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Abstract

During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and
inflammatory molecules that are deleterious to nearby tissue (the penumbra). Plasma membrane degradation is key to
penumbral spread and is mediated by matrix metalloproteinases (MMPs), which are released via vesicular exocytosis into
the extracellular fluid in response to stress. DIDS (4,49-diisothiocyanatostilbene-2,29-disulphonic acid) preserves membrane
integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS) and we asked whether this
action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS,
intracellular proMMP-2 and -9 expression increased 4–10 fold and extracellular latent and active MMP isoform expression
increased 2–22 fold. MMP-mediated extracellular gelatinolytic activity increased ,20–50 fold, causing detachment of
32.164.5% of cells from the matrix and extensive plasma membrane degradation (.60% of cells took up vital dyes and
.60% of plasma membranes were fragmented or blebbed). DIDS abolished cellular detachment and membrane
degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly
inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the
general proteinase agonist 4-aminophenylmercuric acetate (APMA). Conversely, DIDS-treatment did not impair stress-
induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS
interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support
of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar
degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS prevented stimulus-evoked
release of von Willebrand Factor from human umbilical vein endothelial cells. We conclude that DIDS inhibits MMP
exocytosis and through this mechanism preserves neuronal membrane integrity during pathological stress.
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Introduction

Cells in the infarct core die within minutes of stroke onset,

whereas in the surrounding region (the penumbra) death spreads

slowly for hours to days post-insult [1,2]. Unlike in the infarct core,

the relatively slow propagation of cell death in the penumbra

makes this region an attractive target for clinical rescue,

particularly as the majority of stroke-related morbidity and

mortality is attributable to progressive expansion of the infarct

core [3]. The mechanisms of cell death in this region are poorly

understood, but are likely initiated by deleterious alterations of the

local perfusate following the release of cytoplasmic contents from

ruptured core cells [4]. Indeed, loss of membrane integrity is a

commonly-shared hallmark of cell-death pathways [5] and

membrane cleavage facilitates the release of pro-apoptotic and -

immunogenic signals, ions, and other debris from dying cells,

which then accumulate in the local perfusate and initiate

inflammatory and/or cell death pathways in adjacent cells

[4,6,7]. In ischemic pathology, these effects are compounded by

reduced cerebral blood flow following stroke, which limits O2 and

nutrient delivery [1], and slows the removal of extruded signaling

molecules, ions, and metabolically-derived lactate and CO2;

thereby enhancing cytotoxicity, ionic imbalance, and acute

acidification in the penumbral milieu [7,8,9]. Thus, penumbral

cells are exquisitely vulnerable to pro-apoptotic or -inflammatory

signals released from ruptured cells in the nearby infarct core; and

the mechanisms underlying cell rupture likely play an important

role in the spread of cell death and inflammation following stroke.

Matrix metalloproteinases (MMPs) are a family of .20 zinc-

dependent enzymes that cleave most components of the extracel-
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lular matrix and regulate matrix remodeling during normal CNS

development and repair [10]. MMPs also play key roles in

physiological and pathophysiological processes involved in neu-

roinflammation and ischemia, endotoxin shock, multiple sclerosis,

bacterial meningitis, wound healing, bone remodeling, organo-

genesis, and cancer cell invasion, among others [11,12,13,14].

MMPs are synthesized in the ER as inactive preproenzymes and

are converted to inactive proenzymes during translation. Most

proMMPs are stored in this latent form in the cytosol, bound to

their specific inhibitors (tissue inhibitor of metalloproteinases:

TIMPs) [15]. In response to cellular signals, many MMPs become

dissociated from TIMPs (e.g. MMP-9) and are secreted into the

extracellular fluid (ECF) as inactive pro-enzymes via vesicular

exocytosis, where they become activated by proteolytic digestion of

a short-chain amino-terminal pro-peptide by other proteases, and

then act extracellularly to cleave plasma membranes, detach cells

from the matrix, and induce further MMP production [10]. In

addition, other members of the MMP family are activated in the

cytosol (e.g. MMP-2), while an additional family of MMPs are

membrane bound proteins (MT-MMPs) that contribute to the

activation of proMMP-2 [15]. Through these actions MMPs

underlie the dismantling and removal of damaged cells following

pathological insults [10,12,13]. In addition to cleaving the

extracellular matrix, MMPs also process a variety of bioactive

molecules, including the pro-forms of other MMPs and of

immunogenic molecules such as cytokines (e.g. interleukin-1b
(IL-1b); tumor necrosis factor-a) and neurotrophins (e.g. nerve

growth factor); and through these actions MMPs also play a key

role in the initiation and regulation of inflammatory pathways

critical to infarct expansion into the penumbra [10,12,16].

During ischemic pathology in brain the expression and activity

of the gelatinases MMP-2 (gelatinase A) and -9 (gelatinase B) in

particular are elevated, and contribute to blood-brain barrier

disruption, microvascular matrix and also permeability barrier

(plasma membrane) degradation, and activation of neuroinflama-

tory pathways [17,18,19,20,21,22]. Interestingly, the kinetics of

MMP activation and spreading cell death following stroke are

similar: in the infarct core gelatinases are activated within minutes

of middle cerebral artery occlusion (MCAO), whereas in the

penumbra, their activation is delayed by hours and follows the

spread of cell death [23]. Conversely, gelatinase inhibitors

or MMP-92/2 are neuroprotective against MCAO in mice

and also reduce IL-1b-mediated systemic neuroinflammation

[16,24,25,26,27]. The cytoprotective mechanisms of MMP

inhibition have not been elucidated; however, inhibition of

MMP-mediated cleavage of plasma membrane and pro-enzymes

would reduce the secretion and activation of pro-apoptotic and

immunogenic signals into the penumbral milieu, and retard the

spread of cell death and neuroinflammation following ischemic

insult.

Recently our laboratory reported that the anion channel

antagonist 4,49-diisothiocyanatostilbene-2,29-disulphonic acid

(DIDS, 400 mM) preserves neuronal membrane integrity and

prevents propidium iodide (PI) uptake and lactate dehydrogenase

release, and also IL-1b mRNA expression, from primary mouse

hippocampal and cortical neuronal cultures and cell lines

challenged with either 24-hrs of a novel ischemic penumbral

mimic (ischemic solution: IS [7]), or a 5-day hypoxic insult (1%

O2) [28,29,30]. Also, during routine culture maintenance, we

observed that DIDS-treated cells took longer to detach from the

growth matrix when treated with the proteinase trypsin. Based on

these observations we hypothesized that DIDS impairs proteinase

activity, and that through this action, prevents membrane

degradation characteristic of ischemic pathology. To examine this

hypothesis we observed the effects of IS or staurosporine (STS)

treatment6DIDS (0.01–4.0 mM) on cellular detachment, plasma

membrane integrity, and MMP-2 and -9 protein expression in

murine hippocampal neuronal cultures. We also examined the

ability of DIDS to affect the activity of the potent general

proteinase agonist 4-aminophenylmercuric acetate (APMA) and

examined this question in several commonly studied cell lines to

determine whether the putative inhibitory effect of DIDS on

proteinase activity is ubiquitous between cell types. Finally, since

MMPs are released via vesicular exocytosis, we tested the ability of

DIDS to interfere with the vesicular release of von Willebrand

Factor (vWF) from human umbilical vein endothelial cells

(HUVECs), a well-understood physiologically relevant model of

non-pathological vesicular exocytosis that does not involve

proteinase activity [31].

Materials and Methods

Cell cultures
HT22 mouse hippocampal neurons (a gift from Dr. Pam

Maher, Salk Institute, La Jolla, CA, [32]) and C8D1A mouse type-

I astrocytes (ATCC, Manassas, VA) were cultured in Dulbecco’s

Modified Eagle Medium (DMEM, ATCC) supplemented with

10% bovine calf serum (Hyclone, Santa Clara, CA) and 100 U/ml

penicillin/streptomycin (Invitrogen, Carlsbad, CA) and grown at

37uC in a 5% CO2 incubator. Human embryonic kidney (HEK

293, ATCC), mouse embryonic mesenchymal (C3H-10T1/2, a

gift from Dr. He Huang, UCSD, La Jolla, CA, [33]), mouse type-I

astrocyte clones (C8D1A, ATCC), and HeLa cells (ATCC) were

grown in the same conditions. Human umbilical vein endothelial

cells (HUVECs, ATCC) were grown in Endothelial Basal Medium

(EBM) supplemented with Endothelial Growth Medium (EGM-2-

MV) BulletKit (Lonza, Walkersville, MD). PC12 cells (ATCC)

were grown in 75 cm2 flasks coated with collagen I (Greiner Bio-

One, Monroe, NC) and fed F12K culture medium (ATCC)

supplemented with 15% horse serum (ATCC), 2.5% fetal bovine

serum, and 0.5% penicillin G (Invitrogen). PC12 cells were treated

for 24–48 hrs prior to experimentation with F12K medium with

0.5% penicillin G/streptomycin (pen/strep), 5 ng/ml nerve

growth factor, and 1% horse serum to induce differentiation into

a neuronal phenotype. All cells were grown for 5–8 passages and

split when they reached 60–80% confluence. For experiments,

cells were seeded into 96-well microplates (Corning, Lowell, MA),

glass-bottom 12-well microplates or 35 mm culture dishes

(MatTek, Ashland, MA), or cell culture flasks at a density such

that when grown overnight they reached ,70% confluence for

experimentation. Samples were treated as specified in the

experimental design section (below). To reduce sheer stress, cells

seeded into 96-well microplates were gently washed with a

TECAN PW96/384 Washer (TECAN, San Jose, CA) and then

examined visually to ensure cells had not been washed away.

Experimental design
Samples were treated with DIDS (400 mM, unless otherwise

indicated) for 6 or 24 hrs (as indicated) in three primary treatment

categories: (1) cell death-negative control (DMEM/F12 media

(Invitrogen) supplemented with 2% fetal bovine serum and 1%

pen/strep, gassed with 21% O2, 5% CO2, balance N2), (2) an

ischemic penumbral perfusate mimic (IS, in mM: K+ 64, Na+ 51,

Cl2 77.5, Ca2+ 0.13, Mg2+ 1.5, glucose 3.0, glutamate 0.1,

[315 mOsM, pH 6.5, 1.5% O2, 15% CO2, balance N2]), or (3) cell

death-positive control (DMEM/F12 containing the pro-apoptotic

agent STS (2.5 mM)). DIDS-free controls were conducted in

parallel for each experimental paradigm and all treatments were
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run simultaneously for each assay. 400 mM DIDS was utilized in

most experiments as this concentration has previously been shown

to be effective at preserving plasma membrane viability against IS

and hypoxic insults in primary hippocampal and cortical cultures

[28,29,30]. Since MMP activity is involved in normal cellular

maintenance and division, we pre-treated samples for 6-hrs with

serum-free media prior to treatment onset in order to isolate

pathology-mediated changes in MMP expression. In some

experiments, cells were stimulated with the general protease

agonist 4-aminophenylmercuric acetate (APMA, 100 mM) or the

vesicular (V-type) H-ATPase inhibitor bafilomycin A (BMA,

100 nM). HUVEC vWF release was stimulated with the Ca2+

ionophore A23187 (10 mM) and vWF formation was inhibited

with brefeldin A (BFA, 1 mg/ml), which interferes with protein

trafficking from ER to Golgi. In APMA-treated experiments,

samples were not pre-treated with serum-free media prior to

treatment onset because a) this treatment did not involve

pathology-induced MMP activity, and b) the cellular response to

APMA was highly robust and MMP expression changes were

easily detected. Following treatment, samples were assayed as

indicated below. A23187, APMA, BFA, BMA, DIDS, and STS

were dissolved in DMSO to a final bath [DMSO],0.01%, and all

solutions were made fresh daily. Chemicals were purchased from

Sigma unless otherwise indicated (Sigma-Aldrich, St. Louis, MO).

Adenylate kinase membrane viability assay
Assessment of the leakage of bulky adenylate kinase (AK)

through plasma membranes was measured using a 96-well

Toxilight microplate kit according to the manufacturer’s instruc-

tions (Lonza). Briefly, cells were grown and subsequently treated in

96-well microplates and total free AK was assessed via a luciferase

assay in each well before and after cell lysis buffer addition and

homogenization, to determine released and total cellular AK,

respectively. AK release is expressed relative to total AK in each

well.

Cellular detachment assay
Samples were grown in 150 cm2 cell culture flasks and following

24-hrs treatment supernatant aliquots were taken to assay

detached cell density in the ECF. The remaining treatment media

was aspirated and adherent cells were rinsed in PBS and then

detached from the matrix by 7–10 mins incubation at 37uC in

trypLE express (Gibco, for HUVECs), 0.05% trypsin with EDTA

(Invitrogen, for neurons), or 0.25% trypsin with EDTA (Invitro-

gen) for all other cell lines. Cells were re-suspended in 4 volumes of

serum-free DMEM and centrifuged for 5 mins at 200 x g. The

resulting supernatant was discarded and the cell pellet re-

suspended in PBS. Treatment supernatant samples or cell

suspension aliquots were gently mixed and then counted

immediately on a hemocytometer. Cells were counted in 5 fields

from each side of the hemocytometer for each sample and 3

samples were assayed per treatment paradigm. The total number

of cells in each sample was assessed as cellsattached+cellsECF, and

percent cellular detachment was determined. Compared to their

respective controls, DIDS-treated samples were desensitized to

trypsin in each treatment paradigm, requiring longer incubation

times to induce detachment. To ensure that this longer incubation

did not induce significant cell death and confound our results, we

incubated control cells in trypsin for 10 or 30 mins in separate

control experiments. Cell viability decreased ,5% between 10-

and 30-min treated samples; however, this error is small compared

to the large changes we observed between treatment groups, and

thus we do not consider it to be significant source of error in our

experiments. Experiments were repeated 8–10 times for each

treatment group.

Confocal microscopy
Fixed samples were imaged on an Olympus FV1000 scanning

confocal microscope, using 572 nm (TRITC), 488 nm (FITC),

and 405 nm (DAPI) laser lines (Olympus, San Diego, CA). For

data collection the parameters of the microscope such as light

intensity, exposure time, camera gain, etc., were determined for

the brightest fluorescing sample and standardized for subsequent

samples. For co-localization analysis five random sections from

each study group were taken at 10x magnification using

AxioVision (Carl Zeiss, Thornwood, NY), and the percentage of

neurons staining positive for MMP-2 and -9 or PI uptake was

determined by the ratio of FITC-stained cells to DAPI-stained

nuclei. Metamorph (Molecular Devices, Sunnyvale, CA) image

analysis software was used to count fluorophore-positive stained

cells/DAPI-positive cells. For vWF releases images Z-projections

from 8 optical sections taken 4 mm apart were created by

averaging pixel intensity at each pixel position using Image J

(NIH).

ELISA
HUVEC vWF release was quantified using a human vWF

ELISA kit according to the manufacturer’s protocol (Sino

Biological Inc., Beijing, CH), using mouse anti-vWF monoclonal

antibody and biotinylated rabbit anti-vWF polyclonal antibody as

the capture and detection antibodies, respectively. Samples were

assayed in triplicate and ELISA analysis was repeated 2 times for

each experiment and treatment.

Immunohistochemistry
Samples grown in glass-bottom 35-mm dishes were treated for

6-hrs as indicated and then fixed with 4% paraformaldehyde in

PBS for 15 mins at room temperature. Samples were washed with

PBS (365 mins) and then incubated in blocking buffer (10%

normal goat serum and 0.3% Triton X-100 (Sigma)) for 30 mins.

Samples were then incubated with 10 mg/ml mouse MMP-2 or

MMP-9 polyclonal antibodies, goat IgG (R&D, Minneapolis,

MN), diluted in K blocking buffer for 24 hrs at 4uC. Following

incubation, samples were washed in PBS+0.1% Triton X-100

(3610 mins) and then incubated with anti-goat Alexa Fluor 488-

conjugated secondary antibody (Invitrogen), diluted 1:100 in K

blocking buffer for 1 hr at RT. Finally, samples were washed in

PBS+0.1% Triton X-100 (3610 mins), mounted with Prolong

Vectashield (with DAPI, unless otherwise indicated, Invitrogen),

cover-slipped and sealed with nail polish. Samples were stored in

the dark at 4uC and imaged within one week. Experiments were

repeated 3 times for each treatment.

Protein extraction
Samples grown in 150 cm2 culture flasks were treated for 6-hrs

and then rinsed twice with PBS and detached from the matrix with

a cell scrapper into ice-cold PBS. The resulting cell suspensions

were centrifuged at 250 x g for 5 mins at 4uC, the supernatant was

aspirated away, and cells were re-suspended in cell lysis buffer.

Samples were then homogenized by vortexing for 60 seconds and

proteins were extracted by incubation in lysis buffer with mixing at

4uC for 45 mins, followed by centrifugation for 10 mins at 14,000

x g at 4uC. Supernatants were taken as whole cell lysates and

protein concentration was measured using a bicinchoninic acid kit,

according to the manufacturer’s instructions (Sigma).
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Transmission electron microscopy
Samples in 35 mm #0 thickness culture dishes were fixed with a

37uC solution of 2% paraformaldehyde, 2.5% glutaraldehyde (Ted

Pella, Redding, CA) in 0.1 M sodium cacodylate (pH 7.4), and

transferred to room temperature for 10 mins, and then incubated

for an additional 30 mins on ice. Fixed cultures were rinsed 3

times for 3 mins each with 0.1 M sodium cacodylate plus 3 mM

CaCl2 (pH 7.4) on ice and then post-fixed with 1% osmium

tetroxide (Ted Pella), 0.8% potassium ferrocyanide, and 3 mM

CaCl2 in 0.1 M sodium cacodylate (pH 7.4) for 60 mins, and were

then washed 3 times for 3 mins with ice-cold distilled water.

Cultures were finally stained overnight with 2% uranyl acetate at

4uC, dehydrated in graded ethanol baths, and embedded in

Durcupan resin (Fluka, St. Louis, MO). Ultrathin (70 nm) sections

were post-stained with uranyl acetate and lead salts, and evaluated

by a JEOL 1200FX transmission electron microscopy operated at

80 kV. Images were recorded on film at 6,000x magnification.

The negatives were digitized at 1,800 dpi using a Nikon Cool scan

system, giving an image size of 403366010 pixel array and a pixel

resolution of 2.35 nm [34]. Images of 20 cell membranes were

taken from each experimental condition. All TEM experiments

were repeated twice. Plasma membrane thickness was measured at

10 randomly chosen locations from each of 5 images of cells

chosen from each experimental replicate. Blebbing was quantified

by normalizing the number of membrane blebs in each image to

the total perimeter of the plasma membrane.

Time-lapse confocal microscopy
Neurons were seeded into 12-well #1.5 thickness glass bottom

microplates (MatTek). Cells were maintained at 37uC with either

21%O2/5% CO2 (normoxia) or 1.5% O2/15% CO2 (IS) for the

duration of the experiment and were treated as indicated in the

Results section. For each well, three regions were chosen at random

and differential interference contrast (DIC) images were taken with

106 and 206 air objectives on a Perkin Elmer Ultraview Vox

spinning disk confocal microscope (Perkin Elmer, Waltham, MA)

at 5 min intervals for 24 hrs. Data were analyzed using Volocity

software (Perkin Elmer). Experiments were repeated 3 times for

each experimental condition.

Vital dye exclusion membrane viability assays
Membrane viability was assessed following 24-hrs treatment as

the ability of cells to exclude the vital dyes propidium iodide (PI) or

trypan blue (TB). For confocal microscopy, samples were treated

Figure 1. DIDS ameliorates pathology-induced neuronal detachment and plasma membrane blebbing. (A) Summary of the effect of
DIDS on stress-induced cellular detachment from the matrix expressed as the percentage of total neurons in each experiment that detached to the
supernatant following 24-hrs. (B) 10x DIC images from 24-hr time-lapse recordings of neurons following 2-hrs of treatment as indicated (see also 24-
hr supplementary videos online). (C) Summary of the effect of DIDS on stress-induced plasma membrane blebbing expressed as the perimeter of
membrane blebs relative to the total perimeter of the plasma membrane in each image. (D) Sample TEM images of plasma membranes from (C). TEM
images are oriented with the cell interior at the bottom of the image. Arrows indicate blebbing events. Data are mean 6SEM from 8–10 separate 24-
hr experiments. Asterisks (*) indicate significant difference from normoxic controls; black bars indicate significance between connected treatments
(p,0.05). Treatments: ischemic solution (IS), 2.5 mm staurosporine (STS), and 400 mm DIDS.
doi:10.1371/journal.pone.0043995.g001
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and then incubated in 5 ng/ml PI for 15 mins before being rinsed

and fixed as described in the Immunohistochemistry section (above). PI

exclusion was determined by the ratio of PI-positive stained cells to

DAPI-stained nuclei and imaging experiments were repeated 3

times for each treatment. The dose-dependent response of DIDS

on IS-induced PI uptake was assessed using a high-throughput 96-

well microplate-based assay. PI uptake was assessed immediately

following experimental treatment on a Bio-Tek PowerWave 340

microplate spectrophotometer (Bio-Tek, Winooski, VT, Ex/Em:

485/630 nm) and analyzed using Gen 5 software (Bio-Tek).

Microplate PI experiments were repeated 10 times and each plate

contained 16 replicate wells each of control-, IS-, or STS-treated

samples6DIDS (0.04, 0.40, and 1.0 mM). Blank wells and cell-

free wells containing each treatment perfusate with PI were also

included on each plate and the final data is corrected for these

factors. For TB exclusion analysis, treatment supernatant samples

or cell suspension aliquots were obtained as detailed in the cellular

detachment methods (above) and were gently mixed in an equal

volume of 0.4% TB (Gibco) for 3 mins at room temperature, and

then counted immediately on a hemocytometer. Unstained (viable)

and stained (dead) cells were counted in 5 fields from each side of

the hemocytometer for each sample and 3 samples were assayed

per treatment paradigm. Cells were counted from 3–5 flasks for

each treatment.

Figure 2. DIDS abolishes pathology-induced membrane degradation. Stress-induced vital dye uptake and adenylate kinase release are
prevented by DIDS treatment. (A) Summary of the effect of DIDS on stress-induced propidium iodide (PI) uptake. (B&C) Dose-response relationship
of IS- (B) or STS-mediated (C) PI uptake vs. [DIDS]. (D) Confocal fluorescence images of PI fluorescence (red) from neurons treated as indicated. Nuclei
were stained with DAPI (blue) for co-localization analysis. Arrows indicate representative neurons that have taken up PI. (E) Summary of the effect of
DIDS on stress-induced trypan blue (TB) uptake. (F) Summary of the effect of DIDS on stress-induced adenylate kinase (AK) release. (G) Summary of
plasma membrane widths measured from TEM analysis. Data are mean 6SEM from 3-10 separate 24-hr experiments. Asterisks (*) indicate significant
difference from normoxic controls; black bars indicate significance between connected treatments (p,0.05). Treatments as per Fig. 1 caption except
where indicated otherwise.
doi:10.1371/journal.pone.0043995.g002
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Western blots
Equal amounts of protein (40 mg/well) were separated on 4–

12% precast NuPAGE bis-Tris SDS-PAGE gels (Invitrogen) and

transferred to polyvinylidene difluoride membranes (Immobilin-P;

Millipore, Bedford, MA). Western blots were performed with

antibodies against a-actin (1:2,000, Cell Signaling, Danvers, MA);

MMP-2 and MMP-9 (1:500, Cell Signaling); and vWF (1:500,

DakoCytomation, Carpinteria, CA). Specific bands were visual-

ized after incubation with the respective secondary antibodies

using enhanced chemiluminescense (GE Healthcare/Amersham

Biosciences, Buckinghamshire, UK). Densitometry of Western

blots from each experimental group were obtained (n = 3–5 for

each), and absolute values were normalized to a-actin for cell-

derived protein samples. Results were analyzed in arbitrary units,

comparing each value with that obtained from each respective a-

actin measurement on each blot. Supernatant protein samples did

not contain a-actin and were normalized to total protein loaded in

each well. Results are expressed as fold-change relative to

normoxic controls run simultaneously.

Zymography
Substrate specific zymography for determination of gelatinolytic

activity of MMP-2 and MMP-9 was performed under denaturing

but non-reducing conditions as follows. Samples of cell fractions

(isolated as described for Western blot analysis above) or ECF from

various cell lines were mixed with 26 loading buffer (400 mM

Tris-HCl, pH 6.8, 5% SDS, 20% Glycerol, 0.006% bromophenol

blue) and 40 ml aliquots were applied onto a 10% polyacrylamide

gel containing 0.1% gelatin. Electrophoresis was performed at 25-

mA constant current for 2 hrs at room temperature, followed by a

1 hr equilibration of the gels in 2.5% TX-100 to remove SDS.

The gels were incubated in enzyme buffer (50 mM Tris HCl,

pH 7.3, 200 mM NaCl, 5 mM CaCl2, and 0.02% Brij 35) for

48 hrs at 37uC to activate gelatinolytic activity of MMPs.

Enzymatic bands were visualized by negative staining of the gel

with an aqueous solution of 0.5% Coomassie brilliant blue dye (in:

50% methanol, 10% acetic acid, and 40% de-ionized water). Gels

were destained for 2620 mins in a mixture consisting of 20%

methanol, 10% acetic acid, and 70% de-ionized water. Molecular

sizes of the bands displaying enzymatic activity were identified by

comparison to pre-stained standard proteins (New England

BioLabs, Ipswich, MA) and densitometry was performed using

Biorad imaging software (Biorad, Hercules, CA). Experiments

were repeated 4 times.

Statistics
Data were analyzed using a two-tailed Student t-test or one-way

analysis of variance (ANOVA), followed by Dunnet’s post-test.

Figure 3. DIDS does not prevent pathology-induced neuronal MMP-2 or -9 protein expression. IS or STS treatment increase neuronal
MMP-2 and -9 protein expression, and these changes are unaffected by co-treatment with DIDS. (A&B) Summaries of immunohistochemical (IHC)
analysis, and (C&D), sample confocal IHC fluorescent images of neurons stained positive for MMP-2 (A&C) and MMP-9 (B&D) (green fluorescence).
Nuclei were stained with DAPI (blue) for co-localization analysis. Arrows indicate representative MMP+ staining. Summary data is presented as the
percentage of MMP+ cells relative to the total number of neurons in each experiment (as determined by DAPI fluorescence). Data are mean 6SEM
from 3–5 separate 6-hr experiments. Asterisks (*) indicate significant difference from normoxic controls (p,0.05). Treatments as per Fig. 1 caption.
doi:10.1371/journal.pone.0043995.g003
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Significances were indicated if P,0.05 assuming two groups had

an equal variance. Statistical analysis was performed using Prism

software (GraphPad, San Diego, CA).

Results

DIDS reduces pathology-induced plasma membrane
degradation in neurons

Through 24-hrs, control cells retained typical neuronal pheno-

types, including the maintenance of synaptic processes, and

cellular attachment to the growth matrix (n = 8–10 for all

treatment conditions, Fig. 1A&B, Videos S1, S2, S3). Conversely,

IS-challenged cells rounded off and appeared unhealthy, and

32.164.5% of cells detached from the matrix at 24-hrs. Neurons

treated with the pro-apoptotic agent STS rapidly rounded off and

79.165.3% were detached at 24-hrs. DIDS-treated (400 mM) cells

rounded off and exhibited extensive retraction of processes within

2-hrs of treatment (Fig. 1B, and see also 24-hr time-lapse Videos

S1, S2, S3); however, these cells did not detach from the matrix or

exhibit membrane blebs (Fig 1A&C). Similarly, DIDS almost

entirely abolished IS- or STS-mediated cellular detachment in all

experiments (Fig. 1A), and also ameliorated pathology-induced

plasma membrane degradation (Fig. 1C&D). Relative to controls,

IS or STS-challenged neurons exhibited extensive blebbing of the

plasma membrane (.60% of plasma membrane surface area

ruptured, n = 10 for each treatment condition, Fig. 1C&D arrows),

while DIDS entirely abolished IS-induced membrane blebbing

and reduced STS-mediated blebbing ,50%.

DIDS abolishes pathology-induced vital dye uptake
To confirm that the effect of DIDS on pathology-induced

blebbing correlated with preservation of membrane integrity as a

permeability barrier, we examined the ability of cells to exclude

vital dyes and retain adenylate kinase (AK). Control cells or cells

treated with DIDS alone excluded propidium iodide (PI, n = 4–6

for each treatment, Fig. 2A–D) and trypan blue (TB, n = 3–5 for

each treatment, Fig. 2E), and did not release AK (n = 3 for each

treatment, Fig. 2F); whereas pathology-challenged cells took up PI

and TB, and IS- or STS-treatment caused ,60–90% of total

cellular AK to be released from neurons at 24-hrs. Co-treatment

with DIDS prevented pathology-mediated vital dye uptake in a

dose-dependent manner, and abolished AK release during IS- or

STS-treatment. None of the treatments examined had a significant

effect on plasma membrane widths (n = 10 for each, Fig. 2G).

Since pathology-induced cellular detachment and plasma mem-

brane cleavage are both primarily mediated by MMP activity

[15,25], we next examined whether DIDS prevented the

activation or impaired the function of these enzymes.

Pathological insults increase intracellular neuronal MMP
protein expression

To assess the effect of pathological treatments and DIDS on

cellular proteinase activity, we examined stress-induced changes in

neuronal expression of MMP-2 and -9 proteins. At 24-hrs,

pathologically-challenged neurons were too degraded to extract

high quality protein for molecular analysis; and so in other

experiments we assayed neurons following 6-hrs treatment to

provide insight into changes that contribute to the observed cell

death phenotypes at 24-hrs. For these experiments, samples were

perfused with serum-free media for 6-hrs prior to treatment onset

in order to arrest cell division and minimize maintenance-related

MMP activity in samples. In this manner pathology-induced

MMP activity could be determined. In immunohistochemical

(IHC) analysis of cells expressing MMPs the prevalence of neurons

stained positive for MMP-2 and -9 was increased relative to un-

treated controls following 6-hours of IS- or STS-treatment (n = 3

each, Fig. 3A–D). Co-treatment with DIDS had no effect on the

pathology-induced increase in MMP-positive cells, and DIDS did

not effect either MMP-2 or -9 staining in control, IS or STS

treated neurons.

These results were confirmed with Western blot analysis of

identically treated neuronal populations. In these experiments

intracellular proMMP-2 protein isoform expression was increased

4 to 6-fold relative to untreated controls following 6-hours of either

IS or STS-treatment, while expression of the active isoform of

MMP-2 increased 8 to 10-fold in the same samples (n = 4 each,

Fig. 4A-B). Conversely, IS or STS treatment increased intracel-

lular proMMP-9 expression 7 to 10-fold at the same time point but

did not increase expression of the active isoform of MMP-9

(Fig. 4A&C), which was expected since proMMP-9 is activated

extracellularly. Co-treatment with DIDS during either IS- or STS-

treatment had no effect on the pathology-mediated increases in

intracellular latent and active MMP-2 and proMMP-9 expression.

Figure 4. DIDS does not effect intracellular expression of pro-
or active MMP-2 or -9 isoforms. IS and STS treatment increased
intracellular expression of proMMP-2 and -9 isoforms, as well as the
active form of MMP-2. DIDS did not effect these changes. (A) Sample
Western blots of MMP-2 and -9 protein expression. Latent and active
isoforms of MMPs were detected at 66 and 62 kDA (MMP-2) and 96 and
88 kDA (MMP-9), respectively. (B&C) Summaries of neuronal latent and
active MMP-2 (B) and MMP-9 (C) protein isoform expression from
analysis of cellular fractions normalized to the cellular expression of a-
actin on the same blot. Data are presented as fold-change relative to
untreated controls. Data are mean 6SEM from 3-5 separate 6-hr
experiments. Asterisks (*) indicate significant difference from normoxic
controls (p,0.05). Treatments as per Fig. 1 caption.
doi:10.1371/journal.pone.0043995.g004
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DIDS prevents pathology-mediated expression of MMP
proteins in the ECF

Since DIDS did not interfere with stress-mediated intracellular

MMP protein expression, we next quantified MMP-2 and -9

proteins secreted into the ECF. In ECF perfusate samples collected

from cells challenged for 6-hrs with IS or STS, latent and active

MMP-2 and -9 protein isoform expression was increased in

Western blot analysis, and DIDS significantly reduced or entirely

abolished IS- or STS-induced MMP expression (n = 4, Fig. 5A–C).

Relative to controls, the extracellular expression of MMP-2

proteins was more strongly upregulated by stress treatments than

that of MMP-9, and both latent and active MMP-2 isoforms

increased ,18 to 22-fold depending on the stress applied, whereas

latent and active MMP-9 increased ,2 to 8-fold relative to

untreated controls. Interestingly, some expression of the latent and

active forms of MMP-9 was detected in control ECF samples

(Fig. 5A), which may be related to cellular maintenance or stress

due to the growth-arresting serum starvation pretreatment

paradigm applied to these samples.

DIDS had a similar effect on MMP gelatinolytic activity in

supernatant samples collected from pathology-challenged neurons.

Here, gelatinolytic activity was increased ,20 to 50-fold by IS- or

STS-treatment at bands corresponding to the latent and active

forms of MMP-2 and MMP-9 (n = 4, Fig. 5D-F), consistent with

increased extracellular expression of both MMP isoforms in stress-

treated cells (Fig. 5A–C). In IS- and STS-treated samples co-

treated with DIDS, gelatinase activity of both latent and active

MMP-2 and -9 isoforms was markedly reduced or entirely

abolished. The vesicular V-type ATPase antagonist bafilomycin

A (BMA) similarly reduced IS-mediated latent and active MMP-2

and -9 protein expression in the ECF and abolished related

supernatant gelatinase activity (Fig. 5A–F), suggesting a central

role for vesicular release in ischemic MMP efflux and activation.

DIDS reduces APMA-induced MMP protein expression
and gelatinolytic activity in the extracellular fluid

Since pathology-mediated cytotoxicity involves myriads of

pathways and interactions in addition to MMPs, we next

examined the efficacy and dose-dependency of DIDS as an

inhibitor of MMP activation by co-treating normoxic neurons with

the potent general proteinase agonist 4-aminophenylmercuric

acetate (APMA, 100 mM). Cells were treated with DME-

M6APMA 6DIDS (0.04, 0.4, or 1.0 mM) and the findings from

these experiments were consistent with those from the pathological

experiments above. One hour of APMA-treatment induced

marked increases of active MMP-2 and MMP-9 protein expression

in Western blot analysis of ECF samples (n = 3, Fig. 6A–C); and at

moderate (0.4 mM) or high (1.0 mM) concentrations, DIDS

nearly abolished APMA-mediated extracellular expression of

active MMP-2 and -9 isoforms. Interestingly, extracellular

expression of proMMP-2 decreased progressively with APMA

treatment, and proMMP-9 was not detected in these samples.

These observations are likely due to rapid activation of latent

MMP isoforms by APMA. Similar to Western blot analysis,

APMA induced gelatinolytic activity in the ECF, and in all

experiments, DIDS negatively regulated this gelatinolytic activity

in a dose-dependent fashion (n = 4, Fig. 6D–F). Notably, APMA-

induced MMP activity was highly robust and these experiments

did not involve pathology-mediated activation of MMP-related

pathways; therefore, Western blot samples were not pre-treated

with serum-free media. As a result, control-treated neurons

exhibited mild to moderate proMMP-2 expression, likely due to

ongoing cellular maintenance processes.

To test the universality of this inhibition, we also examined the

ability of DIDS to impair gelatinolytic activity in a variety of

commonly studied cell lines, including rodent type-I astrocytes

(C8D1A), glioma (LN229), and mesenchymal cells (CHO-10T1/

2), human endothelial (HUVEC), carcinoma (HeLa), and kidney

(HEK293) cells, and neuronally differentiated PC12 cells. DIDS

had a similar effect in these cell lines as in neurons, and following

1 hour of treatment, reduced APMA-mediated ECF gelatinolytic

activity from all cell lines examined in a dose-dependent fashion

(n = 3 each, Fig. 7A). Furthermore, DIDS prevented APMA-

mediated cellular detachment in all cell lines examined (n = 3 each,

Fig. 7B).

DIDS inhibits von Willebrand Factor secretion
Our observation that DIDS impairs stress- and also APMA-

induced MMP-2 and -9 expression and activity in the supernatant,

but not the actual production of MMP-2 and -9 in neurons

themselves, suggests that DIDS interferes with the efflux of MMPs

from cells, and thereby their subsequent activation and enzymatic

digestion of neuronal membranes. Since MMP efflux occurs via

vesicular release, we hypothesized that DIDS interferes with this

mechanism. To test this putative action in the absence of potential

proteinase involvement, we utilized a well-established model of

vesicular release: that of von Willebrand Factor (vWF) from

HUVECs following stimulation with the Ca2+-ionophore A23187

[31]. Fifteen minutes of treatment with A23187 induced an ,10-

fold increase in the release of vWF from HUVECs in IHC and

ELISA analysis (n = 3, Fig. 8A–B). Furthermore, when DIDS was

co-applied with A23187, vWF release to the ECF was abolished,

while DIDS-treatment alone had no effect on vWF activity. In

separate control experiments we co-treated cells with A23187 and

brefeldin A (BFA), an inhibitor of vWF release upstream of

vesicular function. In these experiments BFA entirely blocked the

ability of A23187 to induce vWF release from HUVECs.

Discussion

We demonstrate that DIDS prevents stress-induced vesicular

release of MMPs and subsequent deleterious cleavage of nearby

neuronal membranes and cellular detachment from the matrix.

Normally, MMP-2 is constitutively expressed at low levels and acts

locally to remodel the extracellular matrix during routine

Figure 5. DIDS or V-ATPase inhibition reduce or abolish stress-mediated extracellular MMP-2 or -9 protein expression and
gelatinolytic activity. IS or STS treatment increase the extracellular accumulation and gelatinolytic activity of latent and active MMP-2 and -9
proteins. DIDS or the specific vesicular ATPase (V-ATPase) antagonist bafilomycin A (BMA) each prevent or reduce extracellular latent and active MMP-
2 and -9 isoform expression and gelatinolytic activity. (A) Sample Western blots of MMP-2 and -9 protein expression, and (B&C) summaries of
neuronal latent and active MMP-2 (B) and MMP-9 (C) protein expression from analysis of supernatant fractions normalized to untreated controls. (D)
Sample zymography gel of MMP-2 and MMP-9 gelatinolytic activity of supernatant samples taken from neurons treated as indicated. (E&F)
Summaries of latent and active MMP-2 (E) and -9 (F) isoform gelatinolytic activities from (D). Latent and active forms of MMPs were detected in these
assays at 66 and 62 kDA (MMP-2) and 96 and 88 kDA (MMP-9), respectively. Data are presented as fold-change relative to untreated controls. Data are
mean 6SEM from 4 separate 6-hr experiments. Asterisks (*) indicate significant difference from normoxic controls; black bars indicate significance
between connected treatments (p,0.05). Treatments as per Fig. 1 caption and 100 nM BMA.
doi:10.1371/journal.pone.0043995.g005

DIDS Preserves Neuronal Membranes in Ischemia

PLOS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e43995



maintenance. When neurons are challenged with IS or STS,

MMP-2 and -9 protein expression increases as part of the

inflammatory response and these pro-enzymes are extruded via

vesicular exocytosis to the ECF; where they are activated, and then

act locally to digest plasma membranes and induce further MMP

production via a feed-forward mechanism [12,13,20,21]. We

suggest that DIDS interferes with normal MMP efflux across the

plasma membrane and does not directly interfere with proteinase

activity, since (1) DIDS markedly reduces exocytosis-dependent

MMP protein expression and gelatinolytic activity in the ECF, but

not in neurons, (2) a vesicular V-ATPase antagonist similarly

impairs MMP protein expression in the ECF and abolishes ECF

gelatinolytic activity, and (3) DIDS prevents stimulus-evoked vWF

efflux from HUVECs, a well-characterized non-pathological

model of vesicular exocytosis that does not involve proteinase

activity [31]. Furthermore, this inhibitory action of DIDS on

Figure 6. DIDS inhibits APMA-mediated extracellular MMP-2 or -9 protein expression and gelatinolytic activity in a dose-
dependent fashion. Perfusion of the general proteinase agonist 4-aminophenylmercuric acetate (APMA) increases latent and active MMP-2 and
active MMP-9 isoform expression and extracellular gelatinolytic activity in the supernatant. Co-treatment with DIDS reduces extracellular MMP protein
expression and gelatinolytic activity in a dose-dependent fashion. (A) Sample Western blot of MMP-2 and -9 protein expression, and (B&C)
summaries of dose-response relationships of APMA-mediated latent and active MMP-2 (B) and -9 (C) protein isoform expression in supernatant
fractions vs. [DIDS] (0.04–1.0 mM), normalized to untreated controls. (D) Sample zymography gel of APMA-mediated latent (white bars) and active
(black bars) MMP-2 and -9 isoform gelatinolytic activity vs. [DIDS] of supernatant samples taken from neurons treated as indicated. (E&F) Summaries
of latent and active MMP-2 (E) and -9 (F) isoform gelatinolytic activities from (D). Data are presented as mean fold-change relative to untreated
controls. Data are mean 6SEM from 3–4 separate 1-hr experiments. Asterisks (*) indicate significant difference from normoxic controls; black bars
indicate significance between connected treatments (p,0.05). Treatments as per Fig. 1 caption and 100 mM APMA.
doi:10.1371/journal.pone.0043995.g006
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extracellular MMP expression and gelatinolytic activity does not

appear to be specific to ischemic pathologies as it occurs during

both IS- and apoptotic stress-induced MMP activation and also

following direct MMP stimulation with the general proteinase

agonist APMA.

Through this mechanism DIDS prevents the extrusion of MMPs

into the ECF and reduces resultant deleterious plasma membrane

degradation. DIDS has previously been suggested to be cytopro-

tective against pathological insults. Most profoundly, DIDS has

shown promise against ischemic pathology in heart and brain,

ameliorating up to 90% of cell death [30,35,36,37]. In addition to

ischemia there is evidence that DIDS is protective against other

pathologies, including: beta-amyloid formation in cortical neurons;

arsenic-, STS-, and ethanol-induced apoptosis in leukemia cells,

cortical neurons, and cardiomyocytes, respectively; and volume-

dependent apoptosis in cardiomyocytes, epithelial cells, and neurons

[38,39,40,41]. Protective effects of DIDS are usually attributed to

blockade of anion channels or anion exchangers and associated

reductions of Cl2 or reactive oxygen species flux that regulate cell

volume or downstream stress pathways mediated by toll-like

receptors, mitogen-activated protein kinases, protein kinase C, or

phosphatidylinositol 3-kinase/Akt [30,35,36,39,42,43]. Our results

suggest a novel mechanism through which DIDS prevents stress

pathway activation and plasma membrane degradation by inhib-

iting vesicular-dependant proteinase extrusion. MMPs are critical to

programmed plasma membrane digestion and also cleavage-

mediated activation of extruded inflammatory signals during

pathology. Therefore, inhibition of MMP release from dying cells

at the rim of the infarct core would prevent the extracellular

translocation and activation of pro-apoptotic and inflammatory

mediators and may retard penumbral spread during ischemic stress.

Figure 8. DIDS inhibits stimulus induced vWF release from
normoxic HUVECs. The Ca2+ ionophore A23187 induces vWF
extrusion from HUVECs in a non-pathological model of vesicular
release. DIDS abolishes stimulus-evoked vWF release. (A) Confocal Z-
stack projection fluorescent images of vWF localization (red) in HUVECs
treated as indicated. Arrows indicate vWF released extracellularly. (B)
Summary of supernatant vWF expression measured by ELISA. Data are
mean 6SEM from 3 separate 15-min experiments. Asterisks (*) indicate
significant difference from normoxic controls; black bars indicate
significance between connected treatments (p,0.05). Treatments as
per Fig. 1 caption, and 10 ml A23187, 1 mg/ml brefeldin A (BFA).
doi:10.1371/journal.pone.0043995.g008

Figure 7. DIDS prevents APMA-induced cellular detachment
and extracellular gelatinolytic activity in various cell types in a
dose-dependent fashion. (A) Summary of the effect of DIDS on
APMA-mediated supernatant gelatinolytic activity from 7 additional cell
lines treated with 100 mM APMA for 1-hr and analyzed as per Fig. 5
caption. (B) Summary of the effect of DIDS on APMA-mediated cellular
detachment from the matrix following 1-hr treatment and analyzed as
per Fig. 1 caption. Data are mean 6SEM and experiments were
repeated 3 times for each cell type. Asterisks (*) indicate significant
difference from normoxic controls; black bars indicate significance
between connected treatments (p,0.05). Treatments as per Fig. 5
caption.
doi:10.1371/journal.pone.0043995.g007
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Notably, the ability of DIDS to impair proteinase-mediated

gelatinolytic activity and membrane cleavage by preventing MMP

release may be ubiquitous among cell lines derived from various

tissues and organisms since DIDS potently inhibited gelatinolytic

activity and proteinase-mediated cellular detachment in the eight

murine and human-derived cell lines examined in this study.

Furthermore, DIDS has been shown to preserve membrane

integrity in primary hippocampal and cortical slice cultures in vitro

[28,29], and it is therefore tempting to speculate that membrane

preservation in these primary cell and tissue models was similarly

mediated by inhibition of proteinase activity by DIDS. Interest-

ingly, DIDS has also been reported to inhibit synaptic trafficking

of glutamate and ATP in mammal brain slices and synaptosomes,

both of which are vesicular-dependent processes [44,45]. These

results indicate that the inhibitory action of DIDS on vesicular

release is conserved in primary cells and tissues. Further

experiments are warranted to examine this putative mechanism

of DIDS in vivo, and particularly to determine whether DIDS-

treatment affects ischemia-induced infarct and penumbral expan-

sion, or blood brain barrier degradation in intact brain.

One component of physiological MMP function and regulation

that we do not explore in the present study is the effect of

pathological treatments 6DIDS on the transcriptional regulation

of MMPs. Others have demonstrated that mmp2 and mmp9

mRNA are upregulated by ischemic stress in vivo [20,46,47,48,49].

In general, MMP-2 transcriptional activation is rapid and occurs

in a time window of 2–12 hrs following stress, while MMP-9

mRNA transcription is delayed until 4–8 hrs following insult and

persists for 24–48 hrs. Thus at the time point at which we examine

stress-mediated changes in MMP protein expression in the present

study (6 hrs), we expect transcriptional activation of both mmp2

and mmp9 to be initiated. Although we do not measure MMP-

related transcriptional changes directly in the present study, our

data demonstrating an increase in the expression of latent (i.e.

transcriptionally regulated [15]) MMP-2 and -9 isoforms following

IS or STS treatment indirectly demonstrate that transcription

events have been activated. Furthermore, our failure to detect

latent MMP-9 proteins in control cells also suggests that the stress-

induced increase in the intracellular expression of this isoform is

mediated by transcriptional activation. Since DIDS has no effect

on stress-induced changes to the intracellular expression of

proMMP-2 or -9 protein isoforms in any treatment, it is unlikely

that DIDS effects the transcriptional regulation of MMPs.

Another limitation of our study is that the Western blot and

zymography assays employed induce the dissociation of MMPs

from TIMPs, and therefore these results may not directly reflect

changes of MMP activity in situ. Furthermore, like MMPs, TIMPs

are also secreted to the ECF via vesicular exocytosis [15]. Others

have reported that DIDS impairs vesicular exocytosis of ATP and

glutamate [44,45], and together with our present observations that

DIDS similarly impairs exocytosis-mediated MMP and vWF

secretion, these data suggest that this effect of DIDS on vesicular

exocytosis is not specific to MMP extrusion. Therefore, it is likely

that DIDS similarly impairs TIMP protein secretion and

expression in the ECF. However, reduced extracellular TIMP

protein expression would increase extracellular MMP activity [15],

which would in turn increase the expression of the active form of

MMPs in the ECF and exacerbate pathological membrane

degradation. Instead we observe minimal expression of either

the latent or active MMP-2 and -9 isoforms in the ECF of DIDS-

treated neurons, and membrane degradation is abolished.

Therefore we conclude that in vitro, either MMP secretion alone

is inhibited, or more likely that both MMP and TIMP secretion is

inhibited, but to an equal degree or at least in favor MMP

inhibition (i.e. TIMP protein expression$MMP protein expres-

sion). Nonetheless, TIMPs are also secreted by nearby stromal cells

in vivo. Therefore, although DIDS reduces MMP (and presumably

TIMP) secretion from neurons, concomitant inhibition of TIMP

release from non-neuronal cells may actually augment enzymatic

activity in vivo.

In summary, we present evidence that DIDS inhibits the stress-

induced extracellular accumulation and digestive activity of MMP-

2 and -9, which is dependant on vesicular exocytosis. Through this

mechanism, DIDS preserves neuronal membrane integrity and

cellular adhesion to the matrix during ischemic or apoptotic

insults. Indeed, DIDS inhibits or entirely abolishes vesicular-

dependant functions in a dose-dependent manner in a variety of

pathological and non-pathological models of vesicular activity

across several cell types from both human and murine sources.

Targeted modulation of vesicular release offers therapeutic

potential in pathologies related to malfunctioning vesicle release

pathways, particularly ischemic inflammation and spreading death

in the penumbra.

Supporting Information

Video S1 24-hr video of neurons treated with normal
growth media. HT22 murine hippocampal neurons treated

with normal growth media were visualized using DIC imaging on

a confocal microscope. Image frames were taken at 5-min intervals

for 24-hrs and videos are displayed at 10 frames/sec.

(MOV)

Video S2 24-hr video of neurons treated with IS. HT22

murine hippocampal neurons treated with ischemic solution (IS)

were visualized using DIC imaging on a confocal microscope.

Image frames were taken at 5-min intervals for 24-hrs and videos

are displayed at 10 frames/sec.

(MOV)

Video S3 24-hr video of neurons treated with IS+DIDS.
HT22 murine hippocampal neurons treated with ischemic

solution (IS)+400 mM DIDS were visualized using DIC imaging

on a confocal microscope. Image frames were taken at 5-min

intervals for 24-hrs and videos are displayed at 10 frames/sec.

(MOV)
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