonized or non-opsonized zymosan (OZ or Z) for
cell pretreatment, we observed a 5-fold stimulating effect of fMLP
with Z, with OZ the peptide had a less pronounced stimulating
effect (Figure 1D).

It is well known that pre-treatment with Cytochalasin B (Cyto
B) sharply increased 5-LOX product formation in neutrophils at
fMLP exposure (Foldes-Filep and Filep 1992). However, CytoB is
also known to inhibit glucose transport across the plasma
membrane (Bloch 1973). Its analogue Cytochalasin D (Cyto
D) also inhibits actin cytoskeleton but does not affect glucose
transport (Atlas et al., 1980). This is why we used both
cytochalasin’s to study the role of actin cytoskeleton in 5-LOX
activation. In our experiments depolymerization of actin
predisposed to greater response to fMLP (Figure 1C). Actin
polymerizing agent Jasplakinolide (Jaspl) suppressed activation
of leukotriene synthesis by bacteria/fMLP. fMLP receptor
antagonist BocMLP inhibited 5-LOX product formation in
concentration–dependent manner (Supplementary Figure 2).

The most powerful stimulus for 5-LOX activation is calcium
ionophore A23187. Ionophore stimulation produces twice the
amount of leukotrienes compared to the combination of bacteria
and formyl peptide (Supplementary Figure 3). Pre-treatment
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with bacteria did not further increase the effect of A23187; fMLP
added after A23187 just contributes to LTB4 transforming to
ω-OH-LTB4 (Supplementary Figure 3).

Importantly, when neutrophils are exposed to bacteria
followed by fMLP the profile of 5-LOX products depends on
the ratio bacteria:neutrophil, and as the bacterial load

increases the ω-OH-LTB4 and LTB4 ratio changes in favor
of LTB4 (Figure 1E). These data show that high bacterial
load not only increases the synthesis of LTB4, but also
suppresses its transformation. The drop of ω-OH-LTB4/
LTB4 ratio is not due to enhanced conversion of 20-OH-
LTB4 to 20-COOH-LTB4, with increasing bacterial load the

FIGURE 1 | Effect of Salmonella typhimurium or zymosan on fMLP-induced leukotriene synthesis in human neutrophils. Before treatment, PMNLs (0.9–1.0) x107/
6 ml were pre-incubated for 10 min at 37°C, 5% CO2. (A) Timing options for treatments are presented. (B,C)—(the ratio of bacteria:PMNLs ∼25:1). (B) At single
treatment, control (no additives), or fMLP (0.1 µM), or S/OS, or bacteria plus fMLP (S/OS + fMLP), or LPS (2 μg/ml) were added for 30 min. At complex treatment,
bacteria, or fMLP, or LPS were added as first stimulus and S, OS or fMLP as the second. Hereinafter, on the X-axis, sequential stimuli are labeled, listed in the order
of addition and separated by an underscore. Values present mean ± SEMof five independent experiments performed in duplicate. (D) At single treatment, fMLP (0.1 µM),
or Z/OZ (0.4 mg/ml) were added for 30 min. At complex treatment, Z/OZ (0.4 mg/ml) were added as the first stimulus, and then fMLP (0.1 µM) as the second, as
indicated. Values indicate mean ± SEM of three independent experiments performed in duplicate. (C) At single treatment, fMLP (0.1 µM), or S were added for 30min. At
complex treatment, no additives (left panel) or bacteria (right panel) were added for 30 min, then a second stimulation was performed with Cyto B (5 µM) or Cyto D
(10 µM) or Jaspl (0.5 µM) followed by the third treatment with fMLP (0.1 µM) as indicated. Values indicate mean ± SEM of five independent experiments performed in
duplicate. (E) Leukotriene synthesis in human neutrophils exposed to Salmonella typhimurium (first treatment) followed by fMLP (0.1 µM) addition for 10 min, at various
bacterial load. The ratio of bacteria (S):PMNLs (N) is indicated. Values present mean ± SEM of five independent experiments performed in duplicate. The 5-LOX products
were analyzed using HPLC, and data for LTB4 and ω-OH-LTB4 are presented. *p < 0.05, **p < 0.01, ***p < 0.001 for pairs of data compared as indicated by two-way
ANOVA followed by Tukey’s multiple comparison test.
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synthesis of 20-COOH-LTB4 decreased (Supplementary
Figure 4).

Bacteria Stimulate fMLP-Induced Cell
Signaling, Resulting in 5-LOX Activation
Efficient assembly and functioning of the enzymatic apparatus for
the synthesis of leukotrienes requires an increase in the
concentration of free Ca2+ in the cytoplasm ([Ca2+]i). We
investigated changes in [Ca2+]i in response to the studied
stimuli and their combinations. It was shown that the
sequential stimulation by bacteria and fMLP optimal for
induction of LTB4 (Figure 1B) was accompanied with
maximal rise in [Ca2+] at second treatment (Figure 2A). Rise
in the [Ca2+]i in response to formyl-peptide decreased when
neutrophils were primed with bacterial LPS (Figure 2C). In non-
primed cells, fMLP produced maximal [Ca2+]i jump
(Figures 2B,D).

When evaluating the effect of bacteria on changes in [Ca2+]i,
we found that as the ratio bacteria:neutrophils increased, the
amplitude of calcium pulses increased, with a subsequent
decrease (Figures 2E,F). The bacterial load threshold beyond

which calcium release is suppressed coincides with the results of
the analysis of leukotriene synthesis, according to which
exceeding the 50:1 ratio promotes the predominant
accumulation of LTB4, with decreasing the sum of leukotrienes
(Figure 1E).

Translocation of 5-LOX to the nuclear membrane is required
for 5-LOX activity (Luo et al., 2003), and is initiated by an
increase in [Ca2+]i (Kulkarni et al., 2002). Co-localization of
lipoxygenase with 5-LOX activating protein (FLAP) on the
nuclear membrane appears to be a very effective mechanism
for the rapid regulation of leukotriene synthesis (Newcomer and
Gilbert 2010). 5-LOX translocation was assessed by
immunofluorescence microscopy. In non-activated control
cells (Figure 3, vehicle), 5-LOX is uniformly distributed over
the cytoplasm. Short-term (30 min) incubation of cells with either
bacteria or formyl-peptide leads to the appearance of 5-LOX
clusters in perinuclear area of some cells (indicated with white
arrows). Sequential stimulation with bacteria and fMLP resulted
in 5-LOX translocation in almost all cells in the sample (bottom
row, white arrows). The 5-LOX translocation may be mediated by
the effect of bacteria on mitogen-activated protein kinases
(MAPK). In particular, we observed strong inhibition of LT

FIGURE 2 | A-D. fMLP-induced increase in [Ca2+]i in the presence of bacteria or LPS. Fluo-3 AM loaded PMNLs (4 × 105/sample) were cultured in fibrinogen-
coated flat bottom 96-well plates in HBSS/HEPES medium at 37°C, 5% CO2. Cells were sequential exposed to nonopsonized S. typhimurium (S) (bacteria per cell ratio
25:1), LPS (2 μg/ml) and 0.1 µM fMLP with an interval of 30 min (the order of adding stimuli is shown in the figure). HBSS/HEPES was added to control samples (dotted
lines on A-C). Flash kinetic of Fluo-3 fluorescence (ex. 488 nm, em. 535 nm) was monitored with 1 s interval. (A, B, C) Changes in [Ca2+]i are presented as typical
blank corrected Fluo-3 fluorescence kinetic curves for each type of stimulation. Diagram (D) show areas under curves (AUC) with control values as baseline for
fluorescence obtained over 70 s after the addition of stimuli. Values indicate mean ± SEM, n � 3, *p < 0.05, **p < 0.01, ***p < 0.001 for pairs of data compared as
indicated by two-way ANOVA followed by Tukey’s multiple comparison test. (E, F). [Ca2+]i changes in neutrophils following S. typhimurium exposure at various bacterial
load. Fluo-3 AM loaded PMNLs (4 × 105/sample) were cultured in fibrinogen-coated flat bottom 96-well plates in HBSS/HEPES medium at 37°C, 5% CO2. PMNLs were
stimulated with nonopsonized bacteria with an increase in bacterial load from 6.25 to 58 bacteria per cell (as indicated). Flash kinetic of Fluo-3 fluorescence (ex. 488 nm,
em. 535 nm) was monitored with 1 s interval. (E) Changes in [Ca2+]i are presented as typical blank corrected Fluo-3 fluorescence kinetic curves for the average (25: 1)
and extreme values of the studied range of bacterial load. AUC’s for fluorescence obtained over 70 s after the addition of bacteria are represented on (F) (values indicate
mean ± SEM, n � 3).
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synthesis by the ERK kinase inhibitor U0126 (Supplementary
Figure 5).

The study of cellular morphology showed appearance of
intercellular contacts in the presence of bacteria and fMLP
(Figure 3E). Recently, it was found that clustering of
neutrophils during swarming allows the propagation of Ca2+

signals via connexin-43 hemichannels (Poplimont et al., 2020).
These channels were formed in gap junctions. LTB4 in our model
leads to the formation of cell contacts, which may influence Ca2+

signaling in cells and possible propagating of Ca2+ signals in
dense swarming.

DISCUSSION

Several pathogens have been shown to activate 5-LOX, and the
resulting synthesis of leukotrienes is critical for host survival
(Yamamoto et al., 1993; Caffrey-Carr et al., 2017; Werz et al.,
2018). In the infection-on-a-chip model, it has been shown that
the environmental fungal pathogen Aspergillus fumigatus induces
LTB4 secretion by neutrophils (Hind et al., 2021). More recently,
it was reported that the common opportunistic fungal pathogen
Candida albicans induced 5-LOX activation and LTB4 formation
in neutrophils when hyphae are formed (Fischer et al., 2021). In
this model [Ca2+]i mobilization and p38 MAPK activation
followed by 5-LOX translocation to the nuclear membrane
were observed.

Gram-negative bacteria Escherichia coli and Gram-positive
bacteria Staphylococcus aureus stimulated 5-LOX in M1
macrophages (Werz et al., 2018). Pathogenic S. aureus, but not
exotoxin-deficient strains, induced 5-LOX activation in HEK293
cells stably transfected with human 5-LOX and FLAP (HEK_5-

LOX/FLAP) (Romp et al., 2020). Interestingly, one of the S.
aureus exotoxins, amphipathic α-helical phenol-soluble
modulin (PSM), stimulated 5-LOX in human neutrophils. This
effect was prevented by a selective antagonist of FPR2 receptor,
indicating that this receptor, which recognizes not only N-formyl
peptides, but also the arachidonic acid metabolite lipoxin A4
(Dahlgren et al., 2016), mediates leukotriene biosynthesis. Our
earlier study demonstrated that S. typhimurium induced
insignificant LTB4 production, while opsonized bacteria
stimulated LTB4 production to a level of 5–20 ng/107 PMNLs
(Golenkina et al., 2011). fMLP was unable to activate 5-LOX in
neutrophils until the cells were pretreated with CytB (Foldes-
Filep and Filep 1992). These results were confirmed in the present
study (Figure 1 B, C). Interestingly, it was shown that CytD,
which is a more specific inhibitor of actin cytoskeleton than CytB,
also stimulated synthesis of leukotrienes although the effect was
less pronounced (Figure 1C). Moreover, we demonstrated for the
first time that preincubation of human neutrophils with S.
typhimurium strongly stimulated fMLP-induced leukotriene
production. The reverse sequence of additions was found to be
ineffective (Figure 1B). Treatment of neutrophils with not
opsonized zymosan slightly stimulated fMLP-induced
leukotriene synthesis (Figure 1D). LPS did not result in
enhanced leukotriene production in response to fMLP, as
published (Doerfler et al., 1989). LPS can prime for enhanced
production of leukotrienes in fMLP-stimulated neutrophils in the
presence of serum (Surette et al., 1993; Brideau et al., 1999).

Exposure of neutrophils to various pro-inflammatory stimuli
causes synergistic functional responses to fMLP, a phenomenon
known as priming (Miralda et al., 2017). It has been shown that
the production of leukotrienes in neutrophils is the subject of the
priming by proinflammatory cytokines. Both granulocyte-

FIGURE 3 | (A) Subcellular localization of 5-LOX by immunostaining. PMNLs (2 × 106/mL HBSS/HEPES) were incubated without additived (vehicle), with
nonopsonized S. typhimurium (25:1 bacteria per cell ratio), with 0.1 µM fMLP or under sequential stimulation with these agents at intervals of 20 min. The final incubation
with fMLP in this case lasted 5 min. At the end of the incubation, the cells were fixed and stained for 5-LOX (green). Samples were also stained for DNA with Hoechst
(blue). (B–E). Scanning electron microscopy appearance of neutrophils in co-incubation with bacteria and fMLP. PMNLs (106/ml) in HBSS/HEPES medium were
plated on coverslips and incubated for 20 min at 37°C in the medium (B, C), or with nonopsonized S. typhimurium (25:1 bacteria per cell ratio) (D, E), followed by adding
fMLP (0.1 µM) for 5 min (C, E).

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 8141136

Golenkina et al. Bacteria Stimulate fMLP-Induced Leukotriene Synthesis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


macrophage colony-stimulating factor (GM-CSF) (DiPersio et al.,
1988) or tumor necrosis factor (TNF) (Bauldry et al., 1991),
which by themselves do not induce LTB4 formation, strongly
stimulate fMLP-induced LTB4 production. Moreover, it was
reported that GM-CSF primed neutrophils to LTB4 production
induced by A23187 (DiPersio et al., 1988). The mechanisms of
cytokine priming of leukotriene synthesis have not been
elucidated. It was shown that TNF has no direct effect on
either the activation of phospholipase A2 and arachidonic acid
mobilization, or on [Ca2+]i basal, or on increased by fMLP
(Bauldry et al., 1991). Later, it was demonstrated that GM-
CSF and TNF have a very strong priming effect on the
synthesis of leukotrienes in whole blood, stimulated by fMLP
(Palmantier et al., 1994). The effects of the two cytokines on LTB4
synthesis in whole blood were additive, indicating different
priming mechanisms.

Some bacteria caused marked priming of fMLP-induced
production of reactive oxygen species (ROS) catalyzed by
NADPH oxidase in neutrophils. For example, early studies
have shown that protease-sensitive components of
ultrasonicated Helicobacter pylori with an apparent molecular
weight of 25–35 kDa (Nielsen and Andersen 1992) and
lipopolysaccharide (LPS) of the cell wall of E. coli (Karlsson

et al., 1995) stimulate fMLP-induced burst of extracellular
chemiluminescence, reporting ROS production. Infection of
human neutrophils with intracellular Gram-negative bacteria
Anaplasma phagocytophilum or the eucaryotic parasite
Leishmania major leads to a significantly more active
formation of LTB4, induced by combined action of fMLP and
LPS, than in uninfected neutrophils (Plagge and Laskay 2017).

To our knowledge, the activation of fMLP-induced leukotriene
synthesis in neutrophils by extracellular bacteria was first
described in this study. We observed that S. typhimurium
(opsonized or not) stimulated the synthesis of leukotrienes at
least 10-folds (Figure 1B). Activation of 5-LOX correlates with its
translocation to the nucleus (Figure 3). Since the location of
FLAP at the nuclear membrane of neutrophils has been proven in
many previous reports (Brock et al., 1994; Mandal et al., 2008;
Bair et al., 2012; Gerstmeier et al., 2016; Fischer et al., 2021), the
effect of bacteria and fMLP on 5-LOX translocation provides co-
localization of 5-LOX and FLAP, which is critical for 5-LOX
activity.

5-LOX activation is calcium dependent (Kulkarni et al., 2002).
The increase in [Ca2+]i caused by fMLP was more pronounced
without pretreatment with bacteria (Figures 2B,D). And though
the total Ca2+ influx was practically independent of the sequence

SCHEME 1 | Signal self-amplification to stimulate neutrophil swarming. (A) Pioneer PMNLs meet fMLP and move to bacteria. (B) PMNLs meet bacteria and
pathogen-associated molecular patterns (PAMPs), including formyl-methionyl peptides. The leukotriene synthesis is accelerated, and neutrophils swarm at site of
infection. (C) If neutrophils succeed to surround pathogens (at low bacteria to PMNLs ratio), then after formation LTB4 is successfully transformed into ω-OH-LTB4. (D)
When neutrophils meet pathogen clusters (high bacteria to PMNs ratio), LTB4 produced practically is not transformed to ω-OH-LTB4, and accumulated LTB4

signals for further neutrophil swarming.
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of addition of bacteria and fMLP (Figure 2D), in the second
treatment, calcium response to fMLP is higher in cells pre-
exposed to bacteria (Figure 2). It can be assumed that
bacteria, probably, protect formyl peptide receptors (FPRs)
from desensitization, which is regulated by cytoskeleton
(Jesaitis and Klotz 1993; Klotz and Jesaitis 1994). It was shown
that shortly after binding of fMLP to its neutrophil receptor, the
ligand-receptor complex becomes associated with the
cytoskeleton (Jesaitis et al., 1993; Klotz et al., 1994), and
cytochalasin B prevents desensitization (Harbecke et al., 1997).
It should be noticed that bacteria and cytochalasins B and D
synergistically enhanced LTB4 synthesis (Figure 1C), which
indicates the involvement of multiple signaling pathways in
priming mechanisms.

We observed the formation of cell-cell contacts by neutrophils
sequentially stimulated by bacteria and fMLP (Figure 3E). Earlier
it was shown the role of LTB4 in the aggregation of human
neutrophils induced by the chemotactic peptide fMLP (Beckman
et al., 1985). We suggest that increased LTB4 production results in
formation of loose neutrophil clusters, where local concentrations
of LTB4 and the other mediators increase to stimulate further
clustering and swarming. It was recently found that neutrophils
form gap junctions during swarming, which make possible the
propagation of Ca2+ signals through the connexin-43
hemichannels (Poplimont et al., 2020). Intercellular exchange
of Ca2+ signals, along with LTB4 and other signaling molecules, is
critical for dense swarms’ formation and fighting with pathogens.

In severe inflammation, aging neutrophils evading uptake by
macrophages produced an increased amount of chemoattractants
5-oxo-ETE and LTB4, which leads to a delayed resolution or
exacerbation of the inflammatory process;—they have reduced
LTB4 20-hydroxylase (ω-OH-) activity (Graham et al., 2009).
Neutrophil omega-hydroxylase converts LTB4 to 20-hydroxy
(ω-OH) LTB4 (Powell 1984), which is a less potent
chemoattractant than LTB4. It is known that bacterial uptake
modulates the inflammatory responses of granulocytes. Bacteria-
pretreated PMNLs, after further stimulation with zymosan, had
decreased transformation of LTB4 to ω-OH-LTB4 (Grone et al.,
1992). PMNLs after phagocytosis of bacteria showed a partially or
completely suppressed respiratory burst (Grone et al., 1992). 20-OH-
and 20-COOH-LTB4 bind to the BLT1 receptor with high affinity but
activate neutrophils to a much lower extent than LTB4 (Archambault
et al., 2019), so ω-OH-LTB4 and ω-COOH-LTB4 act as natural
inhibitors of LTB4-mediated responses. Thus, preventing LTB4
ω-oxidation might result in increased innate immunity and
granulocyte functions. Studies with subpopulations of human
blood cells and human plasma clearly indicated that the
polymorphonuclear leukocytes were the main source of enzymic
activity for the omega-oxidation of LTB4 (Nadeau et al., 1984).

We have demonstrated that synthesis of 5-LOX products induced
by fMLP depends on bacteria:neutrophil ratio. With increase of
bacteria load the ω-OH-LTB4/LTB4 ratio drops significantly
(Figure 1E) indicating that bacteria not only increase the synthesis
of LTB4, but also suppresses its transformation. This regulation can
explain the behavior of the cells at neutrophil swarming (Scheme 1).

On bacterial infection, neutrophils leave the bloodstream and
migrate to infection sites to eliminate bacterial pathogens.

Neutrophils can engulf unopsonized microbes (Colucci-Guyon
et al., 2011). Neutrophil swarming has been observed in several
inflammatory and infectious conditions, ranging from sterile
inflammation to infections. Pioneer neutrophils close to the
damage site release signals to attract a second wave of
neutrophils. Central to neutrophil swarming is a positive
feedback amplification mechanism that is mediated by the
LTB4 (Glaser et al., 2021). Neutrophil swarms manifest clearly
under conditions of local injection of living bacteria into zebrafish
larvae (Deng et al., 2013). As early released attractant the most
interesting candidates are N-formyl peptides that can be released
from damaged mitochondria of necrotic cells and are prominent
inducers of chemotaxis.

In addition to well-known effects of bacteria and formyl
peptides on neutrophils, this research identifies new ways of
LTB4 synthesis regulation, and anti-inflammatory therapies
targeting these inflammatory pathways must be tailored
specifically based on the tissue LTB4/ω-OH-LTB4 profile.
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