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Abstract: The unpredictable increase in electrical demand affects the quality of the energy
throughout the network. A solution to the problem is the increase of distributed generation
units, which burn fossil fuels. While this is an immediate solution to the problem, the ecosystem
is affected by the emission of CO2. A promising solution is the integration of Distributed
Renewable Energy Sources (DRES) with the conventional electrical system, thus introducing the
concept of Smart Microgrids (SMG). These SMGs require a safe, reliable and technically planned
two-way communication system. This paper presents a heuristic based on planning capable of
providing a bidirectional communication that is near optimal. The model follows the structure
of a hybrid Fiber-Wireless (FiWi) network with the purpose of obtaining information of electrical
parameters that help us to manage the use of energy by integrating conventional electrical system
with SMG. The optimization model is based on clustering techniques, through the construction
of balanced conglomerates. The method is used for the development of the clusters along
with the Nearest-Neighbor Spanning Tree algorithm (N-NST). Additionally, the Optimal Delay
Balancing (ODB) model will be used to minimize the end to end delay of each grouping. In addition,
the heuristic observes real design parameters such as: capacity and coverage. Using the Dijkstra
algorithm, the routes are built following the shortest path. Therefore, this paper presents a heuristic
able to plan the deployment of Smart Meters (SMs) through a tree-like hierarchical topology for the
integration of SMG at the lowest cost.

Keywords: optimization; smart metering; IoT; microgrid; heuristic; sensor networks

1. Introduction

Nowadays, the need to integrate modern technologies in conventional electrical distribution
systems is of crucial importance in terms of optimization, security, confidence, reliability and energy
efficiency [1]. One of the critical issues in power distribution systems is the uncontrollable increase in
demand. This is mainly due to the increase in consumers and the increasingly high dependence on
electricity for heating and cooling. Therefore, these factors are enablers of significant fluctuations in the
rate of consumption of electrical energy. With the increase in demand at peak hours, there is a need for
more generation plants to avoid voltage drops and the decrease in the quality of the electrical energy.
As a result, institutions should encourage Demand Side Management (DSM), which becomes viable
by implementing robust bidirectional communication systems [2]. These systems need appropriate
hybrid topologies to allow the communication network to provide the user with reliability and safety
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on the use of information [3]. This approach opens a path toward the existence of an Intelligent
Electric Network (IEN). An IEN is possible thanks to the use of communications to obtain data on the
intrinsic components of a network (data obtained from producers to consumers). This contributes
to our economic and environmental health [4]. The information obtained from the network will be
collected by Smart Meters (SMs) [5] spread over the area of interest, and their locations will be fixed [6].
The conventional electricity meters must necessarily be replaced by SMs, since they will be able to
communicate with diverse types of electronic devices [7] distributed in the conventional network.
Each SM will not only be able to receive and transmit information of electrical parameters as active
and reactive power, but will also have the ability to run events, such as reconnection, disconnection,
sensing the theft of electricity supply, integration of Distributed Renewable Energy Sources (DRES)
and the proper management of energy resources in each individual household. The measurements
can be collected without the need to visit the facilities of the customer. This may be carried out in
intervals of time of 15, 30 or 60 min. The analysis of these data supports analysts to improve the
operation, planning, control and supervision of the conventional electric network [8,9]. Additionally,
this analysis gives us sufficient data to contribute to forecasting home loads and the grouping of each
load profile [10].

1.1. Importance of the Two-Way Communication System in Smart Grids

It is believed that DRES play a significant role in the reduction of greenhouse gas emissions [11–14].
This improves the availability of the energy resource, increasing the efficiency and the quality of the
supplied energy [15]. DRES is essential for the sustainability of the conventional electrical system and
is part of the solution to the uncertainty of the demanded load. DRES are not easy to use, as they
increase the complexity of the system [16,17].

The implementation of bidirectional communication technologies (low-cost and low-consumption)
leads us to integrate the concept of the Smart Grid (SG) described in [18–20]. In an electrical network,
an SG is conceived of as a network that can deliver electricity in a controlled manner, from the points
of generation to the active consumers [21]. In addition, SG will adjust the amount of energy generated
according to the real-time demand of consumers, thus avoiding the excess of generation and covering
most of the required demand [22]. Therefore, changes in supply and demand require a more intelligent
system that can handle the increasingly complex electrical network [15].

As a result, an efficient design of SGs tackles three elements: communication, control and
optimization [16,19,23,24]. In this paper, we will give special attention to smart metering of electrical
energy with the purpose of obtaining accurate information from electricity consumption and in this
way run energy management processes at the lowest cost; enabling us to not only automate the
distribution in energy, but in addition, allowing us to introduce the use of DRES to SG, granting
enforcement and control of the system. The observance of the electrical system will allow us to know
the instantaneous supply and demand. This is with the aim of predicting energy consumption [23].

Advanced Metering Infrastructure (AMI) allows a two-way communication in which SMs must
be able to send the information collected in the analysis tools and receive operating commands from
the central office [25–27]. In order to avoid communication conflicts, it is very important to establish
communication standards that allow the interoperability between different electronic equipment,
as suggested in [12,16].

This paper proposes the implementation of a heuristic that provides a near optimal route map of
SMs in a georeferenced area. The heuristic will be able to form clusters [28–31], optimize resources and
depict a route map observing parameters of capacity and coverage. In [23,29,32], some examples of
the advantages of the groupings are described. These groupings are used for the following reasons:
to optimize the use of bandwidth, to optimize the use of energy, to reduce overhead costs, to increase
connectivity, to stabilize the network topology, to decrease delays and load balancing. This will reduce
the Free Space Path Loss (FSPL) and decrease the end to end delay, ensuring real-time communications
for optimal operation of the FiWi network in smart cities.
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1.2. FiWi Network Architecture

A hierarchical clustering method using a topology-type tree will be used in this paper. This method
is a fundamental operation in the deployment of SMs [33,34]. The paper from [35] stated that an optimal
conformation of the clusters is determinant in order to minimize the end to end delays of each cluster.
The knowledge of the end to end delays in a wireless network can be used to deduce the available
bandwidth. There are some techniques based on the observation of the delays to detect the point
at which the delays begin to increase and, in this way, to determine the bandwidth. The results
show that it is feasible to obtain reliable estimates under certain circumstances, such as: different
packet sizes, wireless link speeds and channel noise [36–38]. Therefore, in the present paper, the
bandwidth is considered through the delays, not as a restriction of the problem, but as a parameter
that can be calculated to size the equipment and achieve a robust wireless communication network
that guarantees the transmission of the information in a safe and reliable way. Finally, the required
bandwidth depends on: the packets transmitted from a source node to a destination node, the traffic
they generate, the frequency at which they are transmitted, the point-to-point distance and the number
of jumps. Therefore, the maximum data transfer range of a physical communication link is proportional
to its bandwidth [39,40].

There are two types of hierarchical groupings: binder and divisive [41,42]. The binder method
starts by placing each object in its respective cluster and then merging the groups into larger clusters,
until all the objects are in a unique cluster or certain conditions are met. The divisive hierarchical
grouping method is not limited to grouping into a balanced cluster or into a cluster of the same
length, as some conventional methods do. Some of these conventional clustering methods are k-means,
k-medoids and mean-shift [43].

In the present paper, we will form clusters using the binder method. This is a method that allows
us to balance the length of the clusters and minimize certain parameters of a communications network
such as: end to end delay, FSPL and the ability to link. In the clustering techniques, the SMs are
organized into groups. The regular SMs are called cluster members, and a head is selected from the
group tagged as the Universal Data Aggregation Point (UDAP). There are three types of generated
traffic: intra-cluster, inter-cluster and the existing traffic generated by base stations (BS) toward the
central office [29,44–46]. These are illustrated in Figure 1 through the use of optical fiber. The members
of a cluster cannot send data directly to the BSs, since the UDAP receives data from the SMs members
of the cluster, eliminates redundant data and merges the data with the objective of transmitting to the
respective BSs.

This paper considers a FiWi network [47] in two stages: The first stage describes a wireless
hybrid network [48,49] that articulates cellular technology and WiFi to transport the information from
the SMs to the BSs passing by a node of transition UDAP capable of supporting both technologies.
This will ensure efficient and effective two-way communications within standardized parameters
for the communication [47,50–52]. In the second stage, data are merged in the BSs using optical
fiber. Following that, a backhaul will be added to transmit the information to the central offices or
information management centers. The properties of the UDAP allow receiving data from the SM
members of the conglomerate. Following that, it merges the data and transmits the added information
to the BSs. A UDAP is an SM with double availability for cellular and WiFi wireless access.

In summary, we make the following contributions in this paper: (1) the proposed heuristic
focuses on minimizing the data aggregation cost. This heuristic uses a hierarchical topology capable
of reducing transmission delays, contributing directly to minimizing link capacity [53]. This results
in significant cost reduction for the implementations at the physical and at the link level; (2) The
mathematical optimization model considers the deployment of the FiWi network under planning and
scalability over time and space; (3) The model provides a near optimal route map with georeferenced
coordinates. This model uses the haversine equation for the calculation of distances. Moreover, the
model is able to provide accurate data about the topology of the network and the roadmap for the
hybrid near optimal communication path for the deployment in AMI; (4) The heuristic provides
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answers to the challenges of UDAPs’ placement, identification of target groups, routing, capacity,
coverage and reduction of the end to end delay. Hereinafter, the paper is structured as follows.

Section 2 describes the need to update the concept of a “conventional electric network” with the
purpose of migrating to the concept of a smart grid, and discusses the importance of AMI for optimal
deployment of microgrids. Section 3 sets out the approach to the problem. Section 4 presents the
results and simulations. Finally, in Section 5, conclusions are drawn.
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Figure 1. FiWi network architecture for the efficient integration of smart meters. Source: the authors.

2. Conventional Network and the Need for Smart Grids

Research in the modeling of residential demand is typically focused on the monthly or yearly
data average demand. Little emphasis is put on energy consumptions in a home or appliance in
particular in this line of research [54]. Residential consumption represents an important share of the
total electricity demand, due to the exponential growth experienced throughout the world. In this
context, the prediction of the energy demand of the housing industry is important, as suggested
in [15,23]. Consequently, a new concept is introduced: “the demand of the firm”, which refers to the
ability to control the individual loads. Moreover, the demand of the firm refers to load management,
which means being able to have real-time and smart control of the load. In the conventional electrical
system, there are two types of controls, which are: cost control and direct control [23]. Cost control
seeks to change the form of the load curve [55] without considering that the consumption of energy
increases. This mechanism entails increasing energy prices in peak periods and the application of new
rates. The direct control refers to the classic methods of load control involving the increase in energy
production when the demand increases [4].

The electricity is generated and distributed on a hierarchical network that has three different
subsystems: generation, transmission and distribution. The aggregation of data on each of the
subsystems of an electric network is crucial in SG for the control, protection, automatic functioning
of interrelated components and the integration of DRES in IEN [56]. DRES are capable of
functioning independently or in conjunction with the main electrical network under the concept
of microgrids [57,58].
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The rapid advances in automation and control generate potential benefits, such as: reducing
the consumption of resources, improvements in infrastructure capacity and the coordination of the
demand peaks [8,59]. This is mainly due to the introduction of the Information Communication and
Technology (ICTs) [60], which has allowed the transformation of the conventional electrical network
into an electrical network that ensures the productive interaction among suppliers of power, consumers
and other stakeholders, as suggested in [12,15,61–63]. Therefore, changes in generation, transmission
and distribution systems are inevitable [16].

A smart electrical network should be able to motivate consumers to participate actively in the
operations of the network and, as suggested in [23,47,64,65], must be able to withstand attacks to
provide a higher quality of power. For the existence of IEN, a large-scale implementation of sensors and
measuring instruments is necessary, which have to be able to communicate with each other in order
to add data from the state of the network [66]. The services of data aggregation can be structured as
a tree, and their goal is to merge data from various sources [22,67]. Finally, the European Commission
defines a smart electrical network as: “An electrical network that can integrate efficiently the behavior
and actions of all the users in a framework based on rules and priorities for achieving interoperability
of devices in a system of smart electrical networks” [63].

AMI in Microgrids

Nowadays, there are new devices that are capable of processing information in the electrical
sector and that access the Internet or adjust the energy consumption based on cost or availability
depending on the preferences of consumers. All of this is part of what is called the Internet of
Things (IoT). The “things” in SG include sensors [3,68,69], smart devices and the SMs [1,27,68,70].
The devices need to be interconnected in a hierarchical network with adequate levels of quality and
reliability. The introduction of SG contributes to providing digital intelligence to the power system
network [56]. The benefits associated with these new concepts are: adequate management of the
energy resources, reduction of the interruption rates, reduction of the pollution rates in the ecosystem,
reduction in the number of interruptions due to problems in the quality of power and lower costs of
operations and maintenance [1]. Consequently, one of the main benefits of SG is the intelligent and
efficient design of hybrid communication networks, which take into account the congestion of the
network, real-time transmission as suggested in [2,47,71] and the concern of reducing the emissions of
greenhouse gases [69].

The fast growth of data requires researchers to pay attention to how to handle these data [72].
Therefore, three definitions have to be analyzed: volume, velocity and variety. Volume refers to the
large amount of data to be processed; the speed refers to the latency of data transmission; and the
variety refers to the different types of data that must be processed [59]. The consumers of energy
resources are equipped with SMs that collect the data in real time. AMI receives all data and sends
them to Meter Data Management Systems (MDMS) that controls the storage. MDMS is in charge of
the analysis of data and provides the information in a useful way [73,74]; in addition, the efficient
management of wireless resources is essential to increase the life of the network [75]. AMI is not
a technology, but rather a configured infrastructure that integrates a series of technologies to achieve
their goals. AMI includes SMs, communication networks, MDMS and the tools to integrate the
collected data of software application platforms and interfaces [16,76]. Among the communication
technologies used in this paper for extracting and transporting the information are WiFi, cellular and
optical fiber.

Optical fiber has dominated by being able to maintain communications over long distances,
such as for metropolitan networks (see Figure 1). Additionally, it provides increased bandwidth,
low transmission losses and greater tolerance to other cable access technology interference [77]. One of
the disadvantages is that it requires a huge cost for a deep penetration of fiber. Therefore, the wireless
access networks are a promising technology, since they provide the flexibility of low cost, increase the
coverage and robustness and are easy to implement. A disadvantage is that the bandwidth capacity is
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limited severely [78]. Therefore, considering the advantages of each technology, it was proposed to
build a hybrid network technology that includes wireless technology and optical fiber.

The integration of renewable energy resources with small sources of storage leads to the concept
of microgrids [74,79]. The uncontrolled integration of microgrids affects the quality of the power,
among which, the more important events are sag voltage signals induced by failure defects [80].
Therefore, with the insertion of DRES, the quality of voltage cannot be guaranteed when there is not
a communications system to provide timely information of the state of the conventional network.
To ensure the quality of voltage in the network, through the integration of microgrids, the voltage
levels of the conventional network and the DRES must be resynchronized [81]. This resynchronization
can be done by obtaining real-time information of the state of the network. Hence, the key is the
integration of an adequate communications infrastructure that allows the aggregation of data and
AMI to monitor and control the conventional electrical network. This allows the levels of voltage to be
always known when introducing microgrids to run adequate processes of quality energy management.

Therefore, in this paper, we propose a heuristic method capable of providing a roadmap for
deployment of an advanced metering infrastructure. This method can be a solution to the sizing
problem. In this way, it allows the planning of FiWi communication networks considering certain
restrictions. The speed of transmission of data does not intervene in the model as a restriction, but it
can be estimated knowing the packet rate, transmission rates and data length generated by the SMs.
In this research, these values are taken from the literature. Another calculated parameter that depends
directly on the distance is the FSPL. These parameters are referents to determine the importance
of the topology and how it affects the network for the minimization of the end to end delay and
the losses in the free space. The model minimizes the number of SMs that use cellular technology
through the incorporation of WiFi technology. In summary, in this work, we intended to deploy
a WiFi communication network optimizing resources through clustering techniques. These techniques
are based on a variant of the Prim algorithm and the minimum expansion tree algorithm (Dijkstra).
With these algorithms, the adjacency matrix (G) is constructed. This matrix is formed with the existing
relations between the different elements of the communication network (SMs, UDAPs, BSs and
central office). These elements will form the resulting route map for the optimal integration of DRES.
The model includes the connectivity of BS and the central office using a fiber optic link. In this way,
the communication resources are integrated into a FiWi network.

Table 1 presents the model and parameters of simulation to be used in this paper.

Table 1. Simulation model and parameter.

Item Parameter Value

Deployment Node density 4734 nodes/km2

Node placement Georeferenced
No. of nodes per cluster m {8, 14, 20, 27, 32}

Coverage WiFi rds 60 m
Coverage cellular rdb 1000 m

PHY Standard IEEE 802.11b
Frequency band 2.4 GHz

Transmission rates {0.5, 1, 2, 5, 11} Mbps

MAC Standard IEEE 802.11 b
3 G, 4 G, 5 G

Operation mode Tree

APP Application layer data length L 100 bytes/packet
Packet rate Lambda {0.001, 0.01, 0.1, 0.2, 0.5} packets/s

3. Problem Formulation

There are n SMs X for electrical energy measurements distributed in a georeferenced area A,
A(n). With Algorithm 1, Nearest-Neighbor Spanning Tree (N-NST), the clusters are formed and using
Algorithm 2, Optimal Delay Balancing (ODB), the SM is selected that will become the head of the
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group (UDAP) Z. Each cluster has a capacity to group until m SMs. We assume that the maximum
range of bidirectional transmission of intra-cluster data is rds and the maximum range of bidirectional
data transmission of inter-cluster data is rdb. That is to say, any intra-cluster and inter-cluster length,
the haversine distance rni and rns of which is within rds and rdb, respectively, can communicate between
each other. The X and Z that do not reach the maximum haversine distance allowed in a single jump
will do so with multiple jumps until being able to transmit the respective data packages. The multiple
breaks are restricted by w, which is the maximum number of jumps allowed. It is worth mentioning
that an SM will not be able to transmit its data directly to the BSs. Therefore, the use of a node of
transition UDAP (head of each group) is of vital importance to comply with that function. Since
UDAP has physically two slots to hold dual wireless and cellular cards, it is able to receive the
information transmitted from the access of single SMs to WiFi technology and merge the information
to retransmit these data further to the nearest cellular access BSs. Therefore, the allowed breaks will
be performed only between intra-cluster SMs or between UDAPs; mainly to transmit the data to
the closest BSs to finally send it, via optical fiber, to the central office where the information will be
processed. Consequently, the link between each of the vertices (SMs, UDAPs, BSs, central office) can
be represented by an adjacency matrix. This matrix indicates the pairs of vertices that are related or
not by a link or edge in the graph. In addition, the adjacency matrix is a binary matrix (0, 1) with zeros
in its diagonal. It stores one when there is an edge from the vertex i to the vertex j and zero when there
is no edge.

Initially, all X are candidate Z with a cost C1. Once having identified the clusters and the transition
nodes Z, the links are created at C2 cost. Due to this, it eliminates the need for all X to be Z. This happens
because cellular links are deleted at a cost C1 and links to WiFi are added at a cost C2, ensuring the
100% observability of the SMs deployed. Subsequently, the UDAP merges the data and sends them
to the BSs. Once the data are merged in the BSs, they will be transmitted through optical fiber to the
central office with a cost C3 (see Figure 1). The C1, C2 and C3 variables are identified as unit costs for
each type of technology: cellular, WiFi and optical fiber, respectively. In addition, it should be noted
that C3 >> C1 >> C2. Table 2 presents a summary of the variables used in the model.

Table 2. Variables used. SM, Smart Meter; FSPL, Free Space Path Loss; ODB, Optimal Delay Balancing.

Nomenclature Description

SM x,y Coordinates, longitude and latitude for SMs
BS x,y Coordinates, longitude and latitude for the base station
Co f f x,y Coordinates, longitude and latitude for the central office
γi,j Vector of pairs of adjacent nodes
β Vector preliminary computation of end to end delay and FSPL
α Result vector of end to end delay and FSPL calculated with the ODB algorithm
n Number of smart meters
A Georeferenced area
Z Universal data aggregation point
X Smart meters
G Adjacency matrix
m Capacity restriction
s Length cluster
k Number of clusters
w Maximum number of hops allowed
h Hop number counter
C1, C2, C3 Unit costs, cellular, WiFi and optical fiber
Cw f , Ccell , C f op Total costs, WiFi, cellular and optical fiber
rds, rdb WiFi and cellular coverage restriction, respectively
rni, rns Haversine distance (m) of the intra- and inter-cluster
disti,j Haversine distance matrix n × n
d f op Distance (m) of optical fiber
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In Equations (1)–(3), the total costs of each technology are expressed: WiFi, cellular and
optical fiber:

Cw f = C2 ∗
k

∑
j=1

(sj − 1) (1)

Ccell = C1 ∗ k (2)

C f op = C3 ∗ d f op (3)

where sj represents the length of each cluster, k is the maximum number of clusters to be deployed in
the network and d f op is the required distance of optical fiber to be used in the FiWi network.

In this way, the optimization problem can be expressed as follows:

min Cw f + Ccell + C f op (4)

subject to:
Ci ∈ <+, ∀ i = 1, 2, 3. (5)

∑
s,k ∈ n

(s− 1) + k = n, ∀ s, k ∈ n; ∀ n ∈ A(n) (6)

∑
SM∈A(n)

SM = Zi,j, ∀ Z ∈ A(n) (7)

∑
SM∈A(n)

SM = Xi,j, ∀ X ∈ A(n) (8)

∑
s∈S

S ≤ m, ∀ S ∈ A(n); ∀ m > 1 (9)

X = ∑
rni∈rds

rni ≤ rds, ∀ X ∈ A(n) (10)

Z = ∑
rns∈rdb

rns ≤ rdb, ∀ Z ∈ A(n) (11)

d f op ∈ <+, ∀ d f op 6= 0. (12)

Equation (4) corresponds to the objective function, which consists of minimizing the costs of
implementation on a FiWi network. Equation (5) necessarily asserts that there are three types of costs.
Equation (6) presents a restriction of verification, in which it must be satisfied that the sum of WiFi
links and the sum of cellular links does not exceed the total number of SMs deployed at A. This ensures
that there are no loops within the wireless network.

Equations (7) and (8) enable any SM belonging to A to be able to be a UDAP. The restriction of
capacity, of Equation (9), limits the number of intra-cluster SMs that will be able to bring together
each cluster. In Equation (10), the maximum radio coverage allowed is restricted to give way to the
existence of an intra-cluster link. It is very important to mention that the referential distances that
are restricted are those from point to point, which are given between an SM and its respective UDAP;
in such a way that all the nodes that comply with the restriction would be able to form part of a cluster
by a single jump or multiple jumps. Finally, the model verifies the capacity of the conglomerate and the
maximum radio coverage. Therefore, if a node needs more than one jump to transmit the information
to the UDAP and if the referential distance allows it, the resulting length would be the sum from
the initial node, passing through each transition node, until reaching the UDAP. In Equation (11),
the maximum radio coverage allowed is restricted to make way for the existence of inter-cluster links.
If the cluster heads (UDAPs) do not connect in a single jump to the base station (due to the coverage
radius restriction), they could do it by multiple jumps supported in the transition UDAPs. In such a
way, the point-to-point distances that are part of the accumulated distances from the initial node to
the destination node will be determined by the maximum distance allowed between the UDAPs and
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the base station. Finally, Equation (12) expresses that the necessary optical fiber distance must exist,
guaranteeing the connectivity between the BSs, toward the central office.

Algorithm 1 Nearest-neighbor spanning tree: receive (m, rds, w, γi,j, disti,j).

1: auxi,j ← disti,j;
2: pairs(i)← γi,j;
3: s← 1; h← 0;
4: if length(pairs) 6= empty && rni ≤ rds then
5: while s ≤ m ‖ h ≤ w do
6: flag← 1;
7: path← pairs(i);
8: while f lag == 1 do
9: add← find next adjacent node index (auxi,j);

10: path← [path add];
11: s = s + 1;
12: if m ≤ s then
13: flag→ 0;
14: group← path;
15: dist(group)← in f ;
16: Send (group);

Algorithm 2 Optimal delay balancing: receive (group, xs, ys).

1: for i→ 1 : length(group) do
2: xUDAP ← xs[group(i)];
3: yUDAP ← ys[group(i)];
4: k′, j′ ← Dijkstra(group, [xUDAP, yUDAP]);
5: path← [k′, j′];
6: G’(path) = 1;
7: α← End to end delay, FSPL ;
8: Sol ← [Sol α];
9: α← min(Sol);

10: index(i)← f ind(α);

11: UDAP← group(index);
12: Send (UDAP, α);

Algorithm 3 requires the input of the coordinates (SMs, BS and Co f f ). The coordinates are
georeferenced. Therefore, it allows rehearsing a real scenario. Following that, a distance matrix
is obtained using the haversine formula between the displayed SMs. Once the distance matrix is
identified, a γ vector is created with the pairs of adjacent SMs and is ordered according to the
distance between pairs from least to greatest. It is important to mention that the starting criterion
for the exploration and construction of the clusters begins from the pair of SMs with the minimum
distance. In addition, Algorithms 1 and 2 are iteratively called from Algorithm 3 to obtain the results.
Once obtained γ, Algorithm 3 calls Algorithm 1 (N-NST) to solve the wireless network deployment by
minimizing the number of UDAPs through a heuristic based on the Prim algorithm. Thus, it is possible
to guarantee the coverage of SMs as long as they comply with the restrictions. Recall that one of
the objectives is to reduce the use of cellular links (higher cost) and exchange them with WiFi links
(lower cost). Firstly, from the γ vector, the SM that has the shortest distance to the BS is selected.
This SM is a candidate that could be a UDAP. What has been done brings about a pre-clustering
of a wireless network that achieves the connection of SMs forming a tree of minimum expansion.
This problem is NP-complete. The end to end delay and the losses in the obtained topology are
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verified by propagation of the wave in the free space. This topology is recorded in the adjacency
binary matrix (G) Subsequently, Algorithm 3 verifies by means of Algorithm 2 whether it is possible to
decrease the end to end delay and the losses by propagation of the wave in the free space by means of
the intra-cluster modification previously obtained. If this decrease is possible, the algorithm takes the
latter as the best solution, otherwise it takes the first option. Therefore, the model iterates and corrects
what was originally obtained as a result with Algorithm 1. The model iterates until the objective
function (subject to restrictions) is the minimum. It also verifies that there is no option to further reduce
the cost of cellular links, delays and losses by propagation of the wave in free space. Finally, once the
near the optimum route map with the heterogeneous wireless network (WiFi-cellular) is obtained,
the algorithm proceeds to find the minimum route from the BSs to the central office with a fiber optic
link. In this way, the route map of a heterogeneous FiWi network is achieved as a final result.

Algorithm 3 Generate topology: receive (SM x,y , BS x,y, Co f f x,y, rdb, rns, n).

1: xs ← [SM x; BS x; Co f f x]

2: ys ← [SM y; BS y; Co f f y]

3: disti,j ← haversine(xs, ys);
4: γi,j ← sort(find pairs of nodes(disti,j));
5: Algorithm 1;
6: group← return;
7: Preliminary UDAP← Find(min(haversine(group, BS x,y)));
8: used← length(group);
9: temp← group;

10: while used ≤ n do
11: if index 6= 1 then
12: índex(temp) = 1;
13: used = sum(index);

14: k′, j′ ← Dijkstra (group, UDAP);
15: G(tmp(k′), tmp(j′)) = 1;

16: β← Delay end to end, FSPL ;
17: Send← group;
18: Algorithm 2;
19: (UDAP, α)← return;
20: sol ← Si f t out the best solution between vectors β and α;
21: path← f ind(sol)
22: G(path) = 1;
23: if rns ≥ rdb then
24: G(path) = 0;

25: Link UDAP to the nearest BS;
26: Find minimum path between BSs to the central office;

4. Results

The near optimal route map on an advanced measurement infrastructure under the concept
of FiWi network allows analysts to know the state of the conventional electrical network for the
optimal integration of microgrids and is presented in Figure 2. By having a georeferenced route
map, we have all the information required to run the actual deployment, and more importantly,
we can account for each of the resources required for planning, implementation, economic assessing
and FiWi network operability. In Figure 2 is depicted the existence of a multi-jump intra-cluster,
for securing 100% coverage of each of the SMs in the area of interest. It is very important to point out
that each cluster of the present paper is formed with a method that is different from the conventional
clustering methods (k-means, k-medoid and mean shift). The method that was developed to achieve
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the goals of the research proposes the application of Algorithm 1, N-NST. Since it is capable of forming
balanced clusters, subject to restrictions, it allows us to build clusters of similar lengths, contributing
in this way to reliable data on each cluster. With it, it is possible to make a sound planning with the
respective analysis, which is part of a tree-type wireless hierarchical network. It is known that the
above-mentioned conventional algorithm uses divisive methods to form clusters without observing
the lengths of each one. Therefore, they are unpredictable and do not build balanced conglomerates.
In addition, they are not able to accept design parameters such as: capacity and coverage.

Figure 2. Near optimal deployment of SMs using Fiber-Wireless (FiWi) network. Source: the authors.

In Figure 3, we can identify the near optimal route map accompanying the respective sparsity
pattern matrix (spy) obtained from the binary array of dispersed adjacency of length n × n. Therefore,
using these square matrices, the binary relationships one and zero are represented, where one
represents the existence of an edge and zero its non-existence. For each node, which binds to an
edge, is placed a one represented in blue in Figure 3, and in the remainder is placed a zero represented
in white color. Therefore, spy is a binary matrix that contains the information of the vertices and edges
of the solution to the problem posed in this research. In this figure is proposed a scenario defined by a
finite number of nodes, in which two different criteria of selection of the UDAP are applied. Figure 3a,b
corresponds to the first criterion of the selection of the UDAP, that is by the minimum distance from
the closest BS to one of the SMs of the corresponding cluster. The SMs that meets this condition will be
selected as UDAP, and the rest will be single-access SMs to WiFi technology. Figure 3c,d corresponds to
the second criterion, which applies the ODB algorithm for the selection of the UDAP. The characteristics
of the sparsity pattern matrix in this research are: square matrix, binary, symmetric and the inputs of
the zero diagonal. If the diagonal is zero, this is because there cannot be one edge of one vertex and
toward the vertex v, since it will be the same vertex and it is not possible to construct a graph G(V,V).
Therefore, a graph is defined as G(V,A), where V is the vertex represented by SMs, UDAPs, BSs or the
central office, and A are the edges represented by the WiFi-cellular links that provide a link address,
in such a way that a direct graph will be built. Therefore, the spy matrices in Figure 3 represent the
connectivity array from a vertex i to a vertex j, denoted as Vij. The number of nonzero elements of
the spy arrays is 988 (see Figure 3), which divided to two, results in 494, which is the number of WiFi
links required by the network, which represents 96.48% of the use of technology with cost C2 and
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3.52% of cellular links at a cost C1 for hybrid wireless communication. If we checked Scenario 1 in
Tables 3 and 4, we can identify that we need 494 WiFi links and 18 UDAPs, giving as a result n = 512,
which is the number of SMs to deploy in A(n). Accordingly, the number of nonzero elements of the
spy arrays of Figure 3 corresponds to the set of vertices and edges Vij and its respective image Vji,
after which being added, we have Vij + Vji, if Vij = Vji; as we refer to the same link, the result is 2Vij.
Therefore, if we replace the required number of WiFi links from Scenario 1 of Table 3 in the previous
expression, we are left with the number of nonzero elements nonzeros = 2 ∗ 494 = 988, presented in
Figure 3.

Figure 3. WiFi neighbor adjacency matrix n = 512. (a) and (b) preliminary deployment, (a) route map
and (b) representation of the adjacency matrix; (c) and (d) correspond to the scenario, minimizing the
delays. Source: the authors.

Considering the above statements, in Figure 3b,d, completely different arrays can be seen, with the
same number of nonzero elements, which correspond to the binary matrices resulting from adjacency
by applying different criteria for the selection of the UDAP. In Figure 3b, greater dispersion of the
nonzeros in the positions (400, 400) can be seen. Comparing this with Figure 3d, the existence of a
greater number of jumps required to guarantee the coverage for each SMs available on the stage occurs;
therefore, the dispersion is associated with the number of hops. Consequently, the end to end delay
parameters and FSPL will be increased. In Figure 3d, through the application of the ODB algorithm,
unnecessary dispersions are eliminated. Reducing the possible utilization of jumps to the maximum,
to transmit data packages from the most distant SMs toward their respective UDAP, this contributes to
a significant reduction of the delay for a UDAP to add and to merge the information of its associated
clusters to relay to the respective BSs. In the same way, FSPL is diminished. In Figure 3, it can be
determined that the SMs suitable to be selected as UDAP by the ODB algorithm are the nearest nodes



Sensors 2018, 18, 2724 13 of 21

to the center of mass of each group. Thereby reducing the average end to end delay of each group to
the maximum. This decreases the average number of links that a data package must pass through
to reach the respective UDAP. If the number of crossed links increases, this is because the SMs are
far away from their respective UDAPs and require mandatory jumps to be able to transmit. This can
happen because the radio coverage of the UDAP does not guarantee observability of the furthest SM.
Therefore, if the number of crossed links to transmit data packages from SMs until their respective
UDAP increases, this is because in the same way, different variables increase, such as the distances of
transmission and the jumps required, and consequently, end to end delay increases. Therefore, the end
to end delay is directly proportional to the number of average links crossed by a data package.

In addition, through Figure 3, it is shown that the heuristics proposed is able to mutate the
adjacency matrix, seeking to provide the best resulting topology to the solution of the problem.
The topology will ensure a significant reduction of the average end to end delay that the UDAP takes
to add the information of its associated clusters. Therefore, in Figure 3c,d, the georeferenced near
optimal deployment of SMs is shown. This serves for measurement, monitoring and control of the
conventional electrical system, giving rise to the possibility of an optimal data management and the
integration of micro-grids to increase the reliability and quality of energy.

Table 3. Wireless WiFi network: L = 800-bit/packet, Lambda = 0.1 package/s. Source: the authors.

Scenario WiFi Coverage Distance (m) Delay Cluster (ms) Parameters FSPL (dB)
# # of Links % Average Average 2.4 GHz 5.4 GHz 5.8 GHz

1 494 100 30.12 228.26 69.63 76.68 77.30
2 245 100 30.27 192.85 69.67 76.82 77.84
3 124 100 33.44 267.65 70.54 77.60 78.20
4 62 100 31.98 258.29 70.15 77.20 77.82
5 31 100 25.52 236.95 68.19 75.24 75.86

Table 3 presents the required number of links and the computation of the analyzed variables in
this paper for the required wireless WiFi network. It presents five different scenarios, in which the
density of SMs is varied n (512, 256, 128, 64 and 32) to be deployed in A(n), thus demonstrating the
criterion of scalability enabled by the heuristic proposed. It is known that n is the sum of WiFi and
cellular links and can be confirmed in the corresponding scenarios using Tables 3 and 4. The purpose
of these tables is to quantify the necessary resources and review the behavior of the network in its
different scenarios by analyzing the number of WiFi links and cellular links required, coverage rates,
average maximum distances of intra-cluster and inter-cluster links, average time that a UDAP takes
to add the information and the computation of FSPL considering different frequencies applicable to
a wireless WiFi and cellular network. Each of these results allows us to plan the deployment of the
network by observing their behavior. Considering that by the proposed heuristic, the minimum values
on FSPL, end to end delay and transmission distances are obtained, this provides a near-optimal
solution to the planning problem exposed in this research.

Table 4. Wireless cellular network. Source: the authors.

Scenario Cellular Coverage Distance (m) Rand Trip Time (ms) Parameters FSPL (dB)
# # Links % Average 3 G 4 G 5 G 850 MHz 1700 MHz 1900 MHz

1 18 100 84.23 70 20 5 69.55 75.57 76.53
2 11 100 59.46 70 20 5 66.52 72.54 73.51
3 4 100 55.03 70 20 5 65.85 71.87 72.84
4 2 100 68.41 70 20 5 67.74 73.76 74.73
5 1 100 66.76 70 20 5 67.53 73.55 74.52

As the frequency of the wireless WiFi and cellular network signal increases, also the FSPL metrics
increase. In general terms, the lower the frequency of transmission, the better will be the signal that
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will travel through the air and the objects. FSPL is used to predict the intensity of the required signals
in a wireless system. In addition, in Tables 3 and 4, if we add the delays that it takes a UDAP to collect
the information of the cluster and the delay in a cellular technology, we can estimate the average total
time in which the BSs have the data of each UDAP deployed in the scenario merged available. The data
of Round Trip Time (RTT) of Table 4 are taken from [82], which are applied in cellular technology. If we
compare Tables 3 and 4, we can see that the metrics of delays in WiFi are much greater than the metrics
of cellular delays. However, the amount does not exceed the allowed delays in AMI exposed in the
literature for efficient data aggregation.

Therefore, with Tables 3 and 4, viewing each scenario, we can obtain the required procedures
for the deployment of SMs under the configuration of a hybrid wireless network (WiFi-cellular).
Another fact of much interest is the length of optical fiber between the BSs and the central office.
In this case study, the length is 280 m in all scenarios, since the latitude and longitude coordinates
of the BSs and central office are fixed. As a result, the heuristic has been able to provide a minimum
route map, required for the planning of a hybrid FiWi network at the lowest cost while maximizing
reliability and the robustness of the bidirectional communication network needed to control and
supervise the conventional electrical network allowing us by optimal information management
to integrate SMG systems that will be able to run connected to the network through an adequate
synchronization and, in the same way, able to work in islanded mode, namely disconnected from the
system. The importance of microgrids, through an adequate two-way communication system, is that
they can operate autonomously according to what the physical and economic conditions dictate.

Figure 4 shows the increases in end to end delays as the capacity of a UDAP to accommodate SMs
increases. This happens because the ability to agglutinate a cluster is directly related to the number
of average links that a data package must go through to transmit the package from the SMs to their
respective UDAPs. In addition, the higher the capacity of the UDAP, the more various effects may
occur, such as: increased delay time in collecting the information, greater distances of transmission,
greater number of jumps and greater chargeability of each link in the network. On the other hand,
in each density of SMs, the topologies of each cluster are changing, to comply with the requirements of
the network, which causes and requires different routing characteristics to the extent that the density
of SMs is increasing or decreasing, causing variability in the features of each cluster and therefore
the resulting topology. As a result, if clusters are built with minimum distances, the need to transmit
through multiple jumps is null. Therefore, the delay is directly proportional to the capacity-coverage
of the UDAP and inversely proportional to the density of the SMs.
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Figure 4. End to end delay generated by each population increase by varying the capacity of each
cluster with traffic 0.1 package/s, L = 200 bits. Source: the authors.
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In Table 5, the capacity algorithm is presented 2. This algorithm helps to reduce the average times
in which the UDAP collects the information from the group. The ODB algorithm performs intra-cluster
scans to determine the best concentrator position (UDAP). It can be seen that by increasing the density
of nodes (SMs) and maintaining the capacity of the conglomerates, the need to deploy UDAPs also
increases. The number of UDAPs required in each scenario is different since a heuristic has a stop
criterion. Therefore, once the restrictions are met, the algorithm stops providing one of the possible
combinations as a solution that satisfies the constraints of the problem. Moreover, the model being
combinatorial and having complexity that is NP-complete only provides solutions that are close to
optimal. Hence, it would demand an excessive computational time to explore each of the possible
combinations and, thus, to determine an optimal global solution. Consequently, the stopping criteria
(restrictions) contribute to the relaxation of machine time that the heuristic takes to provide a near
optimal solution. Finally, Table 5 shows the end to end transmission percentages that can be reduced
by applying the ODB algorithm to a previous solution.

Table 5. L = 200 bit/packet, Lambda = 0.1 packet/s, capacity = 32. Source: the authors.

Scenario Density of SMs UDAPs Delay without ODB Algorithm Delay with ODB Algorithm
# n Units Average End to End (ms) Average End to End (ms) Reduce %

1 512 18 67.17 55.60 17.25
2 256 11 53.96 46.73 14
3 128 4 75.37 65.09 13.65
4 64 2 82.61 62.88 23.88
5 32 1 72.98 57.89 20.68

Figure 5a shows the metric obtained with the following characteristics: data length L = 800 bits,
Lambda = 0.1 package/s and by varying the density of SMs and the capabilities of each cluster.
In Figure 5b, L is kept, the density of SMs is n = 512 and Lambda and the capabilities are varied.
In Figure 5a,b, it is noted that, when the need of UDAPs decreases, the average delay of the entire
wireless network increases. This happens due to the increase in the capacity of each UDAP to
accommodate SMs. If the capacity to accommodate SMs of a UDAP increases and its radio coverage is
minimum, the need for multiple jumps to aggregate data from the more distant nodes to the UDAP
also increases. Therefore, as the multiple jumps in the cluster increase, there is also an increase in the
distance of an SM to its associated UDAP. This translates into an increased time required to add and
merge the data in each UDAP. In addition, in Figure 5a, it can be seen that the average delays while
maintaining the capacity are similar in each increment of density of the deployed SMs. This is because
these are partial averages of each cluster, which demonstrates that the heuristics is capable of building,
through appropriate topologies, balanced graphs, which in turn directly contributes to decreasing
technical losses in a wireless network. Therefore, the amount of required UDAPs responds to three
variables in particular: Density of SMs, capacity and coverage (in terms of the technical characteristics
available for the UDAP).

If we verify the behavior of the metrics in Figure 5a, in the populations of 32 and 128 with
capacities of 20–27 and 27–32, respectively, there is no need to implement a UDAP since the proposed
algorithm searches in each capacity increment to include (if the capacity allows it) the nodes that
were not included (due to the restrictions of the problem); thereby completing the clusters without
the need of adding UDAPs. On the other hand, in Figure 5a, it is clear that as the SMs’ density
increases, the slope of the delays is stabilized. This happens because, as it has a larger number of SMs,
the algorithm manages to build clusters mostly balanced in terms of the following: distances, radio
coverage and number of elements for each group. Therefore, the higher the density of SMs, the better
the results obtained in terms of optimization due to the closeness of the SMs. Therefore, when varying
the capacities of a UDAP, the following is modified: the topology, the average number of traversed
links by the package to reach its destination, the length of the cluster, the end to end delay, the link
capacity and the coverage distance.



Sensors 2018, 18, 2724 16 of 21

10
0

10
1

10
2

Number of UDAPs

(a)

0

50

100

150

D
e
la

y
 (

m
s
)

Density of SMs: 512

Density of SMs: 256

Density of SMs: 128

Density of SMs: 64

Density of SMs: 32

20 25 30 35 40 45 50 55 60 65

Number of UDAPs

(b)

10
0

10
2

10
4

D
e
la

y
 (

m
s
)

Lambda: 0.001 (packets/s)

Lambda: 0.01   (packets/s)

Lambda: 0.1     (packets/s)

Lambda: 0.2     (packets/s)

Lambda: 0.5     (packets/s)

Figure 5. Delay in different scenarios. (a) Delay vs increase of users; (b) Delay vs increase packet rate.
Source: the authors.

In Figure 5b, significant variations in the global delay are depicted for the data aggregation as
the traffic generated by each SM increases. Therefore, the higher the traffic generated, the greater
the FiWi network delay. This is because the increase in delay is directly proportional to the increase
in capacity. If the capacity of the UDAP increases, the greater will be the length of the cluster, and
therefore, the greater will be the traffic generated in each cluster; resulting in an increase in the global
end to end delays. Accordingly, the delay is directly proportional to the traffic generated by each SMs,
whereas the number of UDAPs k required is inversely proportional to the capacity and coverage of
the UDAP.

In Figure 6, it is shown that the greater the amount of average links that a data package must
go through from an SM source to a UDAP, the greater the increase in the delays of each scenario.
This happens due to the following reason: if the average number of links that a data package must
go through increases, this is because the package was generated by a node that is located at a greater
distance than the maximum radio coverage allowed for the UDAP. That is, if a node is very distant,
it increases the global delays of the wireless network. Due to this, the data package has to carry the
information through jumps, supported on the SMs of transition, to bring the information to the UDAP.
Each trend in Figure 6 corresponds to a different scenario. Therefore, the behavior of each trend
responds to the near optimal topology in each of the cases. This heuristic is a solution to the problem
of planning.

If we see the trend with n = 512, in Figure 6, we can corroborate the affirmation made in previous
paragraphs: the higher the number of deployed SMs, the better the optimization results reached.
Therefore, in Figure 6, it is shown that when there is a high density of SMs, the average number of
jumps required for the transmission of data packages is lower than in all other cases. This is because
the greater the number of SMs, the more dispersions are avoided (see Figure 3). Consequently, this
translates into technical losses in a wireless network. Finally, if the average of links crossed by a
package is zero, this means that the entire network does not require multiple jumps to transmit the
information from a source SM to a target UDAP.
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Figure 6. Average links crossed by a data packet L = 800-bit, Lambda = 0.1 package/s. Source:
the authors.

5. Conclusions

The heuristic proposed allows practitioners to deploy the necessary number of UDAPs for the
monitoring, supervision and control of conventional electrical network, providing coverage to a
number n of SMs and making possible the integration of microgrids with the conventional electrical
system. In this way, final users of energy resources will become consumers and prosumers thanks
to the integration of DRES. A fundamental feature of the model is that it adapts to the conditions
of the required wireless network. In addition, the research carried out allowed us to determine the
importance of reducing to the maximum the end to end delay of the entire network. This metric not
only provides information in terms of time, but in addition, allows us to comprehend and minimize
the chargeability of the network and the need to allocate the capacity of the point-to-point links for its
efficient operation. The model has been shown to be scalable in time and space and has the following
characteristics: presents finite solutions and optimizes the resources required by the FiWi network
using an efficient clustering method (different to the traditional). Moreover, with the N-NST algorithm,
balanced clusters can be built, which are subject to real restrictions, such as capacity and coverage.
The heuristics works with georeferenced scenarios, reducing to the maximum the aggregation delays of
data of each cluster using the ODB algorithm. Furthermore, it minimizes FSPL and is a planning model
of NP-complete complexity. The complexity of the problem lies in the population density of SMs,
since, in a graph with n SMs, there are nn−2 possible trees; thus, the proposed model is combinatorial in
nature. Hence, the results obtained are near optimal due to the exponential increase in the complexity
if there is a minimal increase of the SMs in the scenario.

Consequently, in order to relax the problem, stop criteria are introduced. The goal is that once
the algorithm converges, it stops providing a near optimal solution. We assume that all the nodes
are linked by cellular technology, a very expensive situation. As the model replaces the cellular links
with lower cost WiFi links, the objective function decreases as much as possible, thus approaching the
optimal solution. Once the model cannot further decrease the cost, the algorithm stops. Therefore,
the objective of this research is to minimize cellular links and to maximize WiFi links guaranteeing
coverage to the nodes located in the area of interest. Another fundamental characteristic of the present
model is its combinatorial nature; because, if the density of nodes increases and due to the capacity
and coverage restrictions, the nodes are not covered, and after verifying the best options, these nodes
must necessarily be UDAPs and could serve as future expansions.

In future works, a comparative analysis will be carried out between different clustering methods.
The link capacity restriction (Mbps) will be increased to decide on the topology, and finally, the fault
tolerance will be included, as well.
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