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Hypothalamic AMPK and energy balance
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Abstract
AMP‐activated protein kinase (AMPK) is the main cellular energy sensor. Acti-

vated following a depletion of cellular energy stores, AMPK will restore the

energy homoeostasis by increasing energy production and limiting energy waste.

At a central level, the AMPK pathway will integrate peripheral signals (mostly

hormones and metabolites) through neuronal networks. Hypothalamic AMPK is

directly implicated in feeding behaviour, brown adipose tissue (BAT) thermogene-

sis and browning of white adipose tissue (WAT). It also participates in other

metabolic functions: glucose and muscle metabolisms, as well as hepatic function.

Numerous anti‐obesity and/or antidiabetic agents, such as nicotine, metformin and

liraglutide, are known to induce their effects through a modulation of AMPK

pathway, either at central or at peripheral levels. Moreover, the weight‐gaining
side effects of antipsychotic drugs, such as olanzapine, are also mediated by

hypothalamic AMPK. Therefore, considering hypothalamic AMPK as a therapeu-

tic target in metabolic diseases appears as an interesting strategy due to its impli-

cation in feeding and energy expenditure, the two sides of the energy balance

equation.
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1 | ENERGY SENSING IS NEEDED
BY LIVING ORGANISMS

Through their ability to exchange energy with their envi-
ronment, living organisms can survive under different con-
ditions. Within cells, numerous metabolic pathways are
implicated in the production and utilization of energy. Het-
erotroph species, including mammals, collect energy
through the oxidation of organic compounds—essentially
carbohydrates, lipids and proteins—releasing energy that
will be stored as ATP. Each cell of a living organism can
be considered to contain an energy‐storing “battery”
mainly composed of ATP and ADP (ATP ↔ ADP + P).
Draining this energy battery leads to an increase in

intracellular ADP levels. Due to the reversibility of the
reaction (2ADP ↔ ATP + AMP), an increase in ADP:ATP
ratio during energy consumption process induces a rise in
AMP levels. Therefore, low intracellular energetic levels
are generally coupled to high AMP concentrations. In this
sense, a functional and effective intracellular energy gauge
would be driven by the evolutionary conserved principle of
ADP:ATP and AMP:ATP ratio sensing.1-4

In 1987, David Carling and Grahame Hardie established
for the first time that the two protein kinases, implicated in
the inhibition of enzymes responsible of de novo fatty acid
and cholesterol synthesis (acetyl‐CoA carboxylase, ACC
and hydroxymethylglutaryl‐CoA reductase, HMGCR,
respectively), were actually the same protein.5 As each
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enzyme had been previously identified to be activated by
AMP,6,7 the term of AMP-activated protein kinase (AMPK)
was suggested to identify both of them.8 Ten years later, the
same authors first proposed the role of AMPK as a master
cellular energy gauge.9 AMP‐activated protein kinase is
now recognized as being the main energy indicator in
eukaryotic cells, which is in my view one of the most signif-
icant discoveries in biomedical sciences in the last decades.
This theory was later expanded to a more global approach in
which AMPK could be implicated in the regulation of
numerous processes at cellular and whole‐body levels, such
as cell growth, apoptosis, mitosis, autophagy, cell polarity,
immune function, inflammation and cancer.4,10-12

2 | AMPK IS THE UNIQUE AND
REAL ENERGY SENSOR

AMP‐activated protein kinase (AMPK) is a highly evolu-
tionary conserved serine/threonine kinase. Numerous ortho-
logues of the AMPK subunits have been described in the
different eukaryotic species, including protists, plants, fungi
and animals.1,10 AMPK is a heterotrimer complex com-
posed of (a) a catalytic α subunit (of which it exists two
variants, α1, α2), which includes a serine/threonine protein
kinase domain and (b) two regulatory subunits, named β
(β1 and β2 variants) and γ (γ1, γ2, γ3). These different
subunits are encoded by different genes.1,4,10,13,14 The acti-
vation of AMPK by phosphorylation of Thr172 in the α
subunit is a process that can be allosterically regulated by
AMP (but not ADP)15 and mediated by several upstream
kinases, such as the liver kinase B1 (LKB1),16,17 the scaf-
fold protein mouse protein‐25 (MO25), the pseudokinase
STRAD18-20 and calmodulin‐dependent kinase kinases
(CaMKKs), especially CaMKKβ.21-23 AMP and ADP can
induce phosphorylation of the α subunit Thr172 by LKB1
and CaMKKβ.15-17,24 AMP and ADP also have the capac-
ity to inhibit Thr172 dephosphorylation mediated by pro-
tein phosphatases, such as protein phosphatase 2C alpha
(PP2Cα); with AMP inducing a 10‐fold more powerful
effect than ADP, both AMP and ADP being antagonized
by ATP.14,25,26 Ca2+‐ and AMP‐dependent pathways are
fully independent. Thus, an increase in Ca2+ leads to the
stimulation of CaMKKβ, increasing Thr172 phosphoryla-
tion and consequently activating AMPK.27 Finally, a mech-
anism regulating AMPK in an AMP‐independent manner
through phosphorylation/dephosphorylation processes has
been suggested. When associated with the β subunit of
AMPK, the cell‐death‐inducing like‐effector A (CIDEA)
induces a degradation of AMPK through ubiquitination,
reducing its activity.28 AMPK structure and regulation will
not be discussed in detail here but were deeply reviewed
elsewhere.1,4,10,29-31

Different stimuli can induce AMPK activation: (a) a
decrease in intracellular energy levels, such as hypogly-
caemia and hypoxia, or (b) an increase in ATP consump-
tion, such as food deprivation or muscle contraction.1-4,30,31

Changes in the adenine nucleotides’ ratio, induce AMPK
phosphorylation subsequently leading to an inhibition of
ATP‐consuming processes, as fatty acid synthesis, and to a
stimulation of catabolic processes, like fatty acid oxidation.
Thus, the main effect of an activation of AMPK is to gen-
erate ATP and re‐establish AMP:ATP and ADP:ATP
ratios, in order to maintain a cellular energy homoeosta-
sis.1-4,30,31 In this sense, catabolic processes including
autophagy (mitophagy) and mitochondrial biogenesis are
switched on.32-35 In the same way, anabolic processes such
as the biosynthesis of lipids, proteins, carbohydrates and
ribosomal RNAs, will be turned off by AMPK when the
intracellular energetic levels are reduced.1-4,30,31

3 | HYPOTHALAMIC AMPK AND
FOOD INTAKE

David Carling and Caroline Small research groups demon-
strated for the first time that hypothalamic AMPK was
implicated in the modulation of energy balance, with an
important role in the regulation of feeding.36 They showed
that key hormones implicated in the control of food intake,
such as leptin and ghrelin, could modulate AMPK at
hypothalamic level, regulating appetite.36 Similar work
realized by Barbara Kahn's group established that AMPK
was highly expressed in the different hypothalamic nuclei,
such as the arcuate (ARC), dorsomedial (DMH), paraven-
tricular (PVH) and ventromedial (VMH) as well as in the
lateral hypothalamic area (LHA).37 Notably, they have also
determined that modulation of hypothalamic AMPK path-
way could induce some adaptive change in the physiologi-
cal regulation of feeding.37 Thus, while AMPK activity is
increased under fasting in numerous hypothalamic regions,
it was shown to be inhibited when submitted to refeeding
conditions.36-38 Moreover, at the whole‐body level, an
increased activity of AMPK at a hypothalamic level
induced an increase in food intake, consequently leading to
a body weight gain, while its inhibition induced hypopha-
gia associated with weight loss.37

In the same line with the previous physiological
observations, the use of genetic models has confirmed a
major role for hypothalamic AMPK in the regulation of
food intake. Firstly, it was demonstrated that an inhibi-
tion of hypothalamic AMPK using dominant negative
isoforms of AMPKα (AMPKα‐DN) induced a decrease
in the orexigenic neuropeptides agouti‐related peptide
(AgRP) and neuropeptide Y (NPY) mRNA expression in
the ARC. Conversely, an over‐expression of
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constitutively active isoforms of AMPKα (AMPKα‐CA)
induced an increase in the expression of AgRP and NPY
in the ARC, as well as in the expression of melanin‐
concentrating hormone (MCH) in the LHA.37 Moreover,
it has been reported that AMPK could regulate NPY and
proopiomelanocortin (POMC) expression through a mod-
ulation of autophagy.39 These observations suggest that
AMPK could exert its modulation on feeding through
hypothalamic nucleus‐specific effects. This specificity
was confirmed using genetically modified mice specifi-
cally ablated in the catalytic subunit of AMPKα2 in
POMC or AgRP neurons of the ARC. Interestingly, the
two models exhibited different phenotypes: while POMC
AMPKα2 KO mice developed obesity due to hyperpha-
gia, AgRP AMPKα2 KO mice developed an age‐depen-
dent lean phenotype.40 Current evidence has also shown
that AMPK in the paraventricular nucleus of the
hypothalamus (PVH) modulates dietary preference for
carbohydrate over fat,41 expanding the role of hypothala-
mic AMPK on feeding control. However, despite the
undeniable role of AMPK in the modulation of feeding,
several recent studies might indicate that the effects of
hypothalamic AMPK observed on body weight changes
are more likely associated with an altered energy expen-
diture than to a modification of food intake.42-52

Remarkably, most of the actions of AMPK within the
hypothalamus are elicited by different hormones. It is well‐
known that both orexigenic and anorexigenic hormones
modulate hypothalamic AMPK to regulate appetite. The
most spread and accepted theory is that anorexigenic fac-
tors inhibit hypothalamic AMPK while orexigenic ones
activate it.42-50 For example, the vast majority of physio-
logical feeding inhibitors such as leptin,36,37,53 glucagon‐
like peptide‐1 (GLP‐1),48,54 oestradiol (E2),47,55 insulin37,56

and ciliary neurotrophic factor (CNTF)57 are all described
to inhibit hypothalamic AMPK. In contrast, the activation
of hypothalamic AMPK was demonstrated to be induced
by orexigenic signals such as ghrelin,36,38,58-61 adiponec-
tin,62,63 glucocorticoids,64 cannabinoids58,65 and AgRP.37

Nevertheless, resistin (RSTN), despite its anorectic effect,
stimulates hypothalamic AMPK.66 Hypothalamic AMPK
being a key modulator of food intake opened new insights
into pharmacological treatment of obesity, as for example,
melanocortin receptor agonists (including melanotan II;
MTII) or even nicotine, two well‐known feeding‐reducing
compounds that exert their actions through the inhibition of
hypothalamic AMPK.37,46,67 Conversely, anti‐psychotic
drugs (APDs), such as olanzapine, well‐known for their
orexigenic properties, stimulate hypothalamic AMPK activ-
ity.68-72 Taken all together, these data suggest that central
AMPK could be a potential target for the treatment of obe-
sity, an approach that it is strengthened by the effects of
AMPK on energy expenditure (later discussed).42-52

4 | HYPOTHALAMIC AMPK AND
THERMOGENESIS

Besides its role in the feeding behaviour regulation, the
hypothalamus also plays an important role in the modula-
tion of brown adipose tissue (BAT) thermogenesis activity
through its action on the sympathetic nervous system
(SNS). BAT is stimulated by increased firing of sympa-
thetic neurons, leading to the release of noradrenaline and
to the final activation of β3‐adrenergic receptors (β3‐
AR).73-77 At a central level, the VMH was the first
hypothalamic nuclei playing a crucial role in BAT thermo-
genic activity to be described.78 The VMH is connected to
other brainstem regions implicated in the BAT activity
modulation, such as the raphe pallidus (RPa) and the infe-
rior olive (IO), two regions involved in the sympathetic
activation of BAT.73-76

Numerous recent studies have described that hypothala-
mic AMPK had a major role in the modulation of BAT
thermogenesis through its regulatory action on the SNS.
We were able to determine through the study of the central
effects of thyroid hormones (THs) on energy homeostasis
that a VMH‐specific injection of 3,3′,5‐triiodothyronine
(T3) was able to induce an increase in BAT thermogenic
activity associated with a decrease in AMPKα phosphoryla-
tion levels in the VMH; importantly, that action run in
parallel with an increase in the sympathetic firing on brown
fat.43,51,79-81 Interestingly, adenoviruses harbouring
AMPKα‐CA isoforms administrated specifically in the
VMH reduced BAT thermogenic activity, preventing the
central T3 induced body weight loss in a feeding‐indepen-
dent manner.43,51,81,82 Current data from our group have
also demonstrated that AMPK inhibition orchestrates a
coordinate response to central T3 by activating at the same
time: (a) BAT thermogenesis and the browning of WAT,
through SNS, on the one side and (b) the parasympathetic
nervous system (PSNS)‐dependent hepatic lipogenesis on
the other side.81,83 The molecular underpinnings of this
effect depend on ceremide‐induced endoplasmic reticulum
(ER) stress 83,84 and activation of c‐Jun N‐terminal kinase
1 (JNK1) in the VMH, respectively.81

The physiological relevance of these findings is given
by the fact that this integrative mechanism is not limited to
THs. Indeed, it was demonstrated that the central action of
E2, through its binding to oestrogen receptor alpha (ERα),
decreased AMPK activity selectively in the VMH, inducing
an increase in BAT thermogenic capacity through the SNS
in a feeding‐independent manner.47,85-88 Moreover, an aden-
ovirus‐mediated activation of AMPK in the VMH (but not
in the ARC) prevented the increase in BAT thermogenesis
activity and body weight loss associated induced by cen-
trally administrated E2.47 Interestingly, variations in E2
levels during the oestrous cycle and pregnancy were also
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described to modulate the AMPK pathway, supporting also
its physiological importance.47,85 Recent studies have
demonstrated that bone morphogenetic protein 8B (BMP8B)
acts centrally on the modulation of BAT thermogenic activ-
ity depending on the activation status of AMPK in the
VMH. Notably, the specific administration of AMPKα‐CA
isoforms in the VMH prevented the BMP8B‐induced ther-
mogenesis.45,52 Similar results were obtained using pharma-
cologic antagonists or genetic deletion of orexin (OX) in
the LHA.52 Although the implication of OX neurons in the
mediation of THs and/or E2 effects is currently unknown,
the similitude in thermogenic responses observed and the
known neuroanatomical connections suggest a possible par-
ticipation, a hypothesis that will need to be confirmed. All
together, these results highlight that the hormonal modula-
tion of the VMH AMPK‐(LHA OX)‐SNS‐BAT axis is an
important element of energy balance.49,50

The demonstration that virogenetic manipulation of
AMPKα1 in the VMH activated BAT thermogenesis and
browning43,45-48,52,81,82 prompted us to identify the specific
VMH neuronal population of neurons mediating those
effects. To this end, we generated a steroidogenic factor 1
(SF1)‐specific AMPKα1 null mouse line by crossing floxed
AMPKα1 mice with SF1 Cre mice, which expressed Cre
recombinase under SF1 promoter hence targeting this subset
of neurons of the VMH. SF1 AMPKα1 KO mice displayed
feeding‐independent reduced body weight and adiposity
associated with increased energy expenditure, higher BAT
activity and thermogenesis. Notably, those effects depended
on SNS activation and were blocked by β3‐AR antago-
nism.81 Overall, this evidence demonstrates that AMPK
activity within the VMH, and more precisely in SF1 neurons,
is a physiological and canonical mechanism regulating BAT
thermogenesis through modulation of sympathetic
tone.49,81,89,90 Thus, in line with these findings, the AMPK
pathway within the VMH may appear as an attractive target
in the treatment of obesity. As an example, subcutaneously
administrated nicotine induces BAT thermogenesis and asso-
ciated weight loss through a modulation of AMPK in the
VMH.46,67 Moreover, liraglutide, a GLP‐1 agonist currently
used clinically for the treatment of type 2 diabetes (T2D),
modulates AMPK specifically in the VMH, leading to an
increase in BAT thermogenic activity associated to a brown-
ing of WAT; all this contributing to a significant weight
loss.48

5 | AMPK AS A TARGET FOR
METABOLIC DISORDERS

AMPK has become a potential therapeutic target in meta-
bolic diseases involving impaired eating behaviours, includ-
ing obesity, T2D and some lipodystrophies. AICAR was

one of the first described activators of AMPK.91 However,
despite its effects on the improvement of glucose tolerance
and on the reduction in circulating triglycerides (TG) and
free fatty acids (FFA),92 AICAR poor bioavailability and
short half‐life limit its use in human clinical trials.93 Other
AMPK activators, such as 991 and A‐769662, have also
been described to induce decreases in blood glucose and
lipid levels.94 However, as for AICAR, their therapeutic
potential is impaired due to their effects on cell cycle pro-
gression limiting their therapeutic use.95

Decrease in ectopic lipid accumulation and improvement
in insulin sensitivity can be a consequence of (a) increased
glucose uptake by skeletal muscle34,96 or of (b) an inhibition
of hepatic glucose production.97 Nowadays, various AMPK
activators are prescribed to restore abnormally high glucose
levels in T2D. Metformin, a synthetic biguanide, stimulates
AMPK in an indirect manner through the inhibition of the
mitochondrial respiratory chain.98,99 It was described that
metformin induced a decrease of 2% of haemoglobin HbA1c
levels in T2D patients, with very few associated side effects.
Interestingly, metformin also reduces the risk of cardiovascu-
lar disease100 and various types of cancer.101 Metformin main
effect—the inhibition of hepatic glucose production102—was
described to be dependent of LKB1 pathway. Therefore, as
LKB1‐null animals do not exhibit reduced blood levels of
glucose,19,103 it suggests that metformin action may be medi-
ated by an indirect activation of AMPK. Recently, it was
described that metformin could exert its effects in the liver in
an AMPK‐independent manner.104 Oppositely, animals
exhibiting ACC mutations were described to be refractory to
the metformin‐mediated improvement of lipid and glucose
levels.105 Other compounds such as the thiazolidinediones,
(in particular rosiglitazone and pioglitazone) can also induce
a drastic increase in AMP levels in skeletal muscles leading
to a fast activation of AMPK.106 These drugs may also have
potential effects on the indirect activation of AMPK, acting
on the peroxisome proliferator‐activated receptor‐gamma
(PPARγ), which in turn induces adiponectin release.107 Other
drugs, such as liraglutide or the synthetic form of exendin‐4,
act as GLP‐1 agonists leading to an increased insulin sensitiv-
ity.108 However, liraglutide has been described to act in an
opposite way on AMPK. While increasing AMPK phospho-
rylation in different tissues: (a) endothelium (decreasing
inflammation),109,110 (b) heart,111 (c) liver and muscle (im-
proving insulin sensitivity),112,113 and (d) WAT,114 liraglu-
tide reduces AMPK phosphorylation in pancreatic beta cells
(inducing cell proliferation)115 and in the hypothalamus.48

Liraglutide has also been described to increase BAT thermo-
genic capacity.48 Moreover, Exendin enhances hepatic
AMPK phosphorylation, leading to an improvement of
steatosis.116

Besides these synthetic compounds, some natural mole-
cules have also been described to improve metabolic
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conditions through AMPK activation. For instance, resvera-
trol, a natural phenol located in the membrane of red
grapes, is able to increase the levels of intracellular Ca2+,
which will activate CaMKKβ,117 leading to the indirect
activation of AMPK and subsequently to an increase in
muscle glucose uptake.118 Resveratrol has also been
described to decrease hepatic lipid accumulation, a mecha-
nism that is dependent of AMPK as the effects are abol-
ished when AMPK is genetically blocked.119 Quercetin,
one of the most abundant polyphenol encountered mostly
in plants, has been described to possess metabolically pro-
tective roles. It has been shown that quercetin could have
an anti‐adipogenic action through the activation of AMPK
and its direct substrate ACC.120 Moreover, some studies
suggest that quercetin could improve glucose metabolism
in liver and skeletal muscle through an insulin‐independent
mechanism involving AMPK activation.121 Quercetin has
also been described to decrease the cholesterol‐induced
neurotoxicity.122,123 Other natural compounds, such as bar-
berine and rooibos, were described to induce beneficial
effects on glucose homeostasis and cholesterol levels; these
effects being mediated by an activation of AMPK in
liver,124,125 muscle 126 and adipose tissue.125,127

It is well‐known that metabolic disorders, such as obe-
sity, T2D and insulin resistance, are risk factors increasing
cancer development.128 As AMPK is implicated in cellular
metabolism—its activation blocks the cell cycle through an
inhibition of anabolism—it is relevant to consider that
AMPK could limit tumour development. As tumours with
specific AMPK mutations are rare in humans, it is more
likely to assess those tumorigenic processes will rather be a
consequence of defective upstream and/or downstream
actors of AMPK, rather than AMPK directly. In this sense,
the inactivation of LKB1 activates mTORC1, leading to cell
proliferation,19,103 while mutations in LKB1 will inactivate
AMPK, leading to Peutz‐Jeghers syndrome, a cancer risk
factor.19 Recent studies were able to show that an inactiva-
tion of AMPK could stimulate the aerobic glycolysis lead-
ing to oncogenes activation and tumour suppressors
inhibition.129 Regarding this, targeting AMPK activation
has been suggested as a possible therapeutic approach in
cancer. In this sense, the AMPK activator metformin was
used to induce a decrease of tumour size in mice.101 More-
over, high levels of pACC have been found in prostate can-
cer cells, suggesting an important role of AMPK in this
type of tumours.130 It is known that AMPK is in an active
state when energy levels are low; therefore, it is logical to
advance that a continued AMPK activation might be crucial
for cancer cell survival. However, to confirm AMPK role in
tumorigenic processes, further investigations are essential.
In this sense, recent studies demonstrated that AMPK was
implicated in the regulation of glycolysis and cell survival
in response to mitophagy during mitotic arrest.12

6 | HYPOTHALAMIC AMPK AS A
TARGET FOR OBESITY

Obesity and its associated metabolic complications, such as
cancer, cardiovascular diseases and T2D, cause numerous
deaths per year worldwide. However, obesity is also con-
sidered as the most preventable epidemic.108,131-133 How-
ever, despite numerous important investments in education
and public engagement, government‐led strategies are rela-
tively unsuccessful. As stated in the World Health Organi-
zation (WHO)'s latest report, 13% of adults are considered
obese worldwide. In healthful subjects, maintaining a stan-
dard bodyweight is a matter of lifestyle. Nevertheless, a
precise comprehension of how the organism regulates
energy balance is essential to develop new therapeutic
strategies.

Numerous recent studies have highlighted an undeni-
ably key role of hypothalamic AMPK in the modulation
of the 2 components of the energy balance equation, that
is feeding and energy expenditure42,44,49,50,89,90 (Figure 1).
As already mentioned above, the antidiabetic drug, met-
formin exerts its function through an activation of AMPK
in peripheral organs (for an extensive review see99). How-
ever, it is well‐known that the metabolism associated regu-
lation of AMPK between periphery134 and the
brain37,38,44,61,134 is differential. Therefore, a central activa-
tion of AMPK would not be a suitable strategy in obesity
treatment, as it will increase feeding while decreasing
BAT thermogenesis. Inhibiting AMPK in peripheral tissues
would worsen insulin resistance and diabetes, raising the
importance of the specificity of the treatment. In this
sense, the best strategy would be to target the hypothala-
mic AMPK in a specific manner. However, the complexity
of the anatomical and structural network renders the task
highly complex. Drawing from what was carried out in
other diseases, the use of nanoparticles or exosomes135

might be an innovative strategy to target specifically
hypothalamic populations, for example AMPK SF1 neu-
rons in the VMH. Another relevant strategy would be
optogenetic neuromodulations of hypothalamic AMPK
neurons.136 However, the use of optogenetics raises some
ethical and technical problems in human interventions lim-
iting this approach. One more realistic approach would be
the use of chimeric proteins (targeting peptides associated
with effective molecules or steroid hormones) to increase
the specificity of action and limiting side effects.132,133,137-139

In these lines of findings, chimeras containing GLP‐1 plus
an oestrogen,137 or glucagon plus TH,139 could increase
the specificity of the AMPK neuronal targeting in the
VMH. However, although the specificity will be increased
using these strategies, other neuronal populations would
still be affected140 limiting efficiency and likely causing
side effects.
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All over, these exposed limitations raise some questions
about the translatability of these strategies into human clini-
cal trials. Albeit the targeting of hypothalamic AMPK can
be achieved quite precisely nowadays, other issues emerge.
In my point of view, the main concern is the one of some
long‐term consequences of targeting AMPK within the
brain. It has been well‐described that AMPK has a central
implication in numerous functions, such as lipid and glu-
cose metabolism; therefore, how hypothalamic neurons
would behave in answer to sustained AMPK inhibition?
Would this affect their survival rate? In this context,
recently published studies have demonstrated that impaired
lipid metabolism in neurons could induce lipotoxicity,
endoplasmic reticulum stress as well as leptin and insulin
resistance,83,84,141-145 all these participating in the develop-
ment of major side effects. The concern of interconnection

with other hypothalamic‐mediated physiological processes,
such as regulation of endocrine axes, is also raised. Would
AMPK modulation impact them on the long term?.60 To
address all these interrogation marks, a considerable work
would be needed to understand deeply and fully the neu-
ronal and molecular AMPK pathways and all its intercon-
nected mechanisms, a fascinating endeavour for the years
to come.
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