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Radiotherapy is one of the mainstays of glioblastoma (GBM) treatment. This study aims to investigate and characterise differences in
protein expression patterns in brain tumour tissue following radiotherapy, in order to gain a more detailed understanding of the
biological effects. Rat BT4C glioma cells were implanted into the brain of two groups of 12 BDIX-rats. One group received
radiotherapy (12 Gy single fraction). Protein expression in normal and tumour brain tissue, collected at four different time points after
irradiation, were analysed using surface enhanced laser desorption/ionisation – time of flight – mass spectrometry (SELDI-TOF-MS).
Mass spectrometric data were analysed by principal component analysis (PCA) and partial least squares (PLS). Using these
multivariate projection methods we detected differences between tumours and normal tissue, radiation treatment-induced changes
and temporal effects. 77 peaks whose intensity significantly changed after radiotherapy were discovered. The prompt changes in the
protein expression following irradiation might help elucidate biological events induced by radiation. The combination of SELDI-TOF-
MS with PCA and PLS seems to be well suited for studying these changes. In a further perspective these findings may prove to be
useful in the development of new GBM treatment approaches.
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Despite significant efforts, the outcome of treatments for
glioblastoma (GBM) has so far been disappointing. After a
multimodal approach including surgery, postoperative radio-
therapy and chemotherapy the median survival is still only 14
months (Stupp et al, 2005). Therefore, there is an urgent need to
improve conventional treatment modalities and/or develop new
ones. However, several problems are associated with the develop-
ment of new approaches for treatment of GBM.

One problem is that more rapid methods are needed to evaluate
the biological effects of conventional glioma treatment modalities
in new combinations. Today the results of treatment are usually
evaluated radiologically several months after treatment, which is
unsatisfactory for a fast growing tumour like GBM. Likewise, new
methods are of importance in the development of new, target
specific therapies, where treatment efficacy may be detected by
molecular means before radiological response. Moreover, there is a
need to improve the knowledge regarding pathophysiology in the
treatment of glioma.

Recently, new experimental techniques utilising mass spectro-
metry (MS) for analysing protein expression patterns in various
tumour conditions have given us new knowledge in human
tumours (Wiesner, 2004; Reyzer and Caprioli, 2005). In malignant
glioma it is possible to distinguish between tumour and

nonmalignant brain tissue, as well as between different grades of
glioma, using direct-tissue analysis by matrix-assisted laser
desorption/ionisation (MALDI) MS and subsequent cluster analy-
sis (Schwartz et al, 2004). To date, however, the main focus of
studies employing proteomics has been to detect biological
markers for early diagnosis of disease. For example, specific
serum protein patterns have recently been detected in patients
with different grades of astrocytomas (Liu et al, 2005). Similar
results have also been obtained in studies of carcinoma in prostate
(Adam et al, 2002; Banez et al, 2003), breast (Vlahou et al, 2003)
and ovaria (Petricoin et al, 2002).

In the present investigation we have utilised surface enhanced
laser desorption/ionisation time of flight mass spectrometry
(SELDI-TOF-MS) (Merchant and Weinberger, 2000) to detect
changes in protein patterns in tumour tissue following radio-
therapy in an experimental rat glioma model.

There is a wide range of different data analysis approaches that
could be applied to this type of mass spectrometric data, for
example neural networks (NN) has successfully been applied to
SELDI data (Ball et al, 2002; Liu et al, 2005) as well as support
vector machines (SVM) (Koopmann et al, 2004) and hierarchical
clustering (Poon et al, 2003). The data acquired in this study were
analysed using the multivariate projection methods principal
component analysis (PCA) and partial least squares – discriminant
analysis (PLS-DA). These analytical data projection methods have
proved to be powerful tools for analysing multivariate data
obtained in diverse biomedical studies using a wide range of
methods, including separation techniques such as high perfor-
mance liquid chromatography (HPLC), gas chromatography (GC)
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and liquid chromatography (LC), spectroscopic methods, for
example, nuclear magnetic resonance (NMR) and MS, and
combinations of separation and spectroscopic methods such as
GC/MS and LC/MS. For example, in an early study Wold et al
(1982) used PCA to discriminate between normal and brain
tumour tissues as described by 105 GC peaks, with only a few
observations in each group. More recently, PCA and PLS have been
commonly applied as data analysis tools in metabonomics studies
of complex data structures obtained in NMR, GC/MS and LC/MS
analyses (Adam et al, 2002; Eriksson et al, 2004).

MATERIALS AND METHODS

Rat glioma model

The syngenic BT4C rat glioma model was used for this
investigation. Briefly, the BT4C rat glioma model is a trans-
placentaly nitroso-urea-induced rat tumour, previously charac-
terised as a gliosarcoma (Bergenheim et al, 1994; Johansson et al,
2000). BT4C cells growing in log phase were suspended in
Dulbecco’s modification of Eagle’s MEM (DMEM) (GIBCO,
Paisley, Scotland) supplied with 5% BDIX rat serum to a
concentration of 2� 104 cells in 5 ml. Inbred BDIX rats were
anesthetised with a 1 : 1 mixture of Hypnorms (fluanisone
10 mg ml�1 and fentanyl citrate 0.315 mg ml�1) and Dormicums

(Midazolam 5 mg ml�1) of which 0.5 ml was given per 100 g rat.
Xylocain (10 mg ml�1) was used for local anaesthesia under the
scalp before incision. Using a stereotactic technique, 5 ml of the cell
suspension was implanted 3.5 mm to the right of bregma at a depth
of 4.5 mm into the right caudate nucleus. Special care was taken to
prevent cell reflux through the burr hole, which was finally covered
with bone wax. During the implantation procedure cells were kept
on ice and viability was monitored by intermittent Tryphan blue
staining. After implantation animals were housed in a controlled
environment with 12 h light/dark cycles and provided food and
water ad libitum. Animals were monitored by an experienced
animal keeper during the whole length of the experiment.

A total of 24 animals were implanted and divided into two
groups of 12. One group received radiotherapy delivered as a 12 Gy
single fraction 12 days after tumour implantation, while the other
served as an untreated control group. Radiotherapy was given as
whole brain irradiation using a conventional 4 MV linear
accelerator. The dose was based on previous experiments,
indicating that 12 Gy single fraction has equivalent tumour growth
inhibitory effect as 4 Gy � 5 fractionated irradiation (data not
shown). Three animals from each group were killed 1, 5, 7 and 12
days after irradiation. Tumour tissue was carefully dissected from
each animal and snap frozen. In addition the contralateral normal
frontal brain was collected and frozen. Tissue was stored at �801C
until analysed.

Regarding animal welfare consideration was taken not to expose
animals to unmotivated suffering. The experiments were carried
out in strict accordance with the UKCCCR guidelines (Workman
et al, 1998). The experiments were approved by Umeå University’s
animal research ethics committee in accordance with the Swedish
Animal Welfare Act 1988:534 as last amended by SFS 2002:550,
which are adopted in consequence of EC Directive 86/609/EEC.

Tissue handling

Tissue samples of approximately 0.2 g. were thawed and homo-
genised using a Dounce Tissue Grinder (Kimble/Kontes, Vineland,
NJ, USA) in 400 ml homogenisation buffer 1 (100 mM HEPES, pH
7.4, 100 mM NaCl, 0.5% CHAPS). Homogenisation buffer 1 (0.8 ml)
was added to the homogenate and the mixture was allowed to
incubate on ice for 30 min before centrifugation at 20 000 r.p.m. for
20 min in 41C. The supernatant was collected and two volumes of

protein-denaturing buffer (8 M urea, 1% CHAPS, PBS) were added.
The mixture was incubated on a shaker at 41C for 30 min, then
snap frozen in liquid nitrogen and stored at �801C. The pellet
fraction was rehomogenised in 400ml homogenisation buffer 2 (5 M

Guanidine–HCl, 50 mM Tris (pH 8.0), 0.5% CHAPS) and incubated
on ice for 3 h before centrifugation at 20 000 r.p.m. for 20 min at
41C. The new supernatant fraction was collected and diluted in two
volumes homogenisation buffer 2, snap frozen and stored at
�801C. Both homogenisation buffers contained EDTA-free pro-
tease inhibitor (Roche Applied Science, Indianapolis, IN, USA).
The protein content of each sample was determined using the BCA
(bicinchoninic acid) assay (Pierce Biotechnology Inc., Rockford,
IL, USA) and the mean of three individual readings was used to
determine the appropriate dilution required for the SELDI
analysis.

SELDI-TOF-MS

Surface enhanced laser desorption/ionisation is characterised by
its selective binding of a subset of all proteins in a given sample to
a ProteinChips (Ciphergen Biosystems Inc., Fremont, CA, USA).
The bound proteins are subsequently analysed in the TOF mass
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Figure 1 Representative protein profiles from six different tumour
samples, all taken 12 days after irradiation. The y axes denote the relative
normalised intensity and the x axes the different m/z variables. The different
mass regions for each sample are plotted in separate panels, low mass
(2.5–20 kDa) to the left and high mass (20–50 kDa) to the right. The top
three panels show profiles from animals in the untreated control group
(A–C) and the bottom three profiles from radiotherapy-treated (12Gy in
a single fraction) animals (D–F).
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spectrometer, yielding a specific protein profile for each individual
sample (Figure 1).

A number of different types of array and binding buffers were
initially examined for this experiment. An IMAC30 array and a
phosphate binding buffer (0.1 M PO4, pH 7.5, 0.5 M NaCl) was
found to be the most suitable combination, providing higher
spectrum quality and a larger number of peaks than the other
tested options. A Biomek 2000 Laboratory Automation Work-
station robot (Beckman Coulter Inc., Fullerton, CA, USA) was
utilised for all array preparation and sample application steps in
combination with a MicroMix5 shaker (Diagnostic Products
Corporation, Los Angeles, CA, USA), which was employed for all
array incubation steps, set to program 5 and amplitude 20.

IMAC30 arrays were assembled into a Bioprocessor (Ciphergen
Biosystems Inc.), charged with Zn2þ by adding 50 ml 100 mM

ZnSO4 and left to equilibrate for 5 min at room temperature. The
Bioprocessor was subsequently emptied and the metal charging
step was repeated. To remove unbound metal ions the arrays were
then washed twice with 100 ml 1 mM HEPES for 5 min. Thereafter,
the arrays were equilibrated three times with 100ml binding buffer
for 5 min, after which the samples were applied. Samples from one
fraction at a time were thawed and diluted in binding buffer to a
concentration of 0.15 mg ml�1 in a 96-well plate on ice, mixed on a
MicroMix5 shaker for 2 min then transferred to the Biomek 2000.
Of each diluted sample (100 ml) was added to the Bioprocessor and
allowed to incubate for 1 h. All samples were processed and applied
to the arrays in triplicates, according to a completely randomised
scheme. To facilitate assessment of the method reproducibility,
identically treated standard quality control (QC) samples were
added onto a number of random spots per Bioprocessor. In order
to remove unbound sample the arrays were then washed with
150ml binding buffer three times for 5 min, followed by two 1 min
washes with 150 ml 1 mM HEPES. Before matrix addition the
Bioprocessor was dismantled by removing the top and gasket and
the arrays were air dried. Thereafter, two deliveries of 1 ml
saturated sinapinic acid (Ciphergen Biosystems Inc.), diluted in
50% acetonitrile and 0.5% trifluoroacetic acid, were added to each
spot on the arrays.

Arrays were analysed in a TOF mass spectrometer (PBS-II;
Ciphergen Biosystems Inc.). Mass spectra were generated in
positive ion mode using an accelerating voltage of 20 kV. Each
spot was analysed twice, with individual settings optimised for
different mass regions. To analyse the lower mass region (2–
20 kDa), the laser intensity was set to 210 and 215 for the pellet and
supernatant fraction samples, respectively, the detector sensitivity
to 7 and the focus lag times was 782 ns. To analyse the higher mass
region (20–50 kDa), a laser intensity of 260 and a detector
sensitivity of 10 was used in conjunction with a focus lag time of
1328 ns for both fractions. Mass spectra were acquired by
averaging the data from 192 laser shots fired at 16 different
positions within each spot. Different positions were used to
acquire high and low mass spectra. The mass spectrometer
was externally calibrated using an all-in-one-protein standard
(Ciphergen Biosystems Inc.).

Data analysis

Spectral data were acquired using SELDI-TOF-MS. Baseline
subtraction was performed on all spectra using Ciphergen
Proteinchips Software. Data from both fractions (supernatant
and pellet) were then exported as raw spectra files in csv format.
For the high mass region, data in the interval 20–50 kDa were
exported for multivariate analysis. We applied a lower limit cutoff
of 2.5 kDa to the low mass region to avoid all matrix-related noise,
and hence exported data in the interval 2.5–20 kDa for multi-
variate analysis. All multivariate analyses were carried out using
Evince 1.1 (Evince for PC, Mac and Linux, Umbio: Umbio AB, C/O
Uminova Innovation AB, Box 7978, 907 19 Umeå, Sweden).

The QC samples were used to evaluate the method
reproducibility, and thus were treated separately. All low mass
range spectra generated from the QC samples were normalised
together in the interval 2.5– 20 kDa using the Ciphergen
ProteinChips Software. The program was set to calculate
noise within the same mass region and peak clusters to be
compared were then automatically selected, utilising the Biomar-
ker Wizard tool in Ciphergen Proteinchips Software with the
following settings; first pass signal to noise ratio¼ 5, min peak
threshold¼ 50% of all spectra, cluster mass window¼ 0.3% of
mass, second pass signal to noise ratio¼ 2. Information on the
detected peak clusters was finally exported in.csv format for
reproducibility calculations.

Data preprocessing for multivariate analysis

The values for the different m/z variables were not consistent
between the many different spectra. For meaningful comparison of
many spectra, each has to be built up by the same set of well-
defined variables. Therefore, using a binning procedure, each
spectrum was transformed into 5000 variables, to be analysed by
multivariate projection methods such as PCA and PLS-DA. All bins
corresponded to small mass intervals (3.5 and 6 Da for the low
mass and the high mass data, respectively) represented by the
mean value of the intensities therein. This process also had a
smoothing effect on the spectra. Each spectrum was then
normalised individually by dividing all of the variables in it by
the total intensity of the spectrum. Before the multivariate analysis
data were then transformed (centred) by subtracting each variable
by its mean.

Principal component analysis

The central idea of PCA is to extract a few, so-called, principal
components describing as much as possible of the variation
present in the data. The principal components are linear
combinations of the original variables and uncorrelated to each
other. Here, t represents the scores vectors and p0 the loadings
vectors for each component. A is the number of principal
components and E is the residual matrix.

X ¼ t1p
0

1 þ t2p
0

2 þ t3p
0

3 þ . . .þ tAp
0

A þ E ¼ TP
0 þ E ð1Þ

The principal components can be determined using the NIPALS
algorithm (Wold, 1966) or singular value decomposition (SVD)
(Jolliffe, 1986). The scores (t) show how the objects and
experiments relate to each other. Objects close to each other in a
score plot are similar to each other in terms of the variables that
influence the plotted components. The loadings (p) reveal the
variables that are important for the patterns seen in the score plot.
By examining the scores and the loadings important groupings in
the data can be identified and explained.

Partial least squares

Partial least squares is a multivariate regression method that
relates the data matrix (X, descriptors) to a y response that
can be either single (y) or multiple (Y). Partial least squares
has proved to be a powerful tool for finding relationships
between descriptor matrices and responses, especially when there
are more variables than observations and the variables are
collinear to each other and noisy. The PLS theory and methods
discussed here concern single y responses. As in PCA, principal
components are constructed to reduce the dimensions of X. In
order to obtain the principal components, PLS maximises the
covariance between the response variable y and a linear
combination of the original variables t¼Xw, where t is the score
vector, X is the data matrix and w is the weight vector. A more
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detailed description of PLS can be found elsewhere (Garthwaite,
1994; Burnham et al, 1996, 1999; Wold et al, 2001).

X ¼ t1p
0

1 þ t2p
0

2 þ t3p
0

3 þ . . .þ tAp
0

A þ E ¼ TP
0 þ E ð2Þ

Y ¼ t1c
0

1 þ t2c
0

2 þ t3c
0

3 þ . . .þ tAc
0

A þ F ¼ TC
0 þ F ð3Þ

t¼ score vector for X; A¼ the number of PLS components;
p¼ loading vector for X; c¼ loading vector for Y; E¼ residual
matrix for X; F¼ residual matrix for Y; When using PLS for
discriminant analysis (PLS-DA), dummy variables are used to
describe the classes to which different samples can be assigned.
This is performed by creating pairs of binary variables for each
class, for example ones and zeros, where a one signifies that the
object belongs to the class concerned, and a zero implies that it
does not. With a PLS-DA model it is possible to predict whether or
not an object belongs to a specific class considering the predicted
class variable. A predicted value greater than 0.5 implies that the
sample belongs to that class and a value lower than 0.5 implies that
it does not belong to it.

Validation of models

To determine the ideal number of components to calculate and
analyse in order to optimise the interpretability and predictive
power of any multivariate model, it must be validated. Compo-
nents that do not explain a significant amount of variation should
not be analysed and interpreted since they may mainly describe
noise. We choose here to restrict the analysis to principal
components that had relatively large eigenvalues and visually
appeared to describe variation related to the classification. For
each component a R2X value was calculated, representing the
percentage of variation described in the data. These values are
presented for each PCA model.

In order to make valid predictions from a PLS model it is
important not to overfit it, that is to avoid fitting it to random
noise in the observed data. To ensure that this is avoided,
appropriate validation techniques need to be applied. Cross-
validation, an example of an internal validation procedure used
here, involves removing observations from the data in a stepwise
procedure, computing a prediction model based on the remaining
samples and testing the calculated model by comparing the
estimated values with the empirically obtained values for the
excluded observations. This process is then repeated by excluding
a new selection of observations, until all observations have been
excluded once. Finally, a prediction error term is calculated, the
prediction error sum of squares (PRESS), defined as:

PRESS ¼
XcvObs

i¼1

ðYi � Yi

^
Þ

2

ð4Þ

where cvObs is the number of observations in the test set, Yi is the
observed value for observation i in the test set and Yi

^
is the

predicted value for the same observation. PRESS is used, in turn,
for calculating Q2Y:

Q2Y ¼ 1:0 � PRESS=SS ð5Þ

where SS is the sum of squares for Y. Q2Y can be described as the
percentage of the response (Y) that will be correctly predicted for a
set of new observations using the current model. Crossvalidation
can be performed by removing one or many observations in every
run. Removing one observation in each run is commonly referred
to as the leave-one-out procedure. As our data contains replicate
groups, we applied segmented crossvalidation in which entire
replicate groups were excluded instead of one sample at a time, to
avoid including data from the same replicate group in both the
test- and training sets.

Identification and analysis of regions of interest

In regions where differences between two compared groups were
detectable by means of multivariate analysis, we wanted to further
investigate them univariately. By studying the loadings from the
multivariate analyses and relating them to the scores, one can find
the most important variables for separating the groups. It has been
shown that, for a single component PLS model, the first weight
vector, w1, provides the best estimate of the importance of a given
variable, for describing the response. Later components are only
needed for correcting the predictions made by the first component
for all the variation in the X matrix that is not correlated to the
response, but still affects the prediction (Trygg, 2002). For
example, m/z variables with high absolute w1 values contribute
heavily to the group separation. In this study we identified mass
spectrometric regions of interest (ROI) as parts of the spectrum
where the m/z variables had corresponding absolute w1 values
greater than 0.015 (ROI:|w1|40.015) for low mass data and 0.010
(ROI:|w1|40.010) for high mass data. The small number of
samples did not allow the use of statistical permutation analysis to
determine these cutoff limits (Johansson et al, 2003). These ROI
were subjected to additional investigation, as follows. Within each
ROI we identified protein peaks, defined as m/z variables where the
mean protein profile curve had a local maximum. For any given
ROI with positive w1 values, peaks were identified in the mean
spectrum derived from the spectra for the group with positive
scores in the first component, that is the group with binary
response 1 in the PLS-DA model. In ROI with corresponding
negative w1 values, the opposite mean spectrum was used to
identify peaks, that is the mean spectrum derived from the spectra
for the group with binary response 0. As the high mass regions of
all protein profile curves displayed a large amount of small
amplitude noise, they were smoothed before peak detection using a
five point adjacent averaging algorithm. The relative peak intensity
for all remaining peaks was extracted from every individual
spectrum in both groups. To compensate for possible mass shifts,
intensity values from individual spectra were selected as local
maximum intensities (peaks) within 70.2% of the m/z value
defined as a peak in the mean spectrum. In cases where more than
one peak was identified in the scanned mass interval, the one with
the closest m/z value to that of the mean peak in question was
extracted. The peak intensity values of the treated and the
nontreated groups were then compared.

Since each of the groups consisted of samples from only three
animals, each analysed in triplicate, we needed to confirm that
observed differences between the groups were due to treatment
effects and not to differences between animals. This was performed
using a nested linear model with fixed effects comparing treatment
effects with a full model allowing differences between rats. When
there was little evidence of a difference between individuals
(P40.1), t-test statistics were applied to assess the differences
between treated and control animals. Conversely, when there
appeared to be a difference in peak intensity between different
individuals (Po0.1), the differences between the two groups were
investigated using a linear mixed effects model (lme). In this model
not only the measurement error within each rat but also the
sampling of individual rats was assumed to be a random effect
while the treatment effect was assumed to be fixed. All univariate
analysis was performed utilising the freeware R 2.1.1 (R Develop-
ment Core Team. R: A language and environment for statistical
computing. Vienna, Austria; 2005).

RESULTS

Protein profiling QC

Randomly spotted QC samples were analysed together with the rest
of the samples to assess method reproducibility. For the pellet
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fraction a total of 12 QC samples were analysed together with the
rest of the sample material in two Bioprocessors. Here, 16 peaks
were selected and compared, resulting in a coefficient of variance
(CV) of 20.1%. For the supernatant fraction 14 QC samples were
analysed and16 peaks were selected with a resulting CV of 16.5%.

Comparing normal and tumour tissues

The protein expression pattern from tumour tissue was compared
with that from contralateral normal brain tissue, with the purpose
of validating the strategy. Principal component analysis applied to
each data set from the separate time points disclosed obvious
separations between tumour samples and normal samples for all
data sets (data not shown).

Figure 2C and D show the mean spectra for the low mass region
from both groups, derived from nine individual spectra from the
supernatant fraction from untreated rats killed 24 days after
implantation. Application of PLS-DA to the data yielded a
complete separation of the two groups in the first dimension
(Figure 2A). In Figure 2B the PLS-DA loadings (w1) are plotted for
each variable on the m/z axis, to illustrate which variables, that is
parts of the spectra, are the most important in the separation of the
two groups. Variables on the m/z axis with a relatively high
absolute w1 value were more important for the separation than
those with a relatively low absolute value, meaning that high
absolute values in w1 corresponded to m/z variables discriminat-
ing between the two groups.

Outliers

Initially all data sets were analysed separately with PCA, and
possible outliers were identified. Two single observations were
removed, one from the day 7 data set and one from the day 12
pellet data set. The first one displayed very large residuals (see
Eq. 1) and the second was discovered to be a clear outlier in score
space. They both displayed protein profiles highly dissimilar to the
other two observations in the triplicate set. Furthermore, two
complete sample triplicates were removed since it was clear they
belonged to a different data set, one from day 5 and one from day 7
after irradiation. All outliers were further examined by hierarchical
clustering, and it was found that these observations positioned
separately from the rest of the observations in each respective data
set (data not shown).

Changes in protein expression over time in treated and
untreated control tissues

Application of PCA to mass spectrometric data obtained from
glioma tissues (both fractions and both mass ranges) from treated
and untreated animals killed 1, 5, 7 and 12 days after irradiation
revealed distinct time trends in protein profiles (Figure 3A),
associated with the tumour’s successive growth. There was also a
clear distinction between treated and untreated samples from days
1 and 12, since the protein profiles from the untreated samples
from day 1 display a closer resemblance to the protein profiles
from day 5 than the treated ones. Similarly, the protein profiles
from the treated samples from day 12 displayed a closer
resemblance to the protein profiles from day 7 than the untreated
ones. The profiles from days 5 and 7 displayed similar tendencies,
but less clearly. Figure 3B and C illustrate how a few protein peaks
develop over time in untreated (control) and treated samples,
respectively.

Treated vs untreated tumours

Comparing treated and untreated tumour samples from each
individual time point reveals unambiguous separation between the
classes for days 1 and 12 after irradiation. Data collected on days 5

and 7, however, does not separate the classes, although there are
some weak tendencies towards separation present in some of the
fraction subsets to these data (data not shown).

Samples from both the treated group and the untreated control
group collected on day 12 after irradiation (24 days after
implantation) were investigated by PCA to detect differences in
complete protein profiles related to treatment effects. Data sets
from the different mass ranges were analysed separately and data
sets from the two fractions were treated both separately and
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Figure 2 Partial least squares model based on low mass range (2.5–
20 kDa) data from the supernatant fraction of three normal tissue (grey)
and three tumour tissue samples (black). All samples are from the
untreated control group, killed 24 days after implantation and analysed in
triplicate. (A) Partial least squares scores t1 vs t2. Q2Y(cum)¼ 0.96 for the
first two components. (B) First dimension PLS loadings (w1) plotted
against mass variables. (C) Low mass range, mean spectrum derived from
all nine spectra generated from the normal tissue samples. (D) Low mass
range, mean spectrum derived from all nine spectra generated from the
tumour tissue samples. The shading of the bars under the spectra in (C)
and (D) indicates the sign and magnitude of the w1 values for each m/z
variable: black corresponds to high positive w1 values (i.e. parts of the
spectra where the tumour samples’ spectra display substantially higher
relative intensities than the normal samples’ spectra), white corresponds to
high negative w1 values (i.e. parts of the spectra where the normal samples’
spectra have substantially higher relative intensities) and grey corresponds
to low w1 values. The colour coding is the same in the blown-up region of
the spectra (inset), but scaled according to the minimum and maximum w1
values associated with that region.

Protein expression in glioma following radiotherapy

C Wibom et al

1857

British Journal of Cancer (2006) 94(12), 1853 – 1863& 2006 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s



together (Figure 4). The treated and control samples could be
separated in all data sets analysed. Therefore, discriminating
information was obtained throughout the whole mass spectra, as
well as in both the analysed protein fractions.

External validation of PLS-DA

The PLS-DA model based on the low mass data set from the
supernatant fractions of samples collected 12 days after treatment
modelling the differences in protein profiles between irradiated
and nonirradiated control samples, was externally validated. A test
set consisting of six samples, one sample triplicate from the
control group and one sample triplicate from the irradiated group,
were removed from the modelling step. A PLS-DA model was
calculated based on the remaining samples, and the model was
then used for predicting whether the samples in the test set were
irradiated or not, based on their protein profiles. As can be seen in
Figure 5 all samples were assigned to the correct group: an
observed value of 1 representing irradiated samples and a value of
0 control samples.

Analysis of ROI

Partial least squares models were calculated for each of the
separate data sets from day 12 after irradiation (see Table 1). The
previously described peak identification strategy was applied to the
variable loadings from these models. In the supernatant fraction
we found 31 peaks, out of a total 47 peaks in the ROIs, in the low
mass region that displayed significantly different expression
patterns after therapy. In the high mass region the corresponding
numbers were 12 out of 35 peaks. For the pellet fraction we found
that 17 out of 37 peaks in ROIs showed significantly differentiated
expression patterns in the low mass region, and 17 peaks out of 28
in the high mass region (Table 2 lists peaks with a significantly
altered level of expression and Figure 6 gives a spectral image of
two ROI).

DISCUSSION

The results of this study show that high throughput mass
spectrometric protein profiling, combined with multivariate
analysis methods such as PCA and PLS-DA, are excellent methods
for investigating and comparing protein expression from brain
tissue extracts. The data revealed distinct differences between
radiotherapy-treated and untreated glial tumours in an experi-
mental glioma animal model. Significant differences were also
detected between glioma and normal brain, which is consistent
with previous studies on both glioma (Zhang et al, 2003; Iwadate
et al, 2004) and other types of tumours (Melle et al, 2004). It is
obvious that our method permits tumour progression to be
monitored over time, since protein profiles from different time
points during tumour growth formed subgroups in score space
when modelled with PCA. These findings clearly suggest that the
tumour protein expression pattern in the BT4C model successively
and systematically changes over time. Moreover, by analysing
animals subjected to radiotherapy in the same manner, it becomes
apparent that this systematic development is changed by radio-
therapy treatment (Figure 3). To our knowledge, this is the first
study indicating that it may be possible to follow treatment
responses to radiotherapy with a high throughput mass spectro-
scopic method applying multivariate statistical methods.

It is well known that protein expression profiles differ both
between tumours with different histopathologic grades (Ware et al,
2003; Iwadate et al, 2004) and between different tumour stages
(Cheung et al, 2004; Roblick et al, 2004). However, to our
knowledge, the finding that the tumour protein expression profile
changes over time in histologically identical tumours is novel. This
may be due to molecular changes in the tumour cell biology per se,
but changes in the tumour –host interaction may also contribute.
In our experience, however, the BT4C cells grow homogenously in
the rat brain without any obvious visible changes in the cellular
distribution within the tumour, until late in the course of
progression when necrosis may appear. Nevertheless, necrosis is
generally not present at the time points when tissues were sampled
in this study (Bergenheim et al, 1994) and radiotherapy alone has
only a growth inhibitory effect without altered morphology
(Johansson et al, 1999). Therefore, the observed changes in
protein expression were not clearly correlated to gross morpho-
logical changes in the tumours. For this study we found it most
important to account for this variation of protein expression over
time in our comparative analyses. Thus, all comparisons between
tumours were performed on tissues harvested at the same time
point after implantation.

In the present study, we found clear differences between
irradiated and nonirradiated glioma tissue. In total, summing the
findings in all separate data sets, 77 peaks were found to have
significantly altered expression levels 12 days after radiotherapy
treatment. These proteins or protein fragments may include
potentially interesting markers of treatment outcome. The
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Figure 3 Principal component analysis reveals a time trend in protein
expression during tumour progression (A). R2X(cum)¼ 0.65 for the first
two components. � and ’ represent treated and untreated samples,
respectively, and the different colours represent samples collected at
different time points after treatment, as follows: blue¼ 1 day; green¼ 5
days; yellow¼ 7 days; red¼ 12 days. (B) and (C) display mean protein
profiles within a specific spectral region, derived from untreated and treated
samples, respectively. The samples are from the same time points as above
and the same colour coding is applied.
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majority of significantly changed peaks were observed in the low
mass regions of the mass spectra and it may be suggested that
many of these peaks are fragments of larger functional proteins. To
date, there is little work performed in glioma focused on finding
markers for early tumour detection (Liu et al, 2005), and in the
general field of oncology there are only a few studies on finding
markers for quantification of treatment efficacy (Gadducci et al,
2004; Reyzer et al, 2004). Such a marker could be of considerable
clinical importance. Among the protein peaks we identified that
helped to distinguish irradiated tumours from nontreated
tumours, some could be involved in the pathogenesis of clinically
observed side effects (Costello et al, 2004; Swennen et al, 2004)
while others may represent protein markers that could be used to

evaluate therapeutic efficacy. However, to establish these peptides
as markers for therapy response, samples from individuals with
differential responses should be investigated. So far, no marker for
radiation-induced cytotoxicity in malignant glioma has been
identified and clinically established.

The candidate biomarkers for treatment effects described herein
need to be further characterised to gain additional insight into the
biology of radiotherapy. Such knowledge may be valuable for
understanding the pathogenesis of brain tumours and, ultimately,
how to treat them. Furthermore, it would be of great importance to
detect similar protein expression differences in more clinically
accessible compartments, such as CSF, serum or microdialysis
samples, they could then be rapidly and reliably analysed as
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’ represent treated and untreated samples, respectively. (A) Supernatant, low mass region (2.5–20 kDa). (B) Supernatant, high mass region (20–50 kDa).
(C) Pellet, low mass region. (D) Pellet, high mass region. (E) Pellet and supernatant, low mass region. (F) Pellet and supernatant, high mass region.

Protein expression in glioma following radiotherapy

C Wibom et al

1859

British Journal of Cancer (2006) 94(12), 1853 – 1863& 2006 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s



treatment efficacy markers. This could take us one step closer to
the ultimate possibility of individualising treatment modalities and
monitoring the effects instantly, especially with regard to all of the
novel drugs that now are introduced in the clinic (Krause and Van
Etten, 2005). The use of protein expression profiling may also be
important in neuro-oncology for the subclassification of tumours
(Furuta et al, 2004; Schwartz et al, 2004; Liu et al, 2005), as a
complementary approach to the morphological and genomic
methods currently used (Kleihues and Ohgaki, 1997).

In the BT4C glioma, tumour progression involves changes in the
overall protein expression profile, as shown in this study (Figure 3).
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Figure 5 External validation of a PLS-DA model of the effect of radiation
treatment based on data from tumour samples collected 12 days after
treatment. A predicted value close to 1 implies that the sample belongs to
the radiation-treated group (� ), based on the protein profile of its low
mass range supernatant fraction and a predicted value close to 0 implies
that it belongs to the control group (’). All samples in the external test set
(black) and the calibration set (grey) were correctly classified using the
single-component PLS-DA model. Q2¼ 0.83.

Table 1 Statistical details of each separate PLS model underlying the
localisation of the spectral regions of interest.

Data set A R2X(cum) R2Y(cum) Q2Y(cum)

Low Sup 2 0.636 0.906 0.818
High Sup 2 0.818 0.881 0.788
Low Pel 2 0.531 0.888 0.713
High Pel 2 0.530 0.968 0.902

A¼ number of components; High¼ high mass range (20–50 kDa); Low¼ low mass
range (2–20 kDa); Pel¼ pellet fraction; PLS¼ partial least squares; Sup¼ super-
natant fraction.

Table 2 Peaks within regions of interest, whose intensity significantly
changed after radiotherapy

Supernatant fraction

Bin (m/z) Mean (Ctrl) Mean (Rt) Sign. Test

Low mass
2612.0 7.81E-04 1.70E-03 *** t
2671.5 4.13E-04 7.03E-04 ** t
2794.0 2.31E-03 5.83E-04 *** t
2909.5 6.16E-04 2.15E-04 *** t
2979.5 7.87E-04 4.12E-04 ** t
3119.5 7.64E-04 1.86E-04 *** t
3263.0 1.21E-03 6.70E-04 * t
3333.0 2.59E-03 1.49E-03 * t
3382.0 3.15E-04 6.93E-04 *** t
3427.5 7.97E-04 4.67E-04 ** t
3826.5 4.00E-03 1.90E-03 *** t
3903.5 6.70E-04 2.98E-04 *** t
4411.0 3.01E-03 1.02E-03 * lme
4442.5 1.24E-03 2.07E-03 *** t
4502.0 1.22E-03 7.73E-04 *** t
4551.0 4.26E-04 8.24E-04 *** t
4617.5 4.04E-04 2.17E-04 *** t
5006.0 4.31E-04 7.13E-04 * lme
5072.5 1.14E-03 6.27E-04 *** t
5226.5 9.68E-04 5.41E-04 *** t
5377.0 6.96E-04 1.04E-03 * lme
5667.5 3.15E-04 9.62E-05 * lme
5695.5 3.81E-04 1.47E-04 ** lme
6049.0 3.40E-04 1.08E-04 *** t
6178.5 1.66E-03 8.28E-04 *** t
6231.0 4.70E-04 2.49E-04 *** t
6535.5 7.68E-04 3.66E-04 ** lme
7473.5 1.39E-03 3.66E-04 *** t
10147.5 3.00E-03 1.48E-03 ** lme
10357.5 4.41E-04 2.36E-04 ** lme
13063.0 6.12E-04 2.56E-04 ** lme

High mass
20054 2.74E-04 9.99E-05 *** t
20174 2.68E-04 1.00E-04 * lme
20378 4.60E-04 2.03E-04 * lme
20768 3.06E-04 1.42E-04 * lme
20870 2.83E-04 1.10E-04 *** t
20882 2.81E-04 1.11E-04 * lme
26198 5.11E-04 2.63E-04 * lme
26216 5.18E-04 2.62E-04 * lme
26630 2.55E-04 1.25E-04 * lme
26846 2.58E-04 1.30E-04 * lme
28346 2.56E-04 1.64E-04 *** t
29018 3.16E-04 2.40E-04 * lme

Pellet fraction

Low mass
2916.5 2.09E-03 6.91E-04 ** t
3046.0 6.54E-04 2.49E-04 ** t
3081.0 3.28E-03 1.13E-03 ** t
3200.0 1.66E-03 5.37E-04 *** t
3214.0 4.75E-04 1.97E-04 ** t
3501.0 2.38E-03 1.45E-03 * t
6752.5 1.06E-03 6.05E-04 ** t
7256.5 2.00E-03 1.08E-03 * t
7284.5 1.78E-03 9.36E-04 ** t
7508.5 2.10E-03 4.64E-03 * lme
7652.0 3.06E-04 7.61E-04 ** lme
7718.5 2.42E-04 5.73E-04 ** lme
8152.5 6.24E-04 1.27E-03 ** lme
8677.5 8.06E-04 5.39E-04 * t
9087.0 8.48E-04 5.59E-04 * t
9696.0 1.12E-03 1.39E-03 * t
9804.5 1.77E-03 3.36E-03 * lme
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Both treated and untreated control tumour samples displayed clear
time trends when modelled with PCA. Interestingly, at two of the
time points measured (1 and 12 days after irradiation) there were
clear differences between protein profiles from treated and
untreated control samples. In both instances, the untreated
samples seemed to have progressed further than their radio-
therapy-treated counterparts. More specifically, protein expression
profiles from untreated samples from day 1 showed greater
resemblance than treated samples from the same time point to the
day 5 protein profiles. In much the same way, treated samples from
day 12 displayed greater similarity to protein profiles from day 7
than the untreated samples from the same time point. Treated and
untreated control samples from days 5 and 7 displayed the same
tendencies, but much less clearly. Taken together these findings
could indicate that progression of protein expression in tumours
was slower in treated samples than in untreated samples.

By applying multivariate analysis techniques we were able to use
all our data for analysis. In doing so we circumvented the difficulty
of selecting peak clusters for analysis in the initial investigation.
Instead, we used insight gained from the initial multivariate
analysis to select ROI from which all possible protein peaks were
selected for further univariate analysis. This is in marked contrast
to other studies in which peaks were selected before any
comparative analysis was applied (Adam et al, 2002; Vlahou
et al, 2003; Liu et al, 2005). In Figure 2 both of the mean spectra
display prominent peaks at about 7500 Da which, judging by the
loadings, strongly influence the PLS model. A valid question is
therefore whether the observed difference in masses for these
particular peaks is real or an artefact related to instrument drift
over time. It is, however, reasonable to assume that the observed
difference is in fact real, since all of the samples were analysed
simultaneously and in a randomised fashion, which should
minimise the occurrence of such artefacts. This hypothesis was
also confirmed by extracting the exact m/z values for each
individual spectrum in the two groups and comparing them
between the groups with a t-test, which indicated that the peaks
had significantly different masses (data not shown).

As emphasised above, multivariate projection methods were
essential statistical tools in this investigation. Principal component
analysis was used to assess the similarity of different samples
according to their protein profiles and to detect groupings. A data
set with n variables can theoretically be visualised by plotting the
observations in an n-dimensional space. However, it is impossible
for us to view data efficiently in more than three dimensions
because of the cognitive limitations of the human mind. Principal
component analysis is an unsupervised method, which tries to find
the directions in the multidimensional space that explains most of
the variation in the data. The PLS method is similar to PCA but is
supervised in the way that it tries to optimise the correlation
between the principal components with the response. The response
can be either continuous or discrete and PLS models can be used
for predictive purposes. If the response is discrete and binary the
modelling procedure is called PLS-DA. The previously described
methods have useful properties for analysing proteomics data.
They are well suited for analysing data where the number of
variables greatly exceeds the number of observations. They also
deal efficiently with noisy and correlated variables, which are often

Table 2 (Continued)

Pellet fraction

Bin (m/z) Mean (Ctrl) Mean (Rt) Sign. Test

High mass
20588 9.29E-04 2.94E-04 *** t
20756 8.15E-04 3.12E-04 * lme
20960 5.35E-04 1.36E-04 *** t
21320 3.23E-04 1.28E-04 ** t
24656 3.35E-04 4.15E-04 * t
24668 3.33E-04 4.13E-04 * t
24686 3.20E-04 4.10E-04 * t
24860 2.33E-04 3.70E-04 *** t
25016 1.69E-04 2.92E-04 *** t
25046 1.75E-04 2.92E-04 ** t
25088 1.61E-04 3.15E-04 *** t
25100 1.59E-04 3.11E-04 *** t
25196 2.41E-04 3.54E-04 * t
28136 9.22E-04 7.93E-04 * t
28694 3.68E-04 2.97E-04 * t
44558 3.31E-04 4.79E-04 ** t
44600 3.36E-04 4.84E-04 ** t

Test¼ statistical test used to test whether the differences in intensity of the
respective peak between groups were significant or not. lme¼ linear mixed effects;
t¼ Students’ t-test. *The Bin (m/z) column lists the beginning of the bin interval in
which each peak was found (the bin sizes for the low mass and high mass regions are
3.5 and 7 Da, respectively). wThe Mean (Ctrl) and Mean (Rt) columns present each
peak’s normalised mean intensity in the untreated control group and the
radiotherapy-treated group, respectively. zThe level of significance is indicated by
asterisks, as follows: ***Po0.001; **Po0.01; *Pp0.05.
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Figure 6 Two spectral ROI, defined as segments where m/z variables
displayed absolute w1 values greater than 0.015 (for low mass regions).
(A) Spectral image of two ROI, plotting the mean spectra from samples
collected in the supernatant fraction 12 days after treatment, comparing
treated (grey) and untreated (black). (B) Same two ROI as in (A) with all
individual samples plotted. The shading of the bars under the spectra
indicates the sign and magnitude of the w1 values (see Figure 2) derived
from the PLS-DA model that underlies the localisation of ROI. The right-
hand peak in both panels corresponds to peak 10147.5 in Table 2. There
was no clear evidence that the left-hand peak was significantly altered by
radiotherapy, so it is not listed in the table.
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observed in spectral data. In the machine-learning community it is
generally accepted that a sample to feature ratio (SFR) of at least
5–10 is required for robust classification. For mass spectra in a
biomedical context SFRs are typically in the range 1

20 – 1
500. In

machine-learning approaches such as neural networks the
conventional solution is to reduce the feature space dimensionality
by variable selection (Somorjai et al, 2003). The multivariate
methods described and used herein rely on linear algebraic
operations and are transparent in contrast to neural nets (for
example), which are often seen as black boxes. Thus, the influence
of specific variables in the models can be evaluated, facilitating the
identification of peaks and ROI.

One of the shortcomings of the present study is that the number
of animals in each group was relatively small. From a data analysis
perspective it is always preferable to have a larger number of
observations. On the other hand, since the study focused on a
controlled, inbred animal model in which all individuals are
basically genetically identical, we believe that the differences
between the different groups studied should outweigh the
individual variations within the groups. We also took appropriate
measures to adjust for possible individual effects when the results
were statistically compared, in order to avoid erroneous conclu-
sions. Based on both the crossvalidated Q2 values of our PLS
models (Table 1) and the small-scale external validation, our
methodology shows great potential for accurately predicting
important characteristics of samples from their protein expression
profiles. The large number of variables analysed in this study
contributes to stabilise the multivariate models although the
number of observations is small. This has been shown by extensive
Monte Carlo simulations of data matrices with different combina-
tions of observations and variables and where the conclusion was
that for PLS the probability of a chance correlation is decreasing
with increasing number of variables (Wakeling and Morris, 1993).
However, in order to create robust and predictive models that
could be applied to new samples this kind of analysis needs to be
performed on significantly larger data sets, covering a wider array

of instrumental and experimental factors. It is possible that the
specificity of the current study could have been improved by
employing a more selective approach to tissue sampling, such as
laser capture micro dissection, to analyse only the tumour cell
compartment of the tumour, rather than mixtures of tumour and
stroma cells, as in the present study. However, a tumour consists of
two interacting cellular compartments and in our opinion it is
important to study both compartments in the search for tumour
biomarkers. Important biomarkers may be expressed by tumour
stromal cells, such as endothelium, under the influence of tumour
cells.

In conclusion, using MS and multivariate analysis we have
demonstrated differences in protein expression pattern between
experimental rat glioma and normal brain. We found variations
over time in protein expression concomitant with the tumour
progression in vivo and, most noteworthy, that irradiation of the
tumours induced changes in protein expression that allowed the
irradiated tumours to be clearly distinguished from the nontreated
tumours. We believe that the 77 identified peaks discriminating
irradiated from nonirradiated tumours may include useful
markers for the efficacy of radiation treatment of malignant
glioma.
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