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In this paper, we carry out a travelling-wave analysis
of a model of tumour invasion with degenerate,
cross-dependent diffusion. We consider two types of
invasive fronts of tumour tissue into extracellular
matrix (ECM), which represents healthy tissue. These
types differ according to whether the density of ECM
far ahead of the wave front is maximal or not. In the
former case, we use a shooting argument to prove
that there exists a unique travelling-wave solution
for any positive propagation speed. In the latter
case, we further develop this argument to prove that
there exists a unique travelling-wave solution for any
propagation speed greater than or equal to a strictly
positive minimal wave speed. Using a combination of
analytical and numerical results, we conjecture that
the minimal wave speed depends monotonically on
the degradation rate of ECM by tumour cells and the
ECM density far ahead of the front.

1. Introduction
Tissue invasion is a hallmark of malignant tumours
[1] and a classical mathematical approach to study
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this process involves reaction–diffusion (R–D) partial differential equations (PDEs) [2–4]. A key
feature of many such models of tumour invasion is the inclusion of degenerate, cross-dependent
diffusion. The aim of this paper is to study this common characteristic by proposing a minimal
model which captures the main components of the tumour invasion process and is analytically
tractable. We seek two types of constant profile, constant speed travelling-wave solutions (TWS)
for our model. Both types represent invasive fronts of tumour tissue into extracellular matrix
(ECM), which represents healthy tissue, but they differ according to whether the density of
ECM far ahead of the wave front is maximal or not. For the former, we prove the existence and
uniqueness of TWS for all positive propagation speeds using the shooting argument developed by
Gallay & Mascia [5]. For the latter, we expand this shooting argument to prove the existence and
uniqueness of TWS for propagation speeds greater than or equal to a strictly positive minimal
value. Finally, we characterize this minimal wave speed using a conjecture motivated by a
combination of analytical results and numerical simulations.

(a) Reaction–diffusion PDE models of tumour invasion
To invade the surrounding healthy tissue, a tumour must overcome the defences developed by the
body to maintain homeostatic control. An important barrier to tumour invasion is the ECM, which
is a strong scaffold of proteins that holds tissue cells in place and initiates signalling pathways
for cellular processes such as migration, differentiation and proliferation [6,7]. The healthy cells
encased by the ECM form another barrier to invasion by creating a competitive environment for
the tumour cells. However, tumour cells have developed mechanisms to overcome both of these
barriers. First, they can remodel or degrade the ECM by producing specific matrix-degrading
enzymes, which act in close proximity to the cells producing them [8,9]. Second, by favouring
glycolytic metabolism even in aerobic conditions (i.e. the ‘Warburg effect’), tumour cells may
acidify the tissue microenvironment, resulting in healthy cell death [10,11]. Matrix remodelling is
a very localized process, in contrast to the diffusion of lactic acid, which occurs on a longer spatial
range.

The pioneering model by Gatenby & Gawlinksi [2] describes the spatio-temporal dynamics
of acid-mediated tumour invasion by considering the interactions of healthy tissue, tumour
tissue and the lactic acid produced by the tumour cells. Denoting the dimensionless tumour
and healthy tissue densities and acid concentration by N(x, t), M(x, t) and L(x, t), respectively, for
(x, t) ∈ R × (0, +∞), their model takes the form

∂N
∂t

= βN(1 − N) + ∂

∂x

[
DN(1 − M)

∂N
∂x

]
,

∂M
∂t

= M(1 − M − αL)

and
∂L
∂t

= γ (N − L) + ∂2L
∂x2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.1)

Here, it is assumed that healthy cells do not move, while tumour cells can invade in a density-
dependent manner. Depending on the value of α, the model describes the total or partial
destruction of normal tissue following tumour invasion. We refer the reader to the original paper
for full details of the model. A numerical study of the TWS of system (1.1), with 0<DN � 1,
showed the existence of an interstitial gap, i.e. a region devoid of cells, formed locally ahead of the
invading tumour front, for large values of α [2]. Experimental evidence has confirmed that such
an interstitial gap can exist and, in this way, the model has led to novel and accurate predictions
regarding tumour invasion. This is one of the reasons why this model and its variations have been
widely investigated [3,12–16].

(b) Nonlinear, degenerate diffusion: from scalar to multi-dimensional analysis
A key common component of the Gatenby–Gawlinksi model and its variations is the degenerate,
cross-diffusion term in the equation for the tumour cell density. For scalar R–D equations with
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nonlinear, degenerate diffusion, TWS have been extensively studied; see for instance [17–25]. In
general, if the dimensionless equation has a reaction term, f , of Fisher–Kolmogoroff–Petrovsky–
Piscounoff (Fisher–KPP) type, i.e. f ∈ C[0, 1] with f (0) = f (1) = 0 and f (n)> 0 ∀ n ∈ (0, 1), then TWS
exist and are unique if and only if the wave speed is greater than or equal to a minimal speed,
c∗ > 0, defined as the threshold speed below which no TWS exist. Further, if c = c∗, then the TWS
is of sharp type (that is, there is a discontinuity in the spatial derivative at the front) and, for each
c> c∗, there exists a TWS of front type (that is, smooth). It is non-trivial to extend such an existence
result to R–D systems with multiple equations because of the added complexity of studying
trajectories in a phase space rather than a phase plane. Kawasaki et al. [26] do so for an R–D system
with cross-dependent diffusion developed to describe spatio-temporal pattern formation in
colonies of bacteria. More specifically, numerical and analytical investigations [25,27] have shown
the existence of TWS for wave speeds above or equal to a critical value, c∗ > 0. Until recently,
most comprehensive results on the existence of TWS for spatially resolved models of tumour
invasion focused on models in which invasion is driven by haptotaxis or chemotaxis [28–31]. In
particular, the existence of TWS for the Gatenby–Gawlinski model has been largely supported by
a combination of numerical and analytical results [12–15,32,33]. This also holds for a simplified
model of invasion by Browning et al. [34], as seen in [35]. However, key existence results were
recently proved by Gallay & Mascia [5] for a reduced version of the Gatenby–Gawlinski model.

(c) The mathematical model
We now present a minimal model of tumour invasion. There is increasing evidence that
phenotypically heterogeneous tumours can contain sub-populations of cells with different traits,
e.g. matrix-degrading cells and acid-producing cells [16]. Therefore, we make the simplifying
assumption that the healthy tissue compartment solely comprises ECM, disregarding healthy
cells, and we focus on the interactions of ECM-degrading tumour cells and ECM. Using a
standard law for conservation of mass and denoting the tumour cell and ECM densities by N(x, t)
and M(x, t), respectively, for (x, t) ∈ R × (0, +∞), we propose the following system of PDEs:

∂N
∂t

= ∂

∂x

[
DN

(
1 − M

MMax

)
∂N
∂x

]
︸ ︷︷ ︸

tumour cell movement

+ ρ
(

1 − N
K

)
N︸ ︷︷ ︸

tumour growth

and
∂M
∂t

= −kMN︸ ︷︷ ︸
ECM degradation

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.2)

We assume that the tumour grows logistically, with maximum growth rate ρ and carrying
capacity K. Further, the ECM acts as a physical barrier that inhibits tumour cell movement, but
not proliferation. Thus, following Gatenby & Gawlinski [2] and others [3,16,36], we define the
diffusivity of tumour cells as a monotonically decreasing function of the ECM density to model
the obstruction of movement by the ECM. The diffusivity of tumour cells in the absence of ECM is
denoted by DN and the ECM density that inhibits all tumour cell movement is denoted by MMax.
Finally, we assume that the ECM does not grow and is degraded at a rate that is proportional to
the local tumour cell density, with a per cell degradation rate of k. We use a mass-action term to
reflect the localized nature of matrix degradation.

To reduce the number of free parameters in the system and facilitate the analysis that follows,
we non-dimensionalize equations (1.2) and, retaining the same dimensional state variables for
notational convenience, we obtain the following system:

∂N
∂t

= ∂

∂x

[
(1 − M)

∂N
∂x

]
+ (1 − N)N

and
∂M
∂t

= −κMN,

⎫⎪⎪⎬
⎪⎪⎭ (1.3)

where κ = (K/ρ)k.
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Here, we note that system (1.3) is similar to a reduced version of the model (1.1) from
Moschetta & Simeoni [15], studied by Gallay & Mascia [5], and a reduced model of melanoma
invasion from Browning et al. [34], studied by El Hachem et al. [35]. In particular, while the models
differ according to the reaction terms included for the healthy and tumour cell densities, each
model retains the same degeneracy in the cross-diffusion term, which is the key focus of this
paper.

Gallay & Mascia [5] rigorously proved the existence of a weak form of TWS for any positive
wave speed, c> 0, for the model in [15]. These TWS represent the invasion of tumour tissue into
healthy tissue, where the density of healthy tissue ahead of the wave front is at carrying capacity.
El Hachem et al. [35] performed a numerical study which suggests that such TWS also exist for
the model in [34] for any positive wave speed. In addition, their numerical results indicated the
existence of another type of TWS for the model in [34] for wave speeds above a strictly positive
minimal value. These TWS differ from the former in that the density of healthy tissue ahead of
the wave front is below carrying capacity. Finally, El Hachem et al. [35] described the dependence
of the minimal wave speed of this second type of TWS on the rescaled degradation rate of healthy
tissue, which we denote by κ : it remains constant provided κ is below some threshold value, κ∗,
which is yet to be determined, and then increases with κ for κ ≥ κ∗.

The key contribution of the present paper is to rigorously prove the existence of both
aforementioned types of TWS for system (1.3), which we achieve by applying and expanding
the shooting argument developed by Gallay & Mascia [5]. Similarly to [5,35], we will find that
the first type of TWS exists for all c> 0, whereas there is a strictly positive minimal wave speed
for the second type of TWS. We will see that this minimal wave speed for TWS of system (1.3)
can be qualitatively characterized in the same way as that for equivalent TWS of the model
in [34]. However, given κ , the value of this minimal wave speed for TWS of system (1.3) and
of the system in [34] is not the same. A final contribution of our work compared with that in
[35] is that we propose an expression for κ∗ for system (1.3), not reported in [35] for the model
in [34].

(d) Structure of the paper
We will seek constant profile, constant speed TWS for (1.3), which are heteroclinic trajectories of
a three-dimensional dynamical system connecting two of its steady states. These correspond to
spatially homogeneous, steady-state solutions of (1.3), which are given by

(N∗
0 , M∗

0) = (0, 0), (N∗
1 , M∗

1) = (1, 0), (N∗
2 , M∗

2) = (0, 1), (N∗
3 , M∗

3) = (0, M̄), M̄ ∈ [0, 1). (1.4)

Here, (N∗
0 , M∗

0) is the trivial state, (N∗
1 , M∗

1) is a state in which the tumour has successfully
invaded and degraded all ECM and (N∗

2 , M∗
2) and (N∗

3 , M∗
3) are, respectively, a tumour-free state

at maximum ECM density and a continuum of tumour-free states. We distinguish (N∗
2 , M∗

2)
from (N∗

3 , M∗
3) because of the degeneracy at M = 1 in system (1.3). Since we are interested in

studying the existence of TWS that describe the invasion of a tumour into healthy tissue, we
will look for two types of heteroclinic trajectories: those connecting (N∗

1 , M∗
1) to (N∗

2 , M∗
2) and

those connecting (N∗
1 , M∗

1) to (N∗
3 , M∗

3). In §2, we define the TWS we seek, prove preliminary
results and derive the ordinary differential equation (ODE) system they must satisfy. In §3, we
use the shooting argument developed by Gallay & Mascia [5] to show that system (1.3) has a
unique TWS connecting (N∗

1 , M∗
1) to (N∗

2 , M∗
2) for any positive wave speed. We then show that,

for each M̄ ∈ [0, 1), system (1.3) has a unique TWS connecting (N∗
1 , M∗

1) to (N∗
3 , M∗

3) for any wave
speed greater than or equal to a strictly positive minimum value. Motivated by our numerical
simulations and partial analytical results, we make a conjecture about the dependence of the
minimal wave speed on M̄ ∈ [0, 1) and κ > 0, the rescaled degradation rate of the ECM. In §4,
we present numerical simulations of system (1.3) which support and complement the preceding
analytical results. We conclude the paper in §5, where we discuss our results alongside future
research perspectives.
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2. The travelling-wave problem

(a) Preliminaries
We seek constant profile, constant speed TWS of system (1.3) by introducing the travelling-wave
coordinate ξ = x − ct. We require the wave speed c> 0 so that the tumour invades the ECM from
left to right in the spatial domain. Substituting the ansatz N(x, t) =N (ξ ) and M(x, t) =M(ξ ) into
system (1.3), we deduce that TWS must satisfy the following ODE system:

d
dξ

(
(1 − M)

dN
dξ

)
+ c

dN
dξ

+ (1 − N )N = 0 (2.1a)

and

c
dM
dξ

− κMN = 0. (2.1b)

The TWS we seek connect spatially homogeneous steady states of system (1.3) and,
equivalently, steady states of system (2.1a,b). Thus, we require one of the following sets of
asymptotic conditions to be satisfied:

lim
ξ→−∞

(N (ξ ),M(ξ )) = (1, 0), lim
ξ→+∞

(N (ξ ),M(ξ )) = (0, 1) (2.2)

or

lim
ξ→−∞

(N (ξ ),M(ξ )) = (1, 0), lim
ξ→+∞

(N (ξ ),M(ξ )) = (0,M̄) with M̄ ∈ [0, 1). (2.3)

In other words, far behind the wave, the tumour density is at carrying capacity and the ECM
has been fully degraded, whereas, far ahead of the wave, the tumour density is zero and the
ECM density is either at carrying capacity (i.e. M= 1) or at any value M ∈ [0, 1). As noted
previously, the first equation in system (1.3) is a degenerate parabolic equation since the cross-
diffusion coefficient D(M) = 1 − M is zero when M = 1. The existence of global classical solutions
of this PDE system and the corresponding ODE system (2.1a,b) is therefore unclear in cases where
M = 1 or, correspondingly, where M= 1. We therefore define a weak TWS in a similar way to the
definition of a propagation front in [5].

Definition 2.1. The triple (N ,M; c) is called a weak TWS for system (1.3) if

(i) (N ,M) ∈ C(R, [0, 1]) × C(R, [0, 1]) and (1 − M)(dN/dξ ) ∈ L2(R);
(ii) (N ,M) is a weak solution of (2.1a,b), i.e. for all (φ,ψ) ∈ C1(R) × C1(R) with compact

support ∫
R

{[
cN + (1 − M)

dN
dξ

]
dφ
dξ

− (1 − N )Nφ
}

dξ = 0 (2.4)

and ∫
R

M
{

c
dψ
dξ

+ κNψ
}

dξ = 0; (2.5)

(iii) one of the pairs of asymptotic conditions given by (2.2) and (2.3), respectively, are
satisfied.

We refer to (N ,M) as the travelling-wave profile and c as the propagation speed.

Hence, unless otherwise stated, we refer to weak TWS in the sense of definition 2.1 as TWS.
If (N ,M; c) is a TWS for system (1.3), then we can show that N (1 − N ) ∈ L1(R) and c> 0 using a

proof identical to that of lemma 2.1 in [5] and, thus, we omit it. The following lemma, whose proof
follows as in [5], states that if (N ,M; c) is a TWS for system (1.3), then N and M are non-negative
and bounded and, thus, the TWS is biologically realistic.
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Lemma 2.2. If (N ,M; c) is a weak TWS, in the sense of definition 2.1, that satisfies the asymptotic
conditions (2.3) for M̄ ∈ (0, 1), then there exists a unique point ξ̄ ∈ R ∪ {+∞} such that

(i) N ,M ∈ C∞((−∞, ξ̄ )) and 0<N (ξ )< 1, 0<M(ξ )< M̄ for ξ < ξ̄ ;
(ii) if ξ̄ <+∞, then N (ξ ) = 0 and M(ξ ) = M̄ for all ξ ≥ ξ̄ .

Remark 2.3. The case of TWS that satisfy the asymptotic conditions (2.3) for M̄= 0 is not
considered in lemma 2.2. By definition, such solutions satisfy limξ→±∞ M(ξ ) = 0 for N ≥ 0,
which is only possible if M≡ 0 on R since M is increasing for N ,M> 0. In this case, system
(2.1a,b) reduces to the Fisher–KPP equation, which has been extensively studied [37–39]. It is
known that the Fisher–KPP equation admits classical TWS that satisfy the asymptotic conditions
limξ→−∞ N (ξ ) = 1, limy→+∞ N (ξ ) = 0 and limξ→±∞(dN/dξ )(ξ ) = 0 for all c ≥ 2. This result,
therefore, holds for TWS of (2.1a,b) satisfying the asymptotic conditions (2.3) for M̄= 0.

A version of lemma 2.2 for TWS that satisfy the asymptotic conditions (2.2) follows similarly
[5]. These results highlight that the solutions we seek are classical solutions of system (2.1a,b) on
intervals of the form (−∞, ξ̄ ). Further, if ξ̄ = +∞, then the TWS are here called smooth. In contrast,
if ξ̄ <+∞, then lemma 2.2 implies that we have a corner point at ξ̄ and the TWS are here called
sharp.

(b) Desingularization of the ODE system
Definition 2.1 describes two types of TWS of system (2.1a,b), which differ in the asymptotic
conditions they satisfy at infinity. One type of solution converges to (N ,M) = (0, 1) at infinity.
Therefore, we need to elucidate the behaviour of solutions as they approach M= 1, which is
precisely when system (2.1a,b) is singular. A common approach to simplify the analysis is to
remove this singularity by re-parametrizing the system. Given a solution (N ,M) of system (2.1a,b)
satisfying either (2.2) or (2.3), we introduce a new independent variable y =Φ(ξ ) defined such that

dy
dξ

≡Φ ′(ξ ) = 1
1 − M(ξ )

∀ ξ ∈ R. (2.6)

Further introducing the following dependent variables:

n(y) =N (Φ−1(y)), m(y) =M(Φ−1(y)), y ∈ R, (2.7)

we can apply the chain rule and use (2.6) to find that, for 0 ≤ m ≤ 1, the trajectories satisfy the
following ODE system, for y ∈ R:

d2n
dy2 + c

dn
dy

+ (1 − n)n(1 − m) = 0 (2.8a)

and
dm
dy

− κ

c
m(1 − m)n = 0. (2.8b)

In line with the asymptotic conditions (2.2) and (2.3), we require one of the following to hold:

lim
y→−∞(n(y), m(y)) = (1, 0), lim

y→+∞(n(y), m(y)) = (0, 1) (2.9)

or
lim

y→−∞(n(y), m(y)) = (1, 0), lim
y→+∞(n(y), m(y)) = (0, m̄) with m̄ ∈ [0, 1). (2.10)

Importantly, system (2.8a,b) is topologically equivalent to system (2.1a,b) for (N ,M) ∈ (0, 1)2.
This follows from the fact that (2.7) defines a homeomorphism that maps the orbits of (2.1a,b)
onto the orbits of (2.8a,b), while preserving their orientation—(2.6) implies that y is an increasing
function of ξ for all 0 ≤M< 1. We also observe that, in contrast to system (2.1a,b), system (2.8a,b)
has an additional continuum of steady states of the form (n, m) = (n̄, 1), n̄ ∈ (0, 1]. These are not
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spatially homogeneous steady states of the original PDE system (1.3), so we do not consider them
as asymptotic conditions in the context of TWS.

We finally obtain a system of three first-order ODEs by introducing the additional variable
p = dn/dy and, using primes to denote derivatives with respect to y, we have

n′ = p, (2.11a)

p′ = −cp − (1 − n)n(1 − m) (2.11b)

and m′ = κ

c
m(1 − m)n. (2.11c)

In the following section, we set up a framework, first proposed in [5] for a different system,
to study two distinct types of solutions of (2.11a–c). First, those that remain in the region D1,
defined as

D1 := {(n, p, m) ∈ R
3 | m ∈ (0, 1), n ∈ (0, 1), p ∈ (−∞, 0)}, (2.12)

and that satisfy limy→−∞(n(y), p(y), m(y)) = (1, 0, 0), limy→+∞(n(y), p(y), m(y)) = (0, 0, 1). Second,
for m̄ ∈ (0, 1), those that remain in the region Dm̄, defined similarly to (2.12) as

Dm̄ := {(n, p, m) ∈ R
3 | m ∈ (0, m̄), n ∈ (0, 1), p ∈ (−∞, 0)}, (2.13)

and that satisfy limy→−∞(n(y), p(y), m(y)) = (1, 0, 0), limy→+∞(n(y), p(y), m(y)) = (0, 0, m̄).

3. Travelling-wave analysis
In this section, we study the existence of TWS. To do so, we apply the shooting argument
developed by Gallay & Mascia [5]. The crucial difference between Gallay & Mascia’s model and
system (1.3) is that the latter has an additional continuum of steady states of the form (0, M̄),
M̄ ∈ (0, 1). We find that the results of [5] for TWS connecting the equilibrium points (1, 0, 0) and
(0, 0, 1) apply, with minor modifications, to the TWS of system (2.11a–c) that satisfy the same
asymptotic conditions (2.2). Therefore, in what follows, we state the key results and present only
those proofs which require a different approach. For TWS of system (2.11a–c) that satisfy the
asymptotic conditions (2.3), we further develop the shooting argument to obtain new results.

(a) Local analysis of the equilibrium point (1, 0, 0): defining the shooting parameter
The TWS of interest satisfy limy→−∞(n(y), p(y), m(y)) = (1, 0, 0). We therefore study the behaviour
of solutions of (2.11a–c) in a neighbourhood of the equilibrium point P1 := (1, 0, 0) by performing
a linear stability analysis. The Jacobian matrix at P1 reduces to

J|(1,0,0) =

⎡
⎢⎣

0 1 0
1 −c 0

0 0
κ

c

⎤
⎥⎦ ,

and it has the following eigenvalues and eigenvectors:

λ1 = −c −
√

c2 + 4
2

, λ2 = −c +
√

c2 + 4
2

, λ3 = κ

c
(3.1)

and

v1 =
(

c −
√

c2 + 4
2

, 1, 0

)
, v2 =

(
c +

√
c2 + 4
2

, 1, 0

)
, v3 = (0, 0, 1). (3.2)

Since λ1 is negative and λ2 and λ3 are positive, P1 is a three-dimensional hyperbolic saddle point
with a two-dimensional unstable manifold, which locally is a plane through P1 generated by the
eigenvectors v2 and v3. There is also a one-dimensional stable manifold which locally is a straight
line spanned by the eigenvector v1. Trajectories defined by (2.11a–c) that leave P1 must do so via
the two-dimensional unstable manifold at P1. We therefore compute asymptotic expansions of all
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n p

a = 6

(a) (b)

m

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
–0.2

–0.2

–0.1
0

0

0

a = 5
a = 4
a = 3.72
a = 3
a = 2
a = 1
a = 0 m

n p

a = 3.0

1.0

0.8

0.8
1.0

0.6

0.6

0.4

0.4

0.2

0.2

–0.15

–0.05

–0.10
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Figure 1. Solutions of (2.11a–c) subject to the asymptotic conditions (3.3) for different values of the shooting parameter α,
κ = 1 and c = 1 (a) or c = 2 (b). The purple lines are the two continua of steady states of the system (2.11a–c), given by
(0, 0, m̄), m̄ ∈ [0, 1], and (n̄, 0, 1), n̄ ∈ [0, 1], respectively. Since (n,m)= (n̄, 1), n̄ ∈ (0, 1], are not spatially homogeneous
steady states of (1.3), the dashed curves represent solutions that are not TWS of system (1.3). The dotted curves represent
physically unrealistic solutions for which the n-component becomes negative. The values m and n attain at infinity appear to
increase monotonically (between 0 and 1) withα. (Online version in colour.)

solutions of (2.11a–c) in a neighbourhood of P1 that lie on the unstable manifold. Requiring that
n ∈ (0, 1) and p< 0, so that solutions leaving P1 remain in D1, we obtain the following result.

Lemma 3.1. Fix c> 0. For any α ≥ 0, the system (2.11a–c) has a unique solution such that, as
y → −∞,

n(y) = 1 − eλ2y + O(e(λ2+μ)y),

p(y) = −λ2 eλ2y + O(e(λ2+μ)y)

and m(y) = α eλ3y + O(e(λ3+μ)y),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.3)

where λ2 and λ3 are given by (3.2) and μ= min(λ2, λ3)> 0.

Remark 3.2. The free parameter, α, arises because the form taken by the unstable manifold at P1
does not impose any condition on m. In a sense, the choice of α is a choice of how fast m increases
from 0 and, accordingly, α will influence the value that m attains at y = +∞. We illustrate this
in figure 1 and present some corresponding travelling-wave profiles in electronic supplementary
material, S2. In addition, by remark 2.3, it is clear that α = 0 is the unique value of the shooting
parameter such that the solution of (2.11a–c) that satisfies (3.3) stays in a region where n ∈ (0, 1),
p< 0 and m = 0 and satisfies the asymptotic conditions (2.10) for m̄ = 0.

Now, the idea is to view solutions of (2.11a–c) that satisfy (3.3) as functions of α, which we
define to be our shooting parameter, and c, which is the wave speed. In particular, we denote
by (nα,c, pα,c, mα,c) the unique solution of (2.11a–c) satisfying (3.3). Our first result, which can be
proved following the approach in [5], is the following:

Lemma 3.3. If the solution (nα,c, pα,c, mα,c) is defined on some interval J := (−∞, y0), with y0 ∈ R, and
satisfies nα,c(y)> 0 for all y ∈ J, then (nα,c(y), pα,c(y), mα,c(y)) ∈D1 for all y ∈ J.

Given lemma 3.3, we introduce the following variable for any α > 0 and c> 0:

T(α, c) := sup {y0 ∈ R | nα,c(y)> 0 for all y< y0} ∈ R ∪ {+∞}. (3.4)

Then, lemma 3.3 implies that only one of the following holds:

— T(α, c)<+∞, so nα,c(T(α, c)) = 0 and pα,c(T(α, c))< 0. In this case, nα,c(y) becomes negative
for some y> T(α, c) and (nα,c, pα,c, mα,c) does not represent a valid TWS; we disregard
these values of the shooting parameter α.
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— T(α, c) = +∞, which means that we have a global solution which stays in D1 for all y ∈ R.
We are interested in finding TWS for these values of α.

Remark 3.4. Given m̄ ∈ (0, 1), lemma 3.3 provides a condition under which solutions of
(2.11a–c) that satisfy (3.3) remain in D1, but not necessarily in Dm̄ ⊂D1. In particular, even if
nα,c(y)> 0 for all y ∈ J, a solution can leave Dm̄. In that case, for a solution of (2.11a–c) that
satisfies (3.3) to converge to (0, 0, m̄) as y → +∞, we must have n(y)< 0 for some values of y
(since m is increasing for positive n). Therefore, searching for solutions that satisfy T(α, c) = +∞
is a necessary condition for the existence of physically realistic TWS that converge to (0, 0, m̄) as
y → +∞, but not a sufficient one (m may not attain the value m̄ for positive n).

(b) Monotonicity of solutions with respect to the shooting parameter
A key component of our analysis is that solutions of system (2.11a–c) satisfying (3.3) are
monotonic functions of the shooting parameter, α, provided n> 0. This result, which can be
proved following the approach in [5], can be formulated as follows:

Lemma 3.5. Fix c> 0. If α2 >α1 > 0, then T(α2, c) ≥ T(α1, c) and the solutions of (2.11a–c) defined by
(3.3) satisfy

nα2,c(y)> nα1,c(y), mα2,c(y)>mα1,c(y), (3.5)

for all y ∈ (−∞, T(α1, c)).

Lemma 3.5 shows that, for fixed c> 0, T(α, c) is an increasing function of α. Since we seek TWS
that satisfy T(α, c) = +∞, we define the following critical value of α, which depends on c:

α0(c) := inf {α > 0 | T(α, c) = +∞} ∈ [0, +∞) ∪ {+∞}. (3.6)

We then characterize α0 as a function of c in the following lemma, whose proof follows similarly
to that of lemma 2.7 in [5]:

Lemma 3.6. If c ≥ 2, then α0(c) = 0. If 0< c< 2, then 0<α0(c)<+∞.

Lemma 3.6 ensures that for all c> 0 there exist some values of α for which T(α, c) = +∞, and
thus for all c> 0 there exist some TWS. We still need to elucidate the behaviour of solutions at
infinity to determine which TWS exist for each c> 0.

Remark 3.7. The proof of lemma 3.6 relies on showing that, for any 0< c< 2, we can choose
α(c)> 0 sufficiently large such that there exists a solution of system (2.11a–c) that satisfies (3.3),
remains in region D1 and converges to (n̄, 0, 1) as y → +∞, with n̄ ∈ (0, 1). Such solutions are not
TWS, but their existence will be crucial in proving the existence of the TWS we seek.

(c) Behaviour of solutions at infinity
By lemma 3.6, we know that, for any c> 0, there exist solutions of system (2.11a–c) that satisfy (3.3)
and remain in region D1 for all y ∈ R. It remains to characterize the behaviour of these solutions as
y → +∞, and, in so doing, to establish whether they are TWS. Denoting the limits of components
of the solution at infinity as

n∞(α, c) := lim
y→+∞ nα,c(y), m∞(α, c) := lim

y→+∞ mα,c(y), p∞(α, c) := lim
y→+∞ pα,c(y),

we introduce the following lemma, which can be proved following the approach in [5].

Lemma 3.8. If T(α, c) = +∞, then the following limits exist:

n∞(α, c) ∈ [0, 1), m∞(α, c) ∈ [0, 1] and p∞(α, c) = 0. (3.7)

Moreover, if m∞(α, c) ∈ [0, 1), then n∞(α, c) = 0, and, if n∞(α, c) ∈ (0, 1), then m∞(α, c) = 1.
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Lemma 3.8 defines the possible limits of solutions (nα,c, pα,c, mα,c) of (2.11a–c) that satisfy (3.3)
and remain in region D1. We must now determine for which values of c> 0 we can find α(c)> 0
such that the corresponding solution (nα,c, pα,c, mα,c):

(i) remains in D1 and converges to (0, 0, 1) as y → +∞, or,
(ii) for each m̄ ∈ (0, 1), remains in Dm̄ and converges to (0, 0, m̄) as y → +∞.

We consider these cases separately in the two sections that follow.

(d) Solutions converging to the equilibrium point (0, 0, 1)
In this section, we show that, for each c> 0, there exists a unique value of α > 0 such that the
solution (nα,c, pα,c, mα,c) of system (2.11a–c) satisfying (3.3) remains in region D1 and converges to
the equilibrium point P2 := (0, 0, 1) as y → +∞. This then allows us to draw conclusions on the
existence and uniqueness of TWS that satisfy the asymptotic conditions (2.2).

By remark 3.7, we have that, for any c> 0, there exists α(c)> 0 sufficiently large such that the
solution of system (2.11a–c) satisfying (3.3) remains in region D1 and satisfies m∞ = 1. We can
therefore define

α1(c) := inf {α > α0(c) | m∞(α, c) = 1} ∈ [0, +∞) ∪ {+∞}, (3.8)

and prove the following result:

Lemma 3.9. For any c> 0, we have 0<α1(c)<+∞.

Proof. Fix c> 0. By remark 3.7, we know that there exists α = α(c)<+∞ large enough such that
m∞(α, c) = 1 and, hence, α1(c)<+∞. If 0< c< 2, then we know by lemma 3.6 that α0(c)> 0 and,
therefore, by the definition of α1(c), we must have α1(c) ≥ α0(c)> 0.

If c ≥ 2, then suppose, for a contradiction, that α1(c) = 0. A linear stability analysis about the
equilibrium point (0, 0, m̄1) with m̄1 ∈ [0, 1) shows that it is non-hyperbolic with two negative
eigenvalues λ1, λ2 and one zero eigenvalue λ3,

λ1,2 = −c ±
√

c2 − 4(1 − m̄1)
2

, λ3 = 0. (3.9)

Therefore, by the Centre Manifold Theorem, in a small, open neighbourhood of (0, 0, m̄1) with
m̄1 ∈ [0, 1), there exists a two-dimensional stable manifold spanned by the eigenvectors v1,2
corresponding to λ1,2. In this neighbourhood, there also exists a one-dimensional centre manifold
spanned by v3 = (0, 0, 1), which comprises the family of equilibria (0, 0, m̄2) with m̄2 sufficiently
close to m̄1. Therefore, for fixed 0< ε < 1, we can find a neighbourhoodΩ of (0, 0, 0) that is foliated
by two-dimensional stable leaves over a one-dimensional centre manifold, composed of points of
the form (0, 0, m̄) with 0 ≤ m̄< ε. Then, any solution that entersΩ converges to (0, 0, m̄) as y → +∞
for some m̄ that satisfies 0 ≤ m̄< ε.

Now, by remark 3.2, α1(c) = 0 implies that (n∞(α1(c), c), p∞(α1(c), c), m∞(α1(c), c)) = (0, 0, 0).
Thus, we can find ȳ ∈ R large enough such that (nα1(c),c(y), pα1(c),c(y), mα1(c),c(y)) ∈Ω for all y ≥ ȳ. By
continuity of solutions with respect to α, we can find δ > 0 such that (nα,c(ȳ), pα,c(ȳ), mα,c(ȳ)) ∈Ω
for any 0<α < δ. This implies that, for any such α, (nα,c(y), pα,c(y), mα,c(y)) converges to (0, 0, m̄) ∈
Ω as y → +∞. Since 0 ≤ m̄< ε by our choice ofΩ , there exists 0<α < δ such that 0 ≤ m∞(α, c)< ε.
However, since α1(c) = 0, we must have m∞(α, c) = 1 for all α > 0 and we have reached the desired
contradiction. �

Lemma 3.9 ensures that, for any c> 0 and α ≥ α1(c), the solution (nα,c, pα,c, mα,c) of
(2.11a–c), subject to the asymptotic conditions (3.3), stays in region D1 and satisfies
(n∞(α, c), p∞(α, c), m∞(α, c)) = (n∞(α, c), 0, 1), where n∞(α, c) ∈ [0, 1). We would now like to show
that, for any c> 0, there exists a unique α ≥ α1(c) such that n∞(α, c) = 0.

For the rest of this section, we suppose that α ≥ α1(c). A linear stability analysis at the
equilibrium point P2 shows that P2 is non-hyperbolic, with one negative eigenvalue and two zero
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eigenvalues. Therefore, at P2, we have a one-dimensional stable manifold, WS ⊂ R
3, generated

by the eigenvector v1 = (1/c, 1, 0) associated with λ1 = −c. We also have a two-dimensional
centre manifold, WC ⊂ R

3, which is tangent at P2 to the subspace spanned by the eigenvectors
v2 = (1, 0, 0) and v3 = (0, 0, 1) associated with λ2 = λ3 = 0. Solutions of (2.11a–c) that satisfy
(3.3) and remain in a small enough neighbourhood of P2 for all sufficiently large y> 0 converge
to WC. Therefore, in order to study the dynamics around P2, we perform a nonlinear local
stability analysis. We begin by transforming system (2.11a–c) into normal form by introducing
the following variables:

ñ(y) = n(y) + p(y)
c

, p̃(y) = p(y), m̃(y) = 1 − m(y), (3.10)

which satisfy the following system:

dñ
dy

= −1
c

m̃
(

ñ − p̃
c

)(
1 − ñ + p̃

c

)
, (3.11a)

dp̃
dy

= −cp̃ − m̃
(

ñ − p̃
c

)(
1 − ñ + p̃

c

)
(3.11b)

and
dm̃
dy

= −κ
c

m̃(1 − m̃)
(

ñ − p̃
c

)
. (3.11c)

Then, we know that, in a neighbourhood of the origin, the centre manifold can be described
by a function P(ñ, m̃) such that (ñ, p̃, m̃) ∈WC if and only if p̃ =P(ñ, m̃), where

P(ñ, m̃) = −1
c

ñm̃(1 + O(|ñ| + |m̃|)). (3.12)

Using this expression for the centre manifold in a neighbourhood of the origin, we must now
prove that there is a solution of system (3.11a–c) converging to the centre manifold WC that
converges to the origin as y → +∞. We are interested in solutions (n, p, m) of (2.11a–c) that satisfy
(3.3) and remain in region D1 for all y ∈ R. Equivalently, we seek solutions (ñ, p̃, m̃) of (3.11a–c) that
satisfy (3.3) and lie on a manifold W+

C ⊂WC, where

W+
C ={(ñ, p̃, m̃) ∈WC | ñ, m̃> 0}. (3.13)

The following lemma characterizes such solutions that converge to the origin as y → +∞ (the
proof corresponds, with minor modifications, to that of lemma 2.12 in [5]).

Lemma 3.10. Up to translations in the variable y, there exists a unique solution of (3.11a–c) that
satisfies the asymptotic conditions (3.3), lies on the centre manifold W+

C and whose components converge
to zero as y → +∞, such that

ñ(y) = c
κy

+ O
(

1
y2

)
and m̃(y) = c

y
+ O

(
1
y2

)
. (3.14)

Lemma 3.10 establishes the existence of at least one solution of (2.11a–c) that satisfies (3.3),
stays in region D1 and converges to (1, 0, 0) as y → +∞. Furthermore, this solution is uniquely
determined on the centre manifold W+

C . Given that any solution of (2.11a–c) that satisfies (3.3),
stays in region D1 and converges to (0, 0, 1) as y → +∞ must do so via W+

C and, given the
monotonicity result of lemma 3.5, it is easy to prove the following lemma as in [5].

Lemma 3.11. Given any c> 0, there exists at most one value of α ≥ α1(c) of the shooting parameter
such that the solution (nα,c(y), pα,c(y), mα,c(y)) of (2.11a–c) satisfying the asymptotic properties in lemma
3.1 converges to P2 = (0, 0, 1) as y → +∞.

Exploiting the continuity of solutions with respect to the shooting parameter, α, we can
extend lemma 3.11 to determine the unique value of α, given c> 0, for which the solution
(nα,c(y), pα,c(y), mα,c(y)) of (2.11a–c) that satisfies (3.3) converges to (0, 0, 1) as y → +∞. For the
proof of the following result, we refer the reader to the proof of lemma 2.14 in [5].
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Lemma 3.12. Given any c> 0, if α = α1(c), then the solution (nα,c(y), pα,c(y), mα,c(y)) of (2.11a–c)
satisfying the asymptotic properties in lemma 3.1 converges to P2 = (0, 0, 1) as y → +∞.

Using lemma 3.12 and reversing the change of variables (2.6), it is straightforward to construct
a unique (up to translation) solution (N (ξ ),M(ξ )) = (n(Φ(ξ )), m(Φ(ξ ))) of system (2.1a,b) that
satisfies the asymptotic conditions (2.2). This leads to our first main result, which can be proved
following the approach in [5]:

Theorem 3.13. Fix κ > 0. For any c> 0, system (1.3) has a smooth weak TWS (N ,M; c) connecting
(1, 0) and (0, 1). This solution is unique (up to translation), and N and M are monotonically strictly
decreasing and increasing functions of x − ct = ξ ∈ R ∪ {−∞, +∞}, respectively.

(e) Solutions converging to the equilibrium point (0, 0, m̄) with m̄ ∈ [0, 1)
In this section, we consider solutions of system (2.11a–c) subject to (3.3) that stay in region Dm̄ ⊂
D1 and converge to (0, 0, m̄) for m̄ ∈ (0, 1) as y → +∞. Using arguments similar to those for the
previous case, we can show that, for all m̄ ∈ [0, 1), there exists a strictly positive, real-valued wave
speed above which the solutions we seek exist and are unique. We will refer to this wave speed
as the minimal wave speed and we will observe that it depends on κ , the rescaled degradation rate
of ECM. In particular, given κ > 0, we denote the minimal wave speed by c∗

κ (m̄) for each m̄ ∈ [0, 1).
This will enable us to draw some conclusions on the existence and uniqueness of TWS that satisfy
the asymptotic conditions (2.3).

At this stage, we have no information about the possible values of c∗
κ (m̄) for m̄ ∈ (0, 1) and

κ > 0. More specifically, given κ > 0, we currently have c∗
κ (m̄) ∈ R

∗+ for each m̄ ∈ (0, 1). For m̄ = 0,
by remark 2.3, it is straightforward to show that c∗

κ (0) = 2 for all κ > 0. To characterize the minimal
wave speed for m̄ ∈ (0, 1), we begin by proving a non-existence result.

Lemma 3.14. Fix κ > 0 and m̄ ∈ (0, 1). If 0< c< 2
√

1 − m̄, then there is no α′ ∈ [α0, +∞) such that
the solution (nα′,c, pα′,c, mα′,c) of (2.11a–c) that satisfies the asymptotic properties in lemma 3.1 converges
to (0, 0, m̄) as y → +∞.

Proof. Fix κ > 0 and m̄ ∈ (0, 1) and suppose that 0< c< 2
√

1 − m̄. We suppose for a contradiction
that there exists α′ ∈ [α0, +∞) such that the solution (nα′,c, pα′,c, mα′,c) of (2.11a–c) that satisfies (3.3)
converges to (0, 0, m̄) as y → +∞. By the definition of α0(c), this implies that (nα′,c, pα′,c, mα′,c)
stays in region D1 for all y ∈ R. Now, we can choose ε > 0 small enough such that 0< c<
2
√

(1 − m̄ − ε)(1 − ε) and we can also find ȳ sufficiently large such that nα′,c(y)< ε and mα′,c(y)<
m̄ + ε for all y ≥ ȳ. Solutions of the constant coefficient second-order ODE

n′′ + cn′ + (1 − m̄ − ε)(1 − ε)n = 0,

with lim
y→−∞ n(y) = 1, lim

y→+∞ n(y) = 0, lim
y→±∞ n′(y) = 0,

have infinitely many zeros in (ȳ, +∞) (since its characteristic equation has complex roots). Since
(1 − m̄ − ε)(1 − ε)< (1 − mα′,c(y))(1 − nα′,c(y)) for all y ∈ (ȳ, +∞), Sturm’s Comparison Theorem
implies that nα′,c(y) must also have infinitely many zeros in (ȳ, +∞). Therefore, (nα′,c, pα′,c, mα′,c)
exits region D1 (and Dm̄), contradicting the assumption that α′ ≥ α0(c). �

Given κ > 0 and m̄ ∈ (0, 1), if the minimal wave speed, c∗
κ (m̄), exists, then lemma 3.14 yields a

lower bound for c∗
κ (m̄). More specifically, for all κ > 0 and m̄ ∈ (0, 1), c∗

κ (m̄) ≥ 2
√

(1 − m̄).

Lemma 3.15. Fix κ > 0. If c ≥ 2, then, for all m̄ ∈ (0, 1), there exists a unique α ∈ (α0(c),α1(c)) such
that the solution of (2.11a–c) satisfying the asymptotic properties in lemma 3.1 converges to (0, 0, m̄) as
y → +∞.

Proof. Fix κ > 0 and suppose that c ≥ 2. By lemmas 3.6 and 3.9, we know that 0 = α0(c)<α1(c).
Then, by the definition of α0(c), we have that, for any α ∈ (α0(c),α1(c)), T(α, c) = +∞, and the
solution (nα,c, pα,c, mα,c) of (2.11a–c) satisfying (3.3) stays in the region D1 for all y ∈ R by lemma
3.3. Then, by lemma 3.8, we know that, for every α ∈ (α0(c),α1(c)), the limits n∞(α, c), p∞(α, c),
m∞(α, c) exist. In addition, by monotonicity of nα,c and mα,c with respect to α (see lemma 3.5) and
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the fact that (n∞(α1(c), c), m∞(α1(c), c)) = (0, 1) by lemma 3.12, we must have

0 = n∞(α0(c), c) ≤ n∞(α, c) ≤ n∞(α1(c), c) = 0

and
0 = m∞(α0(c), c) ≤ m∞(α, c) ≤ m∞(α1(c), c) = 1.

We recall that α0(c) = 0 and α1(c) are the unique values of the shooting parameter for which
the solution of (2.11a–c) that satisfies (3.3) remains in region D1 and converges to (0, 0, 0) and
(0, 0, 1) as y → +∞, respectively. Therefore, we find that, for every α ∈ (α0(c),α1(c)), the limits for
(nα,c, pα,c, mα,c) as y → +∞ must satisfy

n∞(α, c) = 0, m∞(α, c) ∈ (0, 1) and p∞(α, c) = 0. (3.15)

We will now prove that the mapping α �→ m∞(α, c) is continuous and strictly increasing on
[α0(c),α1(c)]. Choose α′, α′′ such that α0(c)<α′ <α′′ <α1(c). Suppose, for a contradiction, that

lim
y→+∞ mα′,c(y) = m∞(α′, c) = m̄ = m∞(α′′, c) = lim

y→+∞ mα′′,c(y).

Irrespective of the asymptotic conditions (3.3), we can solve equation (2.11c) for y ∈ R and impose
limy→+∞ m(y) = m̄ ∈ (0, 1) to obtain

m(y) =
[

1 + 1 − m̄
m̄

exp

(
κ

c

∫+∞

y
n(s) ds

)]−1

. (3.16)

Any solution for which limy→+∞ m(y) = m̄ ∈ (0, 1) must therefore take the form (3.16). Thus, mα′,c
and mα′′,c take the form (3.16), with n replaced by nα′,c and nα′′,c, respectively. Now, by lemma 3.5,
we know that mα′,c(y)<mα′′,c(y) for all y ∈ R since α′ <α′′. We therefore have, for any y ∈ R,[

1 + 1 − m̄
m̄

exp

(
κ

c

∫+∞

y
nα′,c(s) ds

)]−1

<

[
1 + 1 − m̄

m̄
exp

(
κ

c

∫+∞

y
nα′′,c(s) ds

)]−1

(3.17)

⇒
∫+∞

y
(nα′,c(s) − nα′′,c(s)) ds> 0. (3.18)

Since (nα′,c(y) − nα′′,c(y))< 0 for all y ∈ R by lemma 3.5, the inequality (3.18) cannot hold and
we have reached a contradiction. Since we have that m∞(α′, c) ≤ m∞(α′′, c), by monotonicity of
solutions with respect to α, and that m∞(α′, c) �= m∞(α′′, c), by the above argument, we conclude
that m∞(α′, c)<m∞(α′′, c). This proves that the mapping α �→ m∞(α, c) is strictly increasing on
(α0(c),α1(c)). Using the fact that α0(c) and α1(c) are, respectively, the unique values of the shooting
parameter for which the solution of (2.11a–c) given by lemma 3.1 converges to (0, 0, 0) and (0, 0, 1)
as y → +∞, we have that α �→ m∞(α, c) is strictly increasing on [α0(c),α1(c)].

We now prove that the mapping α �→ m∞(α, c) is continuous on [α0(c),α1(c)]. For fixed
α′ ∈ [α0(c),α1(c)), (3.15) implies that n∞(α′, c) = 0, p∞(α′, c) = 0 and m∞(α′, c) = m̄1 ∈ [0, 1). In the
proof of lemma 3.9, we performed a linear stability analysis about the equilibrium point
(0, 0, m̄1) for m̄1 ∈ [0, 1). We showed that, for fixed ε > 0, we can find a neighbourhood Ω

of (0, 0, m̄1) that is foliated by two-dimensional stable leaves over a one-dimensional centre
manifold, which comprises equilibria of the form (0, 0, m̄) for |m̄ − m̄1|< ε. Then, any solution
that enters Ω converges to (0, 0, m̄) as y → +∞ for some m̄ that satisfies |m̄ − m̄1|< ε. Since
(nα′,c(y), pα′,c(y), mα′,c(y)) converges to (0, 0, m̄1) as y → +∞, we can find ȳ ∈ R large enough such
that (nα′,c(y), pα′,c(y), mα′,c(y)) ∈Ω for all y ≥ ȳ. By continuity of solutions with respect to α, we can
find δ > 0 such that (nα′′,c(ȳ), pα′′,c(ȳ), mα′′,c(ȳ)) ∈Ω for any α′′ ∈ [α0(c),α1(c)) such that |α′ − α′′|<
δ. This implies that, for any such α′′, (nα′′,c(y), pα′′,c(y), mα′′,c(y)) converges to (0, 0, m̄2) ∈Ω as
y → +∞, for some m̄2 �= m̄1 (since m∞(α, c) is strictly increasing with α). By our choice of Ω ,
|m̄2 − m̄1|< ε, i.e. |m∞(α′′, c) − m∞(α′, c)|< ε for any α′′ ∈ [α0(c),α1(c)) such that |α′ − α′′|< δ. This
proves continuity of the mapping α �→ m∞(α, c) on [α0(c),α1(c)).

We finally show continuity at α1(c). We fix ε > 0 and note that, since m∞(α1(c), c) = 1, we can
find ȳ ∈ R large enough such that |mα1(c),c(y) − 1|< ε/2 for all y ≥ ȳ. By continuity of solutions
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with respect to α, we can find δ > 0 such that |mα′,c(ȳ) − mα1(c),c(ȳ)|< ε/2 for any α′ ∈ [α0(c),α1(c)]
satisfying |α′ − α1(c)|< δ, i.e. for any α′ ∈ (α1(c) − δ,α1(c)]. Therefore, we have that |mα′,c(ȳ) − 1|<
ε for any α′ ∈ (α1(c) − δ,α1(c)]. Moreover, for any α′ ∈ (α1(c) − δ,α1(c)], the function mα′,c(y) is
strictly increasing for all y ∈ R and bounded above by 1, so m∞(α′, c) ∈ (mα′,c(ȳ), 1]. In particular,
for any α′ ∈ (α1(c) − δ,α1(c)], we have |m∞(α′, c) − 1| = |m∞(α′, c) − m∞(α1(c), c)|< ε. This proves
continuity of the mapping α �→ m∞(α, c) at α1(c).

We have now shown that the mapping α �→ m∞(α, c) is strictly increasing and continuous on
[α0(c),α1(c)]. Since m∞(α0(c), c) = 0 and m∞(α1(c), c) = 1, application of the Intermediate Value
Theorem enables us to conclude that, for any m̄ ∈ (0, 1), there exists a unique α ∈ (α0(c),α1(c)) such
that m∞(α, c) = m̄. �

Remark 3.16. Using a similar proof to the above, we can generalize lemma 3.15 to obtain
the following result. Given κ , c> 0, suppose that there exists a unique value of the shooting
parameter, α ∈ [α0(c),α1(c)), such that the solution (nα,c, pα,c, mα,c) of (2.11a–c) satisfies (3.3) and
converges to (0, 0, m̄1) as y → +∞ for some m̄1 ∈ [0, 1). Then, for all m̄2 ∈ (m̄1, 1), there exists a
unique value of the shooting parameter, α′ ∈ (α,α1(c)), for which the solution of (2.11a–c) that
satisfies (3.3) stays in Dm̄2 and converges to (0, 0, m̄2) as y → +∞.

Lemma 3.15 implies that, for all m̄ ∈ (0, 1), the minimal wave speed, c∗
κ (m̄), exists and is

bounded above by 2. Then, given m̄ ∈ [0, 1), for any c ≥ c∗
κ (m̄), we can define

αm̄(c) := {α ≥ α0(c) | m∞(α, c) = m̄} ∈ [α0(c),α1(c)). (3.19)

We now improve the upper bound on c∗
κ (m̄) for m̄ ∈ (0, 1) by formulating a conjecture. We

consider the following generalized Fisher–KPP equation with reaction term, g, of Fisher–KPP
type,

n′′ + cn′ + g(n) = 0

with lim
y→−∞ n(y) = 1, lim

y→+∞ n(y) = 0, lim
y→±∞ n′(y) = 0.

⎫⎬
⎭ (3.20)

One typically seeks TWS such that n is monotonically decreasing, in which case we can invert
n(y) to obtain a function Y(n), n ∈ [0, 1]. Considering the new variable P(n) := n′(Y(n)), we obtain
the following first-order boundary value problem (BVP):

P′ = −c − g(n)
P

and P(0) = 0,

⎫⎪⎬
⎪⎭ (3.21)

subject to P(1) = 0, P(n)< 0 ∀ n ∈ (0, 1). Studying TWS of (3.20) and solutions of (3.21), subject
to their respective asymptotic and boundary conditions, is equivalent [22]. Moreover, it is known
that if g′′(n)< 0 ∀ n ∈ [0, 1], then (3.21) subject to P(1) = 0, P(n)< 0 ∀ n ∈ (0, 1) has a unique solution
if c ≥ 2

√
g′(0) [40–42]. Therefore, TWS of (3.20) exist and are unique if c ≥ 2

√
g′(0).

Returning to our original problem, by introducing P(n) := n′(Y(n)) and M(n) := m(Y(n)), we
view the system (2.11a–c) subject to the conditions (2.3) as the following BVP:

P′ = −c − (1 − n)n(1 − M(n))
P

,

M′ = κ

c
M(1 − M)N

P

and P(0) = 0, M(0) = m̄,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.22)

subject to the additional conditions

P(n)< 0, 0<M(n)< m̄ ∀ n ∈ (0, 1), P(1) = M(1) = 0. (3.23)



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210593

..........................................................

In electronic supplementary material, S1, we show that g(n) = (1 − n)n(1 − M(n)) is of Fisher–KPP
type for 0 ≤ M ≤ m̄< 1 and that g′′(0)< 0 if κ ≤ κ∗(m̄), where

κ∗(m̄) := 1 − m̄
m̄

∀ m̄ ∈ (0, 1). (3.24)

We conjecture that, if κ ≤ κ∗(m̄), then g′′(n)< 0 ∀ n ∈ [0, 1]. By the preceding result for the
generalized Fisher–KPP equation, this would imply that, given 0< κ ≤ κ∗(m̄), the system
(2.11a–c) subject to the conditions (2.3) has unique TWS for c ≥ 2

√
g′(0) = 2

√
1 − m̄. Now, given κ >

0, we let m∗(κ) := 1/(κ + 1). Noting that 0< κ ≤ κ∗(m̄) if and only if 0< m̄ ≤ m∗(κ), we formulate
the following conjecture.

Conjecture 3.17. Fix κ > 0 and m̄ ∈ (0, m∗(κ)]. Given c ≥ 2
√

1 − m̄, there exists a unique α′ ∈
[α0(c),α1(c)) such that the solution (nα′,c, pα′,c, mα′,c) of (2.11a–c) that satisfies the asymptotic
properties in lemma 3.1 converges to (0, 0, m̄) as y → +∞. In particular, if c = 2

√
1 − m̄, then

α′ = α0(c).

Conjecture 3.17 implies that, given κ > 0, there are values of m̄ ∈ (0, 1) such that the solutions of
(2.11a–c) that satisfy the asymptotic conditions (2.3) behave similarly to solutions of a generalized
Fisher–KPP equation with reaction term g(n) = (1 − n)n(1 − m̄). In particular, the minimal wave
speed for these TWS is defined similarly to that of a generalized Fisher–KPP equation, i.e. it is
the smallest value of c> 0 such that (0, 0, m̄) is a stable node, and not a stable spiral, for system
(2.11a–c). In addition, using lemmas 3.14 and 3.15 and conjecture 3.17, we make the hypothesis
that, if m̄ ∈ (m∗(κ), 1) or, equivalently, if κ > κ∗(m̄), then the minimal wave speed for TWS that
converge to (0, 0, m̄) as y → +∞ should satisfy c∗

κ (m̄) ∈ (2
√

1 − m̄, 2). In other words, in these cases,
we expect that there is another mechanism that can lead to n(y)< 0, y ∈ R, even if (0, 0, m̄) is a
stable node for the system (2.11a–c).

The preceding hypothesis and conjecture 3.17 are supported by numerical simulations of the
PDE system (1.3) and ODE system (2.11a–c). In figure 2, we show that solutions of system (1.3)
subject to the initial conditions (4.1) with M̄ ∈ [0, 1) evolve into travelling waves with constant
propagation speed (see electronic supplementary material, S2 for corresponding travelling-wave
profiles). We observe that, for 0< κ ≤ κ∗(M̄), this speed is independent of κ , and, calculating the
slopes of these lines, we find that it is approximately equal to 2

√
1 − M̄. Additionally, when κ >

κ∗(M̄), we observe that the wave speed selected by the PDE increases with κ . We also solved
numerically the system (2.11a–c), subject to the asymptotic conditions (3.3), for the same values
of κ > κ∗(M̄) and the respective values of the propagation speed estimated using the solutions of
the PDE system (results not shown). We observed that, given κ > κ∗(M̄), the wave speed selected
by the PDE appears to correspond to the smallest wave speed such that the solution (n, p, m) of
the system (2.11a–c), subject to (3.3), satisfies n(y)> 0 ∀ y ∈ R and converges to (0, 0, m̄), m̄ = M̄.

Now, suppose conjecture 3.17 is true. Then, given κ > 0, for each m̄ ∈ [0, m∗(κ)] and c ≥
2
√

1 − m̄, αm̄(c) as defined by (3.19) exists and is the unique α′ mentioned in the statement of
conjecture 3.17. Using remark 3.16 and conjecture 3.17, the subsequent result follows naturally
(we omit the proof for brevity).

Lemma 3.18. Suppose conjecture 3.17 is true and fix κ > 0. If c ≥ 2
√

1 − m∗(κ), then, for all
m̄ ∈ (m∗(κ), 1), there exists a unique α ∈ (αm∗(κ)(c),α1(c)) such that the solution of (2.11a–c) that satisfies
the asymptotic properties in lemma 3.1 converges to (0, 0, m̄) as y → +∞.

This lemma allows us to obtain a sharper upper bound on the minimal wave speed for
solutions of (2.11a–c) subject to (3.3) that converge to (0, 0, m̄) as y → +∞, where m̄ ∈ (m∗(κ), 1).
We now summarize what we can conclude about the minimal wave speed c∗

κ (m̄).

Lemma 3.19. Suppose conjecture 3.17 is true. Given κ > 0, the minimal wave speed c∗
κ (m̄) is a

monotonically decreasing function on [0, 1), such that

c∗
κ (m̄)

⎧⎨
⎩=2

√
1 − m̄ if m̄ ∈ [0, m∗(κ)],

∈
[
2
√

1 − m̄, 2
√

1 − m∗(κ)
]

if m̄ ∈ (m∗(κ), 1).
(3.25)
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Figure 2. Wenumerically solve system (1.3) on the one-dimensional spatial domain, x ∈X := [0, 200], and impose the initial
conditions (4.1) with M̄= 0.25 (a) and M̄= 0.75 (b). Each plot represents X(t) such that N(X(t), t)= 0.5 for t ∈ (0, 100] when
κ < κ∗, withκ∗ defined by (3.24), andwhenκ ∈ {κ∗, 10κ∗, 100κ∗, 1000κ∗}. We see that the front travels with a constant
propagation speed that increases monotonically with κ . (Online version in colour.)

Proof. Fix κ > 0. Suppose, for a contradiction, that c∗
κ is not a monotonically decreasing function

of m̄ on [0, 1). Then, we can find 0 ≤ m̄′ < m̄′′ < 1 such that c∗
κ (m̄′)< c∗

κ (m̄′′). Now, choose c ∈
(c∗
κ (m̄′), c∗

κ (m̄′′)). Then, there exists a solution of (2.11a–c) that satisfies the asymptotic conditions
(3.3), stays in region Dm̄′ and converges to (0, 0, m̄′) as y → +∞, but there does not exist a solution
of (2.11a–c) that satisfies the asymptotic conditions (3.3), stays in region Dm̄′′ and converges to
(0, 0, m̄′′) as y → +∞. As m̄′′ ∈ (m̄′, 1), remark 3.16 gives us a contradiction, hence c∗

κ is a decreasing
function of m̄ on [0, 1).

From lemma 3.14 and conjecture 3.17, we know that the minimal wave speed for all
m̄ ∈ [0, m∗(κ)] is c∗

κ (m̄) = 2
√

1 − m̄. Since c∗
κ is a decreasing function of m̄ on [0, 1), we must have

c∗
κ (m̄) ≤ 2

√
1 − m∗(κ) for any m̄ ∈ (m∗(κ), 1). Finally, by lemma 3.14, we know that c∗

κ (m̄) ≥ 2
√

1 − m̄
for any m̄ ∈ (m∗(κ), 1). This completes the proof of lemma 3.19. �

While we do not have a complete characterization of the minimal wave speed for all κ > 0 and
m̄ ∈ (0, 1), we can now state our second main result. It can be proved similarly to theorem 3.13, so
we refer the reader to [5] for its proof.

Theorem 3.20. Suppose conjecture 3.17 is true. Given κ > 0, for any M̄ ∈ [0, 1), there exists a minimal
wave speed c∗

κ (M̄) defined by (3.25) such that:

(i) For 0< c< c∗
κ (M̄), system (1.3) has no weak TWS (N ,M; c) connecting (1, 0) and (0,M̄).

(ii) For c ≥ c∗
κ (M̄), system (1.3) has a smooth weak TWS (N ,M; c) connecting (1, 0) and (0,M̄).

Moreover, this solution is unique (up to translation) and N ,M are monotonically strictly
decreasing and increasing functions of x − ct = ξ ∈ R ∪ {−∞, +∞}, respectively.

4. Numerical solutions of the PDE model
In this section, we present numerical solutions of the PDE model (1.3), which complement our
travelling-wave analysis. We solve (1.3) on the one-dimensional spatial domain X := [0, L], where
L> 0, using the method of lines. A detailed description of the numerical methods employed is
provided in electronic supplementary material, S2. Similarly to [16], we assume that the tumour
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Figure 3. We solve system (1.3) on the one-dimensional spatial domain, x ∈X := [0, 200], and impose the initial condition
(4.1) for M̄ ∈ [0, 1]. In (a), we plot X(t) such that N(X(t), t)= 0.5 for t ∈ (0, 100] in the cases where M̄= 1 and κ ∈
{1, 10, 100, 1000, 10 000}, and we see that the front travels with a strictly positive, constant propagation speed that increases
monotonically with κ . In (b), we plot the speed of the travelling front that emerges for M̄∈ {0.0625j|j ∈ [[1, 15]]} ∪ {0.99, 1}
and observe that this speed is monotonically decreasing with M̄, given κ > 0. (Online version in colour.)

has already spread to a position x = σ < L in the tissue and we impose initial conditions that
satisfy, for M̄ ∈ [0, 1],⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(x, 0) = 1, M(x, 0) = 0, if 0 ≤ x<σ − ω,

N(x, 0) = exp
(

1 − 1
1 − ((x − σ + ω)/ω)2

)
, M(x, 0) = M̄(1 − N(x, 0)), if σ − ω≤ x<σ ,

N(x, 0) = 0, M(x, 0) = M̄, if σ ≤ x ≤ L.

(4.1)

Here, 0<ω< σ represents how sharp the initial boundary between the tumour and healthy tissue
is. We complete the mathematical problem by imposing zero-flux boundary conditions for N at
x = 0 and x = L. We set L = 200, σ = 2 and ω= 1 for our simulations.

Remark 4.1. Initial conditions for N with compact support, such as those given by (4.1), are
biologically relevant. We verified that the travelling-wave profile and wave speed are preserved
across different initial conditions with compact support for N, i.e. initial conditions of the type of
(4.1) (see electronic supplementary material, S2).

(a) Elucidating the wave speed that emerges in the PDE model
A characteristic feature of the well-studied Fisher–KPP model is that any non-negative initial
condition with compact support will evolve towards a travelling front with speed equal to the
minimal wave speed, c = 2 [37–39]. One may, therefore, question whether this result extends
to more complex R–D systems that exhibit travelling waves. For our model, the results from
§3e suggest that this does hold for solutions of (1.3) subject to the initial conditions (4.1) for
M̄ ∈ [0, 1). By contrast, the results from §3d show that there is no strictly positive minimal wave
speed for TWS of (1.3) that satisfy the asymptotic conditions (2.2). Yet, the solution of (1.3)
subject to the initial conditions (4.1) for M̄ = 1 appears to evolve towards a travelling front
with a strictly positive speed, as illustrated in figure 3a for different values of κ (see electronic
supplementary material, S2 for a travelling-wave profile). In this way, the solutions of the PDE
system preferentially select a wave speed in a way that the corresponding ODE system does not.

Given different values of κ > 0, we calculated the speed of travelling fronts that emerge for
solutions of (1.3) subject to the initial conditions (4.1) with M̄ ∈ [0, 1]. Our numerical simulations
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Figure 4. We compare solutions of (1.3), subject to the initial conditions (4.1) with M̄= 1 (a) and M̄= 0.5 (b), with solutions
of (2.1a,b), subject to the asymptotic conditions (2.2) (a) and (2.3) withM̄= 0.5 (b). We use the wave speed estimated from
the numerical solution of the PDE model to solve the ODE model and set κ = 1. Solutions of the PDE and ODE models agree in
both cases. (Online version in colour.)

suggest that the wave speed selected by the PDE model is a continuous, decreasing function of
M̄ ∈ [0, 1], as illustrated in figure 3b, which represents this wave speed as a function of M̄ ∈ [0, 1]
for κ ∈ {0, 1, 10, 100, 1000, 10 000}. This is consistent with lemma 3.19 and our observation that
the speed of travelling fronts that emerge for solutions of (1.3), subject to the initial conditions
(4.1) with M̄ ∈ [0, 1), appears to be equal to the minimal wave speed, c∗

κ (M̄), defined by (3.25).
This result is interesting because the speed selected by the PDE model appears to be left-
continuous at M̄ = 1, despite the fact that the minimal wave speed for the existence of TWS
is not.

Remark 4.2. Here, we investigated numerically the value of the propagation speed selected
by the PDE model. Since the spatial domain, X , must be discretized to solve (1.3) using the
method of lines, a natural question is whether the size of the discretization step influences
the value of the wave speed. Given TWS of (1.3) that connect (1, 0) and (0,M̄), M̄ ∈ [0, 1],
we observed that the impact of decreasing the discretization step size becomes significant
as M̄ approaches 1 (see electronic supplementary material, S2). On the basis of the results
illustrated in electronic supplementary material, S2, the discretization step size we used for
our numerical simulations ensures that the numerical results obtained are weakly affected by
numerical diffusion. In particular, our qualitative descriptions of the wave speed selected by the
PDE model are unaffected.

(b) Comparing trajectories of the PDE and ODE models
From theorems 3.13 and 3.20, we know that system (1.3) has TWS connecting (1, 0) and (0, M̄), M̄ ∈
[0, 1], for all c> 0 if M̄ = 1 and for all c ≥ c∗

κ (M̄), defined by (3.25), otherwise. Furthermore, we saw
that solutions of (1.3) subject to the initial conditions (4.1) for M̄ ∈ [0, 1] evolve towards travelling
waves and, in particular, that the wave speed is approximately equal to c∗

κ (M̄) for M̄ ∈ [0, 1). We
should therefore be able to find agreement between the wave profiles of the solutions of the PDE
system (1.3), subject to the initial conditions (4.1) for M̄ ∈ [0, 1], and that of the ODE system (2.1a,b),
subject to the asymptotic conditions (2.2), if M̄ = 1, and (2.3) otherwise, where we set c to be the
wave speed selected by the numerical solution of the PDE system to numerically solve the ODE
system. We find good agreement between the wave profiles of the PDE and ODE solutions, and a
couple of illustrative examples are shown in figure 4.
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5. Discussion and perspectives
Understanding the process of tumour invasion is at the forefront of cancer research. The seminal
model of acid-mediated tumour invasion developed by Gatenby & Gawlinski [2] generated new
biological insights and formed the basis for subsequent mathematical work on this topic. Owing
to the model’s complexity, most existing results in the literature on the existence of TWS of the
model stem from numerical investigations, which are complemented by partial analytical results.
In particular, obtaining a complete understanding of the existence of TWS has proven difficult
and this has prompted the derivation of simpler models [15,34]. In this paper, we carried out a
travelling-wave analysis for the simplified model (1.3).

We found that system (1.3) can support a continuum of smooth TWS, which are here defined
as TWS for which ξ̄ , introduced in lemma 2.2, satisfies ξ̄ = +∞. These TWS represent the invasion
of healthy tissue, consisting of ECM, by tumour cells and differ according to the density of ECM
far ahead of the wave front. More specifically, we characterized TWS connecting the two spatially
homogeneous steady states (1, 0) and (0, M̄), for M̄ ∈ [0, 1]. Owing to the degeneracy in the first
equation of (1.3) for M = 1, we distinguished the cases where M̄ = 1 and where M̄ ∈ [0, 1).

In the first case, we proved the existence of smooth TWS for any positive wave speed, c> 0.
This result is particularly interesting as it differs from previous results for degenerate diffusion in
a scalar or multi-equation setting, where TWS exist if and only if the wave speed is greater than
or equal to a strictly positive minimal wave speed [22,24,25]. It is important to note that this does
not imply that a positive wave speed which is preferentially selected does not exist for solutions
of (1.3) that connect (1, 0) and (0, 1). In fact, we saw in §4a that a strictly positive, κ-dependent
wave speed appears to be selected by (1.3) subject to the initial conditions (4.1) with M̄ = 1. It
would, therefore, be interesting to study the stability of the TWS defined by theorem 3.13. We
may gain insight on the minimal wave speed for solutions of (1.3) that connect (1, 0) and (0, 1) by
determining parameter regimes in which solutions are unstable.

In the second case, we proved that smooth TWS exist if and only if the wave speed is
greater than or equal to a strictly positive minimal wave speed, c∗

κ (M̄), defined by (3.25) for
M̄ ∈ [0, 1). Given κ > 0, this minimal speed appears to be a monotonically decreasing, continuous
function of M̄. In particular, we conjectured that, given κ > 0 and m∗(κ) := 1/(κ + 1), we can
precisely define c∗

κ (M̄) = 2
√

1 − M̄ for M̄ ∈ [0, m∗(κ)]. Similarly to the generalized Fisher–KPP
equation, this minimal wave speed is the smallest c> 0 such that the equilibrium (0, 0, m̄), with
m̄ = M̄, of system (2.11a–c) is a stable node and not a stable spiral. For M̄ ∈ (m∗(κ), 1), numerical
simulations suggested that the wave speed selected by the PDE is strictly greater than 2

√
1 − M̄,

which is consistent with (3.25). The fact that the equilibrium (0, 0, m̄) of system (2.11a–c) is a
stable node is then no longer a sufficient condition to ensure the positivity of the n-component
of the TWS in the desingularized variables and thus of the N -component of the TWS in the
original variables. This reflects the differences that can be observed in systems of equations
compared with scalar equations, which can be attributed to the higher dimensionality of the
problem.

Our results regarding the dependence of the minimal wave speed on the model parameters
κ and M̄ for TWS of (1.3) connecting (1, 0) and (0,M̄), M̄ ∈ [0, 1) rely on a conjecture. Our aim
is to rigorously prove this result in future work. In addition, we do not have an expression for
the minimal wave speed if M̄ ∈ (m∗(κ), 1). Yet, as κ → +∞, m∗(κ) → 0, and it is clear that, as κ
increases, we can precisely describe the minimal wave speed for a decreasing range of values of
M̄ ∈ [0, 1). We would therefore like to provide a complete characterization of c∗

κ (M̄) for all κ > 0
and M̄ ∈ (m∗(κ), 1). Now, we observed in §4a that the solution of system (1.3) subject to initial
conditions (4.1) with M̄ ∈ [0, 1] evolves towards a travelling front with a κ- and M̄-dependent
wave speed. Importantly, given κ > 0, it appears that this numerical wave speed is a continuous
function of M̄ in [0, 1], is equal to c∗

κ (M̄) = 2
√

1 − M̄ for all M̄ ∈ [0, m∗(κ)] and is strictly greater
than 2

√
1 − M̄ for all M̄ ∈ (m∗(κ), 1]. We note that we have included M̄ = 1 in our preceding

observations, which highlights our hypothesis that elucidating the minimal wave speed for (1.3)
in the case M̄= 1 could perhaps help us elucidate the minimal wave speed for (1.3) in the case
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M̄ ∈ (m∗(κ), 1), or vice versa. It is, therefore, important to also study the stability of the travelling
waves defined by theorem 3.20.

Finally, while it is of mathematical interest to obtain a comprehensive description of the
minimal wave speed for all TWS of (1.3), it is also of biological interest. Our results indicate
that the minimal wave speed is highly dependent on the value of κ , which is the rescaled ECM
degradation rate. Since this parameter represents, in a sense, the aggressivity of the tumour cell
population towards the ECM, it is significant from an oncological perspective. Hence, our results
have the long-term potential of revealing promising targets for therapeutic intervention.
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