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P E R S P E C T I V E

Prospects and limitations of genomic offset in conservation 
management

Abstract
In nature conservation, there is keen interest in predicting 
how populations will respond to environmental changes 
such as climate change. These predictions can help deter-
mine whether a population can be self- sustaining under 
future alterations of its habitat or whether it may require 
human intervention such as protection, restoration, or 
assisted migration. An increasingly popular approach in 
this respect is the concept of genomic offset, which com-
bines genomic and environmental data from different time 
points and/or locations to assess the degree of possible 
maladaptation to new environmental conditions. Here, 
we argue that the concept of genomic offset holds great 
potential, but an exploration of its risks and limitations is 
needed to use it for recommendations in conservation or 
assisted migration. After briefly describing the concept, 
we list important issues to consider (e.g., statistical frame-
works, population genetic structure, migration, independ-
ent evidence) when using genomic offset or developing 
these methods further. We conclude that genomic offset 
is an area of development that still lacks some important 
features and should be used in combination with other ap-
proaches to inform conservation measures.

1  | PREDIC TING THE RESPONSE 
OF SPECIES AND POPUL ATIONS TO 
CHANGING ENVIRONMENTS

In a world of anthropogenically induced climate and land use 
changes, species and populations are often under high pressures to 
adapt to the new environmental conditions. If these changes are per-
sistent, only migration and adaptation can help a species avoid local 
extinction. In many fields like nature conservation, forestry, fish-
ery, agriculture, but also generally in science of applied ecology and 

evolution, there is a keen interest in predicting how populations will 
respond to environmental changes (Foden et al., 2019). For example, 
such predictions could be used to estimate whether a population can 
self- sustain under future alterations of its native habitat, whether it 
has to disperse or migrate to track its ecological niche, or whether it 
may require human intervention such as protection, restoration, or 
assisted gene flow or assisted migration (see Glossary in Box 1). If 
populations cannot keep up with the pace of change, predictions can 
be used in restoration plans that essentially involve the transplant or 
relocation of genotypes potentially adapted to the target environ-
ment. Such spatial and/or temporal predictions may thus ensure the 
survival and persistence of populations with sufficient local fitness 
(Aitken & Bemmels, 2016; Aitken & Whitlock, 2013).

In the past, assessments of persistence in a different or future 
habitat have been mainly based on assessing fitness (e.g., survival 
and fecundity) in common garden experiments (Box 1) or on ecolog-
ical niche modeling (Box 1) using habitat suitability as proxy (Elith 
& Leathwick, 2009). Both approaches have limitations. Experiments 
are resource- consuming and often impractical for long- lived or pro-
tected species. Ecological niche models require very little data and 
are thus widely applicable, but they do normally not account for 
demographic (e.g., different genetic clusters) or evolutionary (e.g., 
different ecotypes) properties of the species (but see Exposito- 
Alonso et al., 2018; Razgour et al., 2019). Therefore, there is a need 
for incorporating genomic information into predictions (Waldvogel 
et al., 2020). Genomic data (Box 1) does not only allow to accurately 
describe (neutral) genetic diversity, differentiation, and population 
structure, but also enables to track signatures of selection in the ge-
nome, which can inform us about the impact of environmental pres-
sures on populations (Savolainen et al., 2013; Stapley et al., 2010), 
and to incorporate knowledge of local adaptation of populations into 
predictive models (Razgour et al., 2019).

An increasingly popular predictive approach that accommo-
dates putative evolution and adaptation of populations to the 
new environment is genomic offset (reviewed in Capblancq et al., 
2020). It is also known as genetic offset (Fitzpatrick & Keller, 2015), 
genomic vulnerability (Bay, Harrigan, Le Underwood, et al., 2018), 
or risk of nonadaptedness (Rellstab et al., 2016), but here we refer 
to "genomic offset" to emphasize its genomic perspective. Today, 
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there are a few dozens of studies, mainly focusing on forest trees 
(Borrell et al., 2019; Ingvarsson & Bernhardsson, 2020; Pina- 
Martins et al., 2019), but also on animal systems (Bay, Harrigan, Le 
Underwood, et al., 2018), that have used genomic offset to pre-
dict the possible fate of populations with a particular focus on fu-
ture climate change. Using genomic and environmental data from 
geo- referenced individuals, genomic offset normally first estab-
lishes a statistical relationship between an environmental factor 
and allele frequencies of populations or individuals (by genotype- 
environment association analysis, reviewed in Rellstab et al., 2015) 
and then spatially and/or temporally predicts the genetic compo-
sition needed for the (modeled) new or future environment (habi-
tat) of the populations. In doing so, genomic offset can assess the 
degree of possible maladaptation of these populations to their new 

environmental conditions. Similarly, it can also quantify the poten-
tial nonadaptedness of a population to its current environment 
(Borrell et al., 2019).

Such an intuitively simple and apparently powerful approach 
has readily been suggested to be adopted for conservation man-
agement (Capblancq et al., 2020). Here, we highlight the prospects 
and various limitations of genomic offset, the latter being espe-
cially important when used for recommendations in conservation, 
assisted migration, or other applied activities. However, genomic 
offset is also a valuable tool for research that is not directly linked 
to conservation, such as exploring the genetic architecture of 
adaptive traits. Our perspective aims to contribute to the debate 
on current issues in the field (Fitzpatrick et al., 2018; Rellstab, 
2021).

BOX 1 Glossary

• Assisted gene flow— The intentional movement of gametes or individuals between populations within the species’ range to mitigate 
local maladaptation.

• Assisted migration— The intentional movement of gametes or individuals between populations beyond the species’ range to mitigate 
local maladaptation.

• Common garden experiment— Also called provenance trial. Planting or moving organisms from different provenances (populations) 
into a common experimental environment to measure fitness- related phenotypic traits. Observed differences in traits have a 
genetic basis.

• Ecological niche modeling— Also called species distribution modeling (but see, Peterson & Soberon, 2012). Using statistical relation-
ships between species occurrence data and environmental data, ecological niche modeling can be used to assess habitat suitabil-
ity, to identify environmental factors driving the current species distribution, or to predict the species’ potential distribution, for 
example in unsampled regions or under future environmental conditions.

• Genetics versus genomics— Genetics studies a limited number of loci (e.g., microsatellites, SNPs, genes) that are often well de-
scribed. However, the term is also used in a general way, for example when talking about genetic vs. environmental effects on 
a trait. In contrast, genomics investigates patterns at the genome- wide scale, or at least at a reduced representation of it. This 
makes it possible to disentangle neutral and adaptive genomic variation by genome scans for selection such as outlier analysis or 
genotype– environment associations.

• Genotype– environment association analysis— Also called environmental association analysis. The main analytical approach in land-
scape genomics (see below) that enables the identification of genes and environmental factors presumably involved in envi-
ronmental adaptation. It statistically correlates environmental factors describing habitats and allele frequencies of populations/
individuals, while ideally accounting for the confounding population genetic structure. Loci with a significant correlation are pu-
tatively involved in adaptation to the tested environmental variable. This approach assumes that populations are adapted to their 
local environment.

• Genotype– phenotype association analysis— Also called genome- wide association study (GWAS). Correlating allele frequencies and 
trait values of numerous individuals in a common garden (see above) to pinpoint genomic regions possibly underlying the investi-
gated phenotypic traits. Such analyses stringently control for relatedness and population genetic structure.

• Genomic offset— The distance between the current and required genomic composition in a set of putatively adaptive loci under a 
future/changed environment. The latter can be understood in a spatial or temporal perspective. For examples of genomic offset 
methods, see Box 2.

• Landscape genomics— Landscape genomics combines genomic and environmental data to detect and describe signatures of selec-
tion in the genome, which is also called adaptive genomic variation. Its name originates from the field of landscape genetics, where 
the effect of landscape features on neutral genetic variation, differentiation, and structure is studied.

• Space– for– time substitution approach— The use of spatial data to infer temporal dynamics in the absence of temporal data. Spatially 
separated sites along ecological or environmental gradients serve as proxies for predicting time series.
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BOX 2 Graphical illustrations and statistical frameworks of the main genomic offset approaches

The terms “model,” “modeling,” or “predicting” are commonly used to refer to the usage of a mathematical equation to characterize 
the relationship between different variables. In our case, these variables are genotype (i.e., allele frequencies) and environment (i.e., 
a variable describing the habitat of the genotype). These models can then be applied to extrapolate to unsampled environments. 
Such methods were inspired by phenotype- based equivalents where phenotypes of different provenances in common gardens are 
associated with their environment of origin with a linear regression, which is then used to predict the future phenotypic responses 
(risk of maladaptation, Box 2a).
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Below, we describe the two fundamental steps— the genotype– environment association and the spatial/temporal extrapolation— 
used in different genomic offset approaches and the statistical models behind them.

Prestep: Genotype– environment associations

The simplest model to describe the relationship between genetic and environmental characteristics of populations is the linear 
regression:

where we want to identify Yi, the genetic composition (allele frequency) of a focal population i, by knowing E, its environmental charac-
teristics. Using populations for which we know the genetic composition and environmental conditions, we can estimate the best values 
of the intercept and slope coefficient of the linear regression and then use those fitted values to predict Y for any E. This approach should 
account for neutral population genetic structure, which is often done using a mixed model that is an extension of the regression model:

where u (random factor) is the genetic similarity between populations at neutral loci. These associations serve researchers to narrow 
down a genomic dataset to a subset of candidate genetic variants that can be used for genomic offset predictions.

Main step: Genomic offset fit and prediction

Gradient- based (Box 2b)
The original study of genetic offset (Fitzpatrick & Keller, 2015) proposed two approaches. In the Generalized Dissimilarity Modeling, 
the predicted variable is a composite of allele frequency differences (dij, which is the average FST) between two populations at the 
loci of interest. These loci derive from known candidate genes or identified using the prestep of genotype– phenotype associations 
described above. The predictive variables are environmental distances that are modeled as follows:

where i and j are sites, and the distance dij is modeled with an intercept and a spline function f of the n different environmental values x.
The second approach, Gradient Forest, models the change of allele frequency at each locus along an environmental gradient. Then, the 
predictions are summarized across all variants. Gradient Forest is an extension of Random Forest, an ensemble of decision trees that 
split the dataset into two population groups each time with the same frequencies by one environmental variable at each bifurcation. 
At each bifurcation, the algorithm chooses the value of an environmental variable that increases the variance reduction of the variable 
before splitting the data into two groups (V0) and after the sum of the variances of the group over a threshold and before the threshold:

RONA— Risk of nonadaptedness (Box 2c)
RONA (Rellstab et al., 2016) uses a linear regression in previously identified, putatively adaptive loci as shown in formula (1) without 
direct correction for population structure to estimate the expected allele frequency required under the new environmental condi-
tions (Eexpected). However, population structure can be accounted for by using transformed or residual allele frequencies after ac-
counting for structure. RONA is then calculated as the average difference (across n loci) of expected and observed (AFobserved) allele 
frequencies in a population:

BOX 2 (Continued)

(1)Yi = � + � ⋅ E + �

(2)Yi = � + � ⋅ E + u + �

(3)− ln (1 − dji ) = a0 +

n∑

p=1

| fp (xpi ) − fp (xpj ) |

(4)I = V0 − (VT + VF )
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2  | THE CONCEPT OF GENOMIC OFFSET

Based on a statistical genotype– environment relationship (Box 1) 
derived from past or contemporary data of locally adapted popula-
tions (Rellstab et al., 2015), one assesses the genomic composition 
needed for the measured new and/or modeled future environment 
(Box 2). Importantly, only loci and genes that are putatively involved 
in adaptation to the studied environmental drivers are used for such 
calculations. The genetic distance between the present and the pre-
dicted theoretically required genomic composition represents the 
genomic offset. If this offset is small, populations are expected to 
have a low risk of being maladapted to their future habitats. If the 
offset is large, populations are far away from their future, theoreti-
cally required genomic composition and may be at high risk of mal-
adaptation. Genomic offset is generally restricted to environmental 
and genotypic data, thus not including any phenotypic traits, but ex-
tended approaches have been recently developed (Box 2). Genomic 
offset can be assessed in a spatial and/or temporal manner. Often, 
the genotype– environment relationship is first extrapolated in space 
and subsequently projected for future environmental conditions. 
This allows the assessment of genomic offset also for habitats that 
were not sampled when establishing the genotype– environment 
relationship.

Different research groups have independently developed sim-
ilar “genomic offset” approaches. Conceptually, genomic offset is 
analogous to the so- called "relative risk of maladaptation" (Box 2a), 
which was developed using phenotypic data (not genomic data) for 
seed transfers in forest trees (Campbell, 1986). The relative risk of 

maladaptation was made popular by the study of St. Clair and Howe 
(2007), who measured various phenotypic traits in a common garden 
experiment using Douglas- fir (Pseudotsuga menziesii), and compared 
the fitted normal distribution of the present trait values to the one 
ideal at the target locations based on phenotype– environment asso-
ciations. In essence, this empirical approach follows the theoretical 
stabilizing selection model of a moving trait optimum analytically 
studied by Lynch and Lande (1993). The area of the original trait dis-
tribution, which is not overlapping with the predicted distribution, 
represents the relative risk of maladaptation at the target location 
(Box 2a). By incorporating the temporal dimension, this concept was 
subsequently used to predict the risk of maladaptation to future cli-
matic conditions (Frank et al., 2017).

Fitzpatrick and Keller (2015) were the first to present a ge-
nomic offset approach (calling it "genetic offset"). Using tools 
borrowed from community ecology— generalized dissimilarity mod-
eling and gradient forests (Box 2b)— they established a statistical 
relationship between environment and allele frequencies in single- 
nucleotide polymorphisms (SNPs) included in the circadian clock 
gene GIGANTEA- 5 of balsam poplar (Populus balsamifera). They first 
extrapolated this relationship to the present range- wide space and 
subsequently to a projected future climate. In doing so, they indi-
cated geographic regions where the risk of maladaptation might be 
low or high based solely on genomic and climate information. Right 
away, this technically intuitive analysis of genomic data with power-
ful geographic visualization and interpretation was rapidly adopted, 
especially the gradient forest model, most likely due to its nonlin-
ear nature with a machine learning- based framework. For example, 

Pina- Martins et al. (2019) expanded RONA by using a weighted average by the R2 of the regression.

Random forest ecological niche models (Box 2d)
Exposito- Alonso et al. (2018) used a discrete approach, using environmental niche models (typically used to predict species presence 
and absence), to model allele presence and absence. This was done iteratively for ca. 100 bi- allelic sites, and the output maps were 
summed over (as in Gradient Forest). A popular statistical procedure to fit an environmental niche model is the Random Forest, a 
machine learning approach (but others such as the Maximum Entropy algorithm are common too). In brief, the algorithm proposes a 
threshold for a predictor variable to group observations of geographic presence and absence of the species. In the simplest case of 
a decision tree with a single bifurcation (a single climate threshold), one can evaluate the predictive ability of grouping presence and 
absence points using the Gini impurity index:

where pa and pp represent the proportion of real presences and absences in the alleged “presence” group, and qa and qp the same for the 
alleged “absence” group; the index is zero with perfect partition. The algorithm will find the threshold that reduces the Gini index and 
continues bifurcating with thresholds of other climate variables to improve the classification of observations.

(5)RONA =
1

n

n∑

i=1

| (� + � ∗ Eexpected)−AFobserved |

BOX 2 (Continued)
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Bay, Harrigan, Le Underwood, et al. (2018) predicted climate- driven 
genetic offset (which they called "genomic vulnerability") in a migra-
tory bird species (yellow warbler, Setophaga petechia) and compared 
it to past population declines. This article started a critical and con-
structive discussion on how to use and interpret the concept with 
its underlying pitfalls and benefits (Bay, Harrigan, Buermann, et al., 
2018; Fitzpatrick et al., 2018), which builds also the basis and moti-
vation of this current perspective paper.

Rellstab et al. (2016) used a similar approach called "risk of non-
adaptedness" (RONA) to predict the theoretically required allele fre-
quency shifts of various populations of different white oak species 
(Quercus spp.) for future climate change (Box 2c). These authors did 
not model RONA in a spatially explicit manner (although this would 
be possible), but instead predicted the offset for every sampled pop-
ulation. Unlike the genetic offset of Fitzpatrick and Keller (2015) that 
uses a composite genetic distance metric, RONA directly predicts 
the required allele frequency shift in a population to be adapted to 
the future conditions, making it possible to compare these presum-
ably required allele frequency shifts to the past realized, theoreti-
cally expected (Dauphin et al., 2021), or even future realized values, 
for example, if populations are re- sequenced in the future. RONA 
has been regularly used (Jordan et al., 2017), was recommended as 
a tool in assisted gene flow (Borrell et al., 2019), and is available as a 
Python implementation (Pina- Martins et al., 2019).

Recently, a similar approach to the gradient forest framework of 
Fitzpatrick and Keller (2015) has been implemented using random 
forests of allele presences and absences across a species’ distribu-
tion range (Exposito- Alonso et al., 2018). In this study, hundreds of 
thale cress (Arabidopsis thaliana) plants were grown in a common 
garden experiment under a drought stress treatment, and alleles in-
volved in survival were identified using genotype– phenotype asso-
ciations (Box 1). The distribution of about 100 alleles was modeled 
with random forest akin to species distribution models and was spa-
tially predicted in present and future climates. Similar to the original 
genomic offset approaches, the comparison between these predic-
tions was interpreted as the expected allelic composition change in 
the near future across Europe (Box 2d). While costly, the use of com-
mon gardens allows both to conduct genomic offset predictions with 
bona fide adaptive alleles and to ultimately validate genomic offset 
predictions through space (Exposito- Alonso et al., 2019).

3  | IMPORTANT ISSUES TO CONSIDER 
WHEN USING GENOMIC OFFSET 
APPROACHES

Genomic offset approaches are in their infancy of development and 
application. Consequently, they have yet to be tested and validated 
experimentally in scenarios simulating real conservation applica-
tions. Below, we enumerate a number of key assumptions, elements 
that will require further development, or methodological pitfalls 
that need to be considered before the application of genomic offset 
methods for conservation management.

3.1 | Space- for- time substitution approaches

Genomic offset represents a "space- for- time substitution approach" 
(Box 1). However, we have to be aware that what we observe across 
space might not hold true over time. This is because spatial genetic 
patterns are the outcome of local natural selection as well as neutral 
demographic processes such as migration, population expansion/con-
traction, or admixture. Ideally, researchers would validate the space- 
for- time substitution assumption using temporal series of data such 
as "evolve and re- sequence" experiments (Long et al., 2015), biologi-
cal archives (e.g., zooplankton resting eggs in lake sediments, Brede 
et al., 2009; Rellstab et al., 2011), historical samples (e.g., fish otoliths, 
Therkildsen et al., 2019), herbarium specimens (Lang et al., 2019), or 
different age cohorts of long- lived species (e.g., trees, Dauphin et al., 
2021; Elleouet & Aitken, 2019). Moreover, the space- for- time substi-
tution approach (and notably genome scans for selection in general) 
assumes that populations are currently adapted to their local habitat 
but it has been shown that this might not always be the case (see 
below and Browne et al., 2019; Leimu & Fischer, 2008).

3.2 | Spatial and temporal extrapolation

The genomic offset approach assumes that environment– allele fre-
quency relationship is at local adaptation equilibrium and holds be-
yond the present climatic values and genetic background. However, 
we do not know if what we observe in a given environmental space 
holds also true outside of it. Since species will often encounter en-
vironments outside their current range in the future, genomic offset 
predictions into these ranges should be treated with caution and 
at least be acknowledged in analyses and maps. The same applies 
to spatial extrapolations in the present, which often come with an 
extension of the genomic background due to isolation by distance 
or new genetic lineages. Even at a regional scale— within the same 
species— the genetic basis of climate adaptation can differ substan-
tially (Rellstab et al., 2017), especially when adaptation is polygenic, 
that is, there are multiple redundant paths to an optimum (Höllinger 
et al., 2019, and see below).

3.3 | Effect of population genetic structure

Only one of the existing genomic offset approaches directly in-
corporates neutral population genetic structure (Gain & François, 
2020). However, we know that neutral genetic structure can con-
found genotype– environment association analyses and even mimic 
adaptive patterns (see examples in Rellstab et al., 2015). Fitzpatrick 
and Keller (2015) used Moran's eigenvector map variables to in-
corporate spatial autocorrelation into the generalized dissimilarity 
modeling approach (but not to the gradient forest approach). This 
assumes that population structure is somehow correlated with geo-
graphic position, which might not be the case in species with com-
plex demography and highly heterogeneous habitats. Future studies 
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should therefore directly incorporate or at least evaluate the effect 
of such a confounding neutral structure. It is clear that the future 
demography is unknown, which means that we have to assume that 
current neutral structure remains the same in the future. One pos-
sible way to include neutral structure is to use mixed models (with 
random factors describing structure) for the statistical prediction of 
the genomic offset (Gain & François, 2020). An alternative is to use 
transformed allele frequencies or allele frequency residuals after 
accounting for neutral structure (Gautier, 2015; Günther & Coop, 
2013). Another possibility to assess the effect of the confounding 
structure is to run both random and associated SNPs and compare 
the outcomes for both types of loci (Exposito- Alonso et al., 2018).

3.4 | Migration and gene flow

To go one step further than assessing the required allele frequency 
changes in situ and solely based on standing genetic variation, 
genomic offset should account for or incorporate demographic 
properties such as migration and gene flow. For example, migration 
distance could be incorporated in analyses. In addition to the "local 
offset," Gougherty et al. (2021) present an interesting analytical 
approach ("forward offset") in which they measure the geographic 
distance of the local, present population to the location where the 
genomic offset is minimized under future climate conditions. Such an 
approach relies on additional, sensitive assumptions (e.g., concerning 
migration distance, or that populations ideally migrate to the location 
with minimized risk of maladaptation), but might deliver additional 
evidence on the range and geographic direction of future habitats 
(Rellstab, 2021). Gene flow, whether beneficial or detrimental, could 
be accounted for by the geographic position and genetic similarity of 
proximal populations. The incorporation of migration and gene flow 
might substantially improve the predictive power of genomic offset 
assessments. However, this additional step is not always needed, 
for example in the case of selecting source populations for assisted 
migration or gene flow, where migration and dispersal are actively 
managed by humans. In this case, the geographic distance between 
the source and target locations might be considered in addition to 
offset values (Borrell et al., 2019), as there could be local adaptation 
to environmental variables that were not included in analyses.

3.5 | Validation with empirical and simulated data

Genomic offset analysis should be designed to incorporate time series 
to describe allele frequency shifts post hoc or observe them in real 
time. For example, one could sample two different age cohorts (past, 
today) from several populations, perform genotype– environment as-
sociation analysis using the past cohorts only and check whether the 
identified beneficial alleles have actually increased in frequency in the 
cohorts of today. Similarly, one could predict the offset of the past co-
hort for conditions of today and check whether the genotypes that 
had the highest offset values are absent from the present population, 

or even compare it to the history of census or effective population size. 
Several study systems (see above) would qualify for such a study, and 
interesting projects to follow allele frequency shifts have been initi-
ated (see, e.g., http://grene - net.org/). If this is not possible, simulations 
could be used to assess the relative power of different genomic offset 
approaches and to test the effect of demographic properties and sam-
pling designs on the outcomes, as it has been done for other population 
and landscape genomic methods (De Mita et al., 2013; Forester et al., 
2016; Lotterhos & Whitlock, 2015; de Villemereuil et al., 2014). Such 
studies are completely lacking so far.

3.6 | Corroboration with independent data

Genomic offset studies should combine their results with other inde-
pendent, ecological data, if available. For example, Bay, Harrigan, Le 
Underwood, et al. (2018) found a correlation between genomic offset 
for future conditions and contemporary population decline in the yel-
low warbler, indicating that failure to adapt may have already nega-
tively affected populations (but see Bay, Harrigan, Buermann, et al., 
2018; Fitzpatrick et al., 2018). Borrell et al. (2019) found that dwarf 
birch populations (Betula nana) with high RONA values were particu-
larly small, isolated, and at the margins of the species’ distribution. 
Such links between independent datasets are very interesting, can 
compensate for the lack of phenotypic traits, and might strengthen 
the results obtained. At best, genomic offset approaches are com-
bined with phenotypic data in common garden or reciprocal transplant 
experiments. Borrell et al. (2019) also analyzed fitness- related phe-
notypic traits in a common garden. They found a significant negative 
relationship between RONA (not calculated for the future climate, but 
the climate of the common garden) and reproductive output (no. of 
catkins) of the dwarf birch provenances. Similarly, Fitzpatrick et al. 
(2021) showed an inverse relationship between genomic offset and 
performance in two common gardens and that genomic offset better 
predicted performance than climate distances. A further step would 
then be to show that certain alleles are beneficial in certain environ-
ments (Exposito- Alonso et al., 2019). However, the missing evidence 
for fitness relevance of the loci used for many genomic offset calcula-
tions is an important point that is not specific to genomic offset stud-
ies, but also to many other approaches like genotype– environment 
association analysis or outlier tests (for selective sweeps) that do not 
look at phenotypes. We are aware that for most of the study systems, 
especially for protected or long- lived species, the goal of combining 
genomic offset studies with analysis of fitness- relevant traits is out of 
reach. The accumulation of experimental evidence in multiple model 
species can thus be key to assess how accurately genomic offset pre-
dictions mirror populations’ fitness or demographic traits.

3.7 | Choice of the statistical framework

The properties of the study species, available data, and research 
question may determine which statistical framework to calculate 

http://grene-net.org/
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genomic offset may be most suitable (Box 2). For instance, study 
systems in which adaptation is expected to be highly polygenic (see 
below) may require genetic offsets that sum over loci genome- wide 
(i.e., gradient forest or genetic dissimilarity models), whereas stud-
ies using sampling setups with clear, single selection pressures could 
use single- loci models (RONA). If genetic structure or climate gra-
dients are sharp, nonlinear genotype– environmental relationships 
may be more appropriate (gradient forest or random forest), while 
if gradients are smooth, then linear, regression- based models may 
be appropriate (RONA). If phenotypic data from common gardens 
are available, random forest ecological niche models can be applied. 
With the ongoing development and increasing use of machine learn-
ing methods, which can approximate any relationship, we expect 
those to become the most commonly used (Vanhove et al., 2021), 
with the possible cost of over- fitting the models. In any case, it is 
important to be aware of the pros and cons of each approach and to 
understand the uncertainty that comes with it.

3.8 | Quantification of model uncertainty

Genomic offset studies should quantify, report, and account for the 
uncertainty and power of the underlying models. In other words, 
cross- validation values (e.g., in gradient/random forest methods) or 
regression statistics (e.g., R2 in RONA) should be indicated in order 
to judge the quality of the offset calculation. Unfortunately, this has 
been rarely done so far. For example, for the gradient forest model 
used in Bay, Harrigan, Le Underwood, et al. (2018), no indication of 
overall model performance is mentioned. If cross- validation values 
were low already in the training populations used to build the model, 
the spatial and temporal extrapolation of it would be highly impre-
cise. Cross- validation in machine learning methods such as gradient 
or random forests should be done carefully, for example based on 
"leave- population- out" instead of "leave- individual- out" (i.e., spatial 
versus random cross- validation), because the latter can artificially in-
flate goodness values due to the lack of independence of the training 
and test datasets (Meyer et al., 2019). If possible, final genomic off-
set calculations should account for these values, as in Pina- Martins 
et al. (2019) who used weighted average (by R2) to indicate average 
RONA values across loci.

3.9 | Quantification of allele frequency shifts to 
increase interpretability

Researchers should aim to use population genetic parameters to 
quantify how populations respond to environmental change. For 
example, we may want to know the rate of allele frequency shift 
(i.e., allele frequency changes per time unit) at neutral and adaptive 
loci in the wild, which is a function of generation time, gene flow, 
effective population size (Ne), and selection strength in the case of 
adaptive loci. Allele frequency shifts can be assessed by forward- 
in- time population genetic simulations, but should, if possible, be 

empirically validated in the studied system. This was precisely done 
in Dauphin et al. (2021) where the required allele frequency shifts 
(i.e., RONA) of populations of a long- lived conifer tree species (Swiss 
stone pine, Pinus cembra) for future climate change were substan-
tially higher than historically realized and simulated allele frequency 
shifts. Other population genetic parameters, such as various genetic 
distance metrics, often only allow qualitative or relative comparisons 
between populations or climate scenarios.

3.10 | Polygenic adaptation

Adaptation in nature is often polygenic, that is, it involves many 
loci (Csillery et al., 2018; Pritchard & Di Rienzo, 2010). Genomic 
offset approaches should therefore be explicitly extended to mod-
eling polygenic adaptation to capture complex adaptive responses. 
Machine learning approaches like the gradient forest approach 
(Fitzpatrick & Keller, 2015) are ideal for analyzing many loci jointly 
(Brieuc et al., 2018). Other options are multivariate (Carvalho 
et al., 2020) or vector- based methods (Borrell et al., 2019). At the 
same time, genomic offset studies should increasingly look at the 
genome- wide level as in Exposito- Alonso et al. (2018). Studying 
genetic variation in one (Fitzpatrick & Keller, 2015) or a group of 
genes (Rellstab et al., 2016) is certainly interesting and straight- 
forward, but neglects the genomic and physiological complexity 
that species possess.

3.11 | Maladaptation to current 
environmental conditions

Genomic offset methods are not only useful in predicting potential 
maladaptation to new environmental conditions, but also to the local 
conditions observed today. Particularly small, fragmented, and rel-
ict populations may have shifted away from their current optimum 
for the local environmental conditions due to genetic drift, result-
ing in currently maladapted populations. Genomic offset methods 
could therefore be used to measure the genetic distance of specific 
populations to their currently required genetic composition. This 
was exactly done in the study of Borrell et al. (2019), who differenti-
ated between c- RONA (the risk of nonadaptedness to the current 
conditions) and f- RONA (the one to the future or new conditions) 
in dwarf birch. Such an analysis could be performed on a "leave- 
population- out" basis, where the offset of the target population is 
calculated based on the genotype– environment relationship of the 
remaining populations. Apart from genetic drift, another reason for 
being maladapted to the current habitat is the past change in envi-
ronmental conditions. This is especially true for long- lived species 
whose populations were established decades or even centuries ago 
and whose selection pressure is highest during the early life stages. 
In such cases, genomic offset studies should, if possible, use histori-
cal environmental data to establish the genotype– environment rela-
tionship (Dauphin et al., 2021; Rellstab et al., 2016).
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4  | CONCLUSIONS: IS GENOMIC 
OFFSET RE ADY TO BE APPLIED FOR 
CONSERVATION MANAGEMENT?

Genomic offset combines genomic and past, present, and future envi-
ronmental data to efficiently assess possible maladaptation of popula-
tions to their future habitat. It could be used to, for example, identify 
threatened populations, select source populations for assisted migra-
tion/gene flow or re- colonization, and identify suitable habitats under a 
future and altered environment. Any improvements or complementary 
approaches to existing methods like ecological niche modeling is a gain. 
Genomic offset adds the evolutionary dimension to management as-
sessments, something that is urgently needed (Waldvogel et al., 2020).

However, genomic offset is an area of active development under-
going experimental validation. Relatively few studies have yet used 
this approach, and it is mostly unknown how congruent the results are 
between analytical strategies (e.g., sampling designs, methods) used 
for initial genotype– environment associations or approaches chosen 
for offset calculations. Moreover, some general issues that apply 
to most population and landscape genomic methods, for example 
the missing link to fitness- relevant traits, clearly reduce its value to 
guide conservation decisions. Therefore, we invoke the precaution-
ary principle when dealing with these predictions and recommend 
using genomic offset along with other approaches (e.g., experiments, 
ecological niche modeling, genetic diversity assessments) and data-
sets (e.g., time series, phenotypic data, population trends) from the 
conservation biology toolkit and accompanying it with experienced 
expert and local community knowledge on the focal species and 
habitat. Genomic offset may be especially convenient in nonmodel, 
protected, or long- lived species where experiments are impractical 
or even impossible. Moreover, where fast decisions are needed, for 
example in the case of highly threatened species with rapidly declin-
ing populations, genomic offset might be one of the only possibilities 
to inform conservation management. In such scenarios, the trade- off 
between the ongoing development of the approach and the urgent 
need for action has to be carefully discussed. In contrast, in situations 
where time is not so scarce and experiments are possible, it might 
be wiser to carefully validate the genomic offset assessments. It is 
also important that genomic offset assessments do not rely on abso-
lute offset values, but are rather used to compare different (climate) 
scenarios and populations in their risk of maladaptation. This would 
also allow to judge the uncertainties of such predictions, which is an 
important information that researchers should communicate to prac-
titioners. In the meantime, we and other researchers will continue to 
develop and test genomic offset methods to make them trustworthy 
and useful tool to make conservation and restoration efforts more 
targeted, precise, and evolution aware.

KEYWORDS
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