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Symbiosis, an interdependent 
relationship between two 
species, is an important driver 

of evolutionary novelty and ecological 
diversity. Microbial symbionts 
in particular have been major 
evolutionary catalysts throughout the 
4 billion years of life on earth and 
have largely shaped the evolution of 
complex organisms. Endosymbiosis is 
a specifi c type of symbiosis in which 
one—typically microbial—partner 
lives within its host and represents 
the most intimate contact between 
interacting organisms. Mitochondria 
and chloroplasts, for example, result 
from endosymbiotic events of lasting 
signifi cance that extended the range 
of acceptable habitats for life. The 
wide distribution of intracellular 
bacteria across diverse hosts and 

marine and terrestrial habitats testifi es 
to the continued importance of 
endosymbiosis in evolution. 

Among multicellular organisms, 
insects as a group form exceptionally 
diverse associations with microbial 
associates, including bacteria that 
live exclusively within host cells and 
undergo maternal transmission to 
offspring. These microbes have piqued 
the interest of evolutionary biologists 
because they represent a wide spectrum 
of evolutionary strategies, ranging from 
obligate mutualism to reproductive 
parasitism (Buchner 1965; Ishikawa 
2003) (Box 1; Table 1). In this issue of 
PLoS Biology, the publication of the full 
genome sequence of the reproductive 
parasite Wolbachia allows the fi rst 
genomic comparisons across this range 
(Wu et al. 2004).

Lifestyle Extremes in Insect 
Endosymbionts

At one end of the spectrum, 
benefi cial endosymbionts provide 
essential nutrients to about 10%–
15% of insects and provide models 
for highly specialized, long-term 
mutualistic associations (Figure 1). 
These ‘primary’ endosymbionts 
are required for the survival and 
reproduction of the host, most of 
which feed on unbalanced diets such 
as plant sap, blood, or grain, and 
occur within specialized host cells 
called bacteriocytes (or mycetocytes) 
(Baumann et al. 2000; Moran 
and Baumann 2000). Molecular 
phylogenetic analyses demonstrate 
stability of these obligate mutualists 
over long evolutionary periods, ranging 
from tens to hundreds of millions of 
years. By allowing their hosts to exploit 
otherwise inadequate food sources 
and habitats, the acquisition of these 
mutualists can be viewed as a key 
innovation in the evolution of the host 
(Moran and Telang 1998). Owing to 
their long-term, stable transmission 
from generation to generation (vertical 
transmission), these cytoplasmic 
genomes have been viewed as analogs 
to organelles. 

By contrast, reproductive parasites 
of insects, including Wolbachia (O’Neill 
et al. 1998) and the more recently 
discovered endosymbiont in the 
Bacteroidetes group (also called CFB or 
CLO) (Hunter et al. 2003), propagate 
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Table 1. Examples of Bacterial Endosymbionts of Insects

Bacteria Insect Host Symbiont Function/Effect

Obligate mutualists

Buchnera Aphids Provides essential amino acids

Wigglesworthia Tsetse fl ies Provides B-complex vitamins

Blochmannia Certain ants May provide amino acids and fatty 
acids

Sitophilus oryzae principal 
endosymbiont

Weevils Provides vitamins and increases 
host mitochondrial enzymatic 
activity

Baumannia Sharpshooters Unknown

Carsonella Psyllids Unknown

Tremblaya Mealybugs Unknown

Secondary symbionts

Sodalis Tsetse fl ies Unknown, possibly nutritional

R-type symbiont Aphids Resistance to parasitoids

Reproductive parasites

Wolbachia Diverse arthropods Reproductive alterations (but 
mutualistic in nematode hosts)

CLO/CFB Diverse arthropods Reproductive alterations

DOI: 10.1371/journal.pbio.0020068.t001
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in insect lineages by manipulating 
host reproduction. These maternally 
inherited bacteria infl ict an impressive 
arsenal of reproductive alterations 
to increase the frequency of infected 
female offspring, often at the expense 
of their hosts. Such mechanisms 
include cytoplasmic incompatibility, 
parthenogenesis, and male killing 
or feminization. As parasites, these 
bacteria rely on occasional horizontal 
transmission to infect new populations 
(Noda et al. 2001) and, by directly 
altering reproductive patterns, may 
be a causative agent of host speciation 
(Bordenstein et al. 2001). 

Comparative molecular analysis of 
insect endosymbionts over the past 
decade has provided new insights into 
their distribution across hosts, their 
varying degrees of stability within host 
lineages (ranging from cospeciation 
to frequent host-switching), and 
their impressive genetic diversity that 
spans several major bacterial groups. 
More recently, studies in genomics 
of obligate mutualists—and now 
Wolbachia—illuminate mechanisms 
of host–symbiont integration and 
the distinct consequences of this 

integration in various symbiotic 
systems. In addition, since hosts 
and symbionts often have different 
evolutionary interests, the diverse 
features of insect–bacterial associations 
can be understood as different 
outcomes in the negotiation of genetic 
confl icts. Some recent highlights and 
tantalizing research areas are described 
below. 

Endosymbiont Genomes: 
Spanning the Gamut from Static 
to Plastic 

The distinct lifestyle of 
endosymbionts has clear effects 
on rates and patterns of molecular 
evolution. Compared to free-living 
relatives, endosymbionts are thought 
to have reduced effective population 
sizes due to population bottlenecks 
upon transmission to host offspring 
and, in the case of obligate mutualists 
that coevolve with their hosts, limited 
opportunities for gene exchange. The 
nearly neutral theory of evolution 
(Ohta 1973) predicts accelerated 
fi xation of deleterious mutations 
through random genetic drift in small 
populations, a phenomenon that 

has been observed in endosymbionts 
(Moran 1996; Lambert and Moran 
1998). Over time, this lifestyle-
associated accumulation of deleterious 
mutations may negatively affect the 
fi tness of both the host and symbiont.

It is increasingly clear the distinct 
lifestyle of endosymbionts also shapes 
the architecture and content of their 
genomes, which include the smallest, 
most AT-rich bacterial genomes yet 
characterized (Andersson and Kurland 
1998; Moran 2002). A common theme 
is substantial gene loss, or genome 
streamlining, which is thought to 
refl ect an underlying deletion bias 
in bacterial genomes combined 
with reduced strength or effi cacy of 
selection to maintain genes in the host 
cellular environment. As a result of 
gene loss, these bacteria completely 
rely on the host cell for survival. 
Because they cannot be easily cultured 
apart outside of the host for traditional 
genetic or physiological techniques, 
analysis of genome sequence offers 
a valuable tool to infer metabolic 
functions that endosymbionts have 
retained and lost and to elucidate the 
steps in the evolutionary processes of 
genome reduction. 

Since 2000, full genome sequences 
have been published for Buchnera of 
three aphid host species, Wigglesworthia 
of tsetse fl ies, and Blochmannia of ants 
(Shigenobu et al. 2000; Akman et al. 
2002; Tamas et al. 2002; Gil et al. 2003; 
van Ham et al. 2003). Parallels among 
these mutualist genomes include their 
small size (each smaller than 810 kb), 
yet retention of specifi c biosynthetic 
pathways for nutrients required by 
the host (for example, amino acids or 
vitamins). However, genomes also show 
signs of deleterious deletions. Early 
gene loss in Buchnera involved a few 
deletions of large contiguous regions 
of the ancestral genome and often 
included genes of unrelated functions 
(Moran and Mira 2001). These ‘large 
steps’ imply that genome reduction 
involved some random chance (due to 
the location of genes in the ancestral 
chromosome) and selection acting 
on the combined fi tness of large sets 
of genes, rather than the fi tness of 
individual loci. Such deletions are 
apparently irreversible in obligate 
mutualists, which lack recombination 
functions and genetic elements, 
such as prophages, transposons, and 
repetitive DNA that typically mediate 
gene acquisition. The scarcity of these 

DOI: 10.1371/journal.pbio.0020068.g001

Figure 1. A carpenter ant, Camponotus pennsylvanicus, Hosts the  Mutualistic Bacterial 
Endosymbiont Blochmannia 
Like all species of the ant genus Camponotus, the wood-nesting C. pennsylvanicus (shown 
here) possesses an obligate bacterial endosymbiont called Blochmannia.   The small 
genome of Blochmannia retains genes to biosynthesize essential amino acids and other 
nutrients (Gil et al. 2003), suggesting the bacterium plays a role in ant nutrition.  Many 
Camponotus species are also infected with Wolbachia, an endosymbiont that is widespread 
across insect groups.  (Photo courtesy of Adam B. Lazarus.)
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functions, combined with limited 
opportunities to recombine with 
genetically distinct bacteria, may 
explain the unprecedented genome 
stability found in Buchnera compared 
to all other fully sequenced bacteria 
(Tamas et al. 2002) and a lack of 
evidence for gene transfer in other 
mutualist genomes. Stability also 
extends to the level of gene expression, 
as obligate mutualists have lost most 
regulatory functions and have reduced 
abilities to respond to environmental 
stimuli (Wilcox et al. 2003). 

The Wolbachia genome presented 
in this issue allows the fi rst genome 
comparisons among bacteria that 
have adopted divergent evolutionary 
strategies in their associations 
with insects (Wu et al. 2004). Like 
other parasites, but unlike long-
term mutualists, Wolbachia may 
experience strong selection for 
phenotypic variation, for example, 
to counter improved host defenses, 
to compete with distinct Wolbachia 
strains that coinfect the same host, 
or to increase its transmission to 
new host backgrounds. High levels 
of recombination in Wolbachia (for 
example, Jiggins et al. 2001) may 
allow rapid genetic changes in this 
parasite and may be catalyzed by 
the exceptionally high levels of 
repetitive DNA and mobile elements 
in its genome (Wu et al. 2004). Other 
bacteria that colonize specialized 
niches for long periods and lack co-
colonizing strains also possess high 
levels of repetitive chromosomal 
sequences. For example, among 
ulcer-causing Helicobacter pylori in 
primate guts, repetitive DNA mediates 
intragenomic recombination and may 
provide an important source of genetic 
variation for adaptation to dynamic 
environmental stresses (Aras et al. 
2003). The potential contributions 
of repetitive DNA and phage to 
intragenomic and intergenomic 
recombination in Wolbachia are exciting 
areas of research (Masui et al. 2000). 
The Wolbachia genome also provides 
a valuable tool for future research to 
test whether plasticity extends to gene 
content variation among Wolbachia 
strains and labile gene expression 
patterns. 

Between these two extremes of 
obligate mutualism and reproductive 
parasitism lies a spectrum of secondary 
symbionts of insects, most of which 
have not yet been studied in detail. 

Such ‘guest’ microbes transfer among 
diverse host species (Sandström et 
al. 2001), may provide more subtle 
or occasional benefi ts (for example, 
relating to host defense against 
parasitoids [Oliver et al. 2003]), and 
could represent an intermediate stage 
between a free-living lifestyle and 
obligate endosymbiosis. Genome-level 
data from these secondary symbionts 
promise to shed light on the range of 
lifestyles between obligate mutualism 
and reproductive parasitism and on 
the early stages in the transition to 
each. Microarray-based comparisons 
of gene content among Escherichia coli, 
a facultative mutualist of tsetse fl ies 
(Sodalis glossinidius), and a relatively 
young mutualist of weevils (Sitophilus 
oryzae primary endosymbiont [SOPE]) 
show that genome streamlining in 
the endosymbionts may preclude 
extracellular existence, and highlight 
modifi cations in metabolic pathways to 
complement specifi c host physiology 
and ecology (Rio et al. 2003). In 
addition, these endosymbionts 
may employ similar mechanisms as 
intracellular parasites in overcoming 
the shared challenges of entering 
host cells, avoiding or counteracting 
host defense mechanisms, and 
multiplying within a host cellular 
environment (Hentschel et al. 2000). 
The rapidly growing molecular datasets 
for secondary (or young primary) 
insect endosymbionts have identifi ed 
pathways that are considered to be 
required for pathogenicity, such as 
Type III secretion (Dale et al. 2001, 
2002). Such pathways may therefore 
have general utility for bacteria 
associated with host cells and may have 

evolved in the context of benefi cial 
interactions. 

Genetic Confl icts and Host–
Symbiont Dynamics 

Given their diverse evolutionary 
strategies, insect endosymbionts also 
provide a rich playing fi eld to explore 
genetic confl icts (Frank 1996a, 1996b), 
which might involve the mode of 
symbiont transmission, the number 
of symbionts transmitted, and the sex 
of host offspring. Genetic confl icts 
described between organelle and 
nuclear genomes of the same organism 
(Hurst 1995) can provide a context to 
understand the evolutionary dynamics 
of insect–bacterial associations and the 
diverse outcomes of these relationships. 
For example, the uniparental 
(maternal) mode of inheritance 
of both mitochondria and insect 
endosymbionts may refl ect host defense 
against invasion by foreign microbes 
with strong deleterious effects, which 
spread more easily under biparental 
inheritance (Law and Hutson 1992). 

Host–symbiont confl icts over 
offspring sex ratio are quite apparent 
in reproductive parasites (Vala et al. 
2003). While the bacteria favor more 
female offspring and employ a variety 
of mechanisms to achieve this, the 
host typically favors a more balanced 
sex ratio. This confl ict may lead to 
changes in the host that counter the 
symbiont’s effect on sex ratio. For 
example, the spread of Wolbachia in a 
spider mite population caused selection 
on host nuclear genes that decrease the 
symbiont-induced sex ratio bias (Noda 
et al. 2001). 

Box 1. Glossary
Endosymbiont: A symbiont that lives inside of its host, often within host cells (intracellular 

symbiont).

Facultative mutualist: A benefi cial symbiont that associates with the host, but can also 

live apart from it. Examples include Rhizobium spp. that associate with legumes, but also have 

a free-living stage to their life cycle.

Obligate mutualist: A benefi cial symbiont that lives exclusively with its host and depends 

on the host for survival. Examples include many nutritional endosymbionts of insects, which 

cannot survive outside of the insect host cell. These associations are reciprocally obligate 

when the host cannot survive without the endosymbiont.

Parasite: A symbiont that has a negative effect on host fi tness, in contrast to a mutualist, 

which increases host fi tness.

Reproductive parasite: A symbiont that manipulates host reproduction to its own benefi t, 

but at the expense of host fi tness. Reproductive parasites typically bias offspring toward 

infected females.

Symbiosis: An association between two more species.
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Obligate mutualists also experience 
genetic confl icts with the host 
regarding transmission mode and 
number. In general, symbionts 
generally favor dispersal out of the host 
to avoid competition with their close 
relatives, while hosts are expected to 
restrict symbiont migration and thus 
reduce the virulent tendencies (Frank 
1996b). In obligate mutualisms, there 
may be little room for negotiation. For 
example, the highly conserved, host-
controlled determination of aphid 
bacteriocytes (Braendle et al. 2003) 
and the phylogenetic congruence 
observed in numerous studies suggest 
that aphids have won this confl ict 
over symbiont transfer. However, the 
number of bacteria transmitted may 
be more fl exible and is known to vary 
among aphid taxa (Mira and Moran 
2002). Models indicate that the fi xation 
rate for symbiont-benefi cial (selfi sh) 
mutations increase with the number 
of symbionts transmitted, refl ecting 
greater effi cacy of selection among 
bacteria within a given host (Rispe and 
Moran 2000). 

Prospects

In sum, the past few years have 
witnessed a surge of new empirical and 
theoretical approaches to understand 
the dynamics of bacterial–insect 
relationships. These tools have shed 
light on the roles of recombination, 
selection, and mutation on 
endosymbiont genome evolution 
and have highlighted parameters 
that shape the outcome of genetic 
confl icts between hosts and symbionts. 
These data provide a foundation for 
studying the evolution of mutualism 
and parasitism and modes of transitions 
between them. In the near future, 
we can look forward to full genome 
sequences that span a broader 
ecological and phylogenetic diversity 
of endosymbionts and provide a richer 
comparative framework to test existing 
models and develop new ones. 

Developments in endosymbiosis are 
important not only to questions in 
basic research, but may have important 
practical applications. Blood-feeding 
insects such as mosquitoes and tsetse 
fl ies are vectors for parasites that 
cause signifi cant global infectious 
diseases such as malaria, dengue virus, 
and trypanosomiasis, many of which 
have frustrated attempts at vaccine 
development. The same insects that 
transmit these devastating human 

parasites often possess a diversity of 
mutualistic and parasitic bacterial 
endosymbionts. A very promising 
and urgent area of endosymbiont 
research is the manipulation of these 
bacteria to control vector populations 
in the fi eld. Current studies already 
provide evidence that endosymbiont 
manipulation is a promising strategy to 
reduce the lifespan of the insect vector 
or limit its transmission of disease-
causing parasites (Aksoy et al. 2001; 
Brownstein et al. 2003). Each advance 
in our understanding of endosymbiont 
genomics and evolutionary dynamics 
represents one step closer to that goal. �
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