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The importance of radiology in modern medicine is acknowledged for its non-invasive diagnostic 
capabilities, yet the manual formulation of unstructured medical reports poses time constraints 
and error risks. This study addresses the common limitation of Artificial Intelligence applications 
in medical image captioning, which typically focus on classification problems, lacking detailed 
information about the patient’s condition. Despite advancements in AI-generated medical reports 
that incorporate descriptive details from X-ray images, which are essential for comprehensive 
reports, the challenge persists. The proposed solution involves a multimodal model utilizing 
Computer Vision for image representation and Natural Language Processing for textual report 
generation. A notable contribution is the innovative use of the Swin Transformer as the image 
encoder, enabling hierarchical mapping and enhanced model perception without a surge in 
parameters or computational costs. The model incorporates GPT-2 as the textual decoder, 
integrating cross-attention layers and bilingual training with datasets in Portuguese PT-BR and 
English. Promising results are noted in the proposed database with ROUGE-L 0.748, METEOR 
0.741, and NIH CHEST X-ray with ROUGE-L 0.404 and METEOR 0.393.

1. Introduction

1.1. Motivation

The application of Artificial Intelligence (AI) in image interpretation tasks has often been limited to the classification problems 
[1–4], which does not carry further details about the patient’s current state. Nonetheless, using AI to do the automatic generation of 
medical reports [5–10], it is possible to create a descriptive text detailing aspects found in the X-ray such as location, size, magnitude, 
and other patterns, essential to generating high-quality report [11]. Despite the progress in automated generation of medical reports 
and the potential to improve patient care and reduce radiologist workload such as [12–16], the problem is still far from being 
resolved.
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Radiology is crucial in modern medicine for its non-invasive imaging techniques that enable the diagnosis and monitoring of 
various medical conditions [17]. However, the formulation of unstructured medical reports necessitates a substantial time investment 
and is susceptible to errors, thereby introducing a potential hazard of critical medical oversights that could pose a threat to patient 
safety [18]. The field of Artificial Intelligence has made great progress in activities that depend on specialized knowledge [19–22], 
including specific tasks such as interpretation of medical images [23,24] and text generation [25,26].

1.2. Objective

The main objective of this work is the proposition of a multimodal model to automatically generate textual medical reports from 
X-ray images. To achieve this goal, it was applied Computer Vision (CV) techniques, such as normalization, scaling, and attribute 
extraction to represent X-ray images in a vector. Also, it was applied Natural Language Processing (NLP) techniques to the textual 
medical reports, such as textual normalization, removal of patient personal information, and unnecessary characters, and the textual 
tokenization, so that the report is understood in computational language.

1.3. Contribution

In this work, it is placed a significant contribution. The novel modeling of the Swin Transformer as the image encoder of the 
multimodal model, allows performing a hierarchical mapping of the image and, together with the window displacement approach, 
it is possible to enhance the perception of the model without increasing the number of parameters, the computational cost and even 
make it more efficient in terms of memory usage. In addition, the model has GPT-2 as the textual decoder by the addition of cross-
attention layers connected to the image encoder that is subjected to training with datasets in two different languages: Portuguese 
(pt-br) and English.

2. Related works

2.1. Convolutional Neural Networks (CNN)

The automatic generation of medical reports started with [27], who proposed a CNN-RNN architecture to generate texts from 
images. As studies advanced in the area, the [28]’s attention layer was introduced in several experiments, and models such as [29], 
started to combine the usual architecture of CNN-RNN with attention mechanism to synthesize multi-view visual features based on a 
sentence-level in a late fusion fashion.

Convolutional Neural Networks have played an essential role in medical image analysis for many years [30,13,27,14,31–38]. 
However, despite having an architecture that is easy to understand and implement, CNNs use convolution, a local operation limited 
to a small neighborhood of an image, while Transformers use a mechanism called self-attention, a global operation [28].

2.2. Transformers

Transformer architecture makes it possible to extract information from the entire image and effectively capture relationships 
between distant points. In addition, several state-of-the-art results were obtained in different CV and NLP tasks. Therefore, the 
multimodal model proposed in this work comprises an image encoder and a decoder based on the Transformers architecture.

Initial approaches using transformers for the problem of automatic generation of medical reports for radiological examinations 
retained the CNN architecture for the image encoder and introduced transformers as a decoder to generate textual medical image 
reports as can be seen in [5–8].

New architectures based on transformers emerged, including vision transformers [39], which enabled the emergence of new 
works. For example, the work developed by [40] or [9], explored the effect of loss of spatial bias information in the encoder using a 
pre-trained vision transformer architecture combined with different pre-trained language transformers as the decoder.

3. Methods

3.1. XRaySwinGen

XRaySwinGen is a modified transformer [28] architecture that performs the X-ray image analysis and generates medical reports 
automatically. In other words, it is an End-to-End Sequence to Sequence embedding task where Image pixels are input sequences and 
the medical report describing the image is the desired output. This approach was strongly influenced by state-of-the-art [12,41,42]
and the Liu et al. paper [43] that had notable advances in adapting transformer from language to vision arising from differences 
between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared 
to words in text.

In this work, the extraction of features from X-ray images is done with the hierarchical mapping of features and the Shifted Win-
dow [43] to capture both local and global dependencies effectively, an evolution of the base ViT architecture [44]. The backbone 
Swin Transformer [43] was pre-trained with the imagenet-1k database [45], in addition, the original patch size 4x4 and the configu-
2
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Source: Adapted from [43] and [46]

Fig. 1. XRaySwinGen proposed multimodal model architecture.

Table 1

Summary of used X-ray image databases.

Database Train Validation Test Total Reference

Proposed database 17,537 924 3,509 21,970 -
IU X-Ray 3,000 452 342 3,794 [47]
NIH Chest X-ray 82,197 25,596 4327 112,120 [48]

and vocabulary size 50257, which was made available to researchers by OpenAI1 [46]. When the instances of the pre-trained encoder 
and decoder models are loaded, their embeddings are tied together using a cross-attention layer. Moreover, the model contains 12 
cross-attention layers.

The encoder initially splits an input RGB image into non-overlapping patches, where each patch is treated as a “token” and its 
feature is defined from the concatenation of the raw values of pixels. The features dimension of each patch is 4 × 4 × 3 = 48, 
where 3 refers to the amount of image channels. To enhance the perception of the model, the Shift Window operation is performed. 
In it, there is a displacement in the sequence of patches by a certain number of positions allowing the model to capture global and 
local features of the image, being able to process images at different levels of granularity, which is not possible with traditional 
CNNs. The encoder embeddings are used as KEY and VALUE, while on the decoder side, the embeddings are used as QUERY in the 
cross-attention head.

During training, both the X-ray image and the medical report are the model inputs. By using these inputs, the model is targeted to 
generate the same caption, leading to an understanding of the correlation between words in medical reports and X-rays in the input 
images. Throughout each training iteration, the model generates a sequence of words as a prediction. This predicted sequence is 
then compared to the actual caption, and the resulting difference, known as the loss, is fed back into the model. This process enables 
the model to learn and improve its ability to generate more accurate reports over time. The architecture described is presented in 
Fig. 1.

3.2. Training details

The XRaySwinGen model is trained with 3 different databases. The first database was obtained from private Brazilian Hospitals 
and has a total of 21, 970 images, where their resolutions range from 727x692 to 4892x4020 pixels in DICOM format and the medical 
reports are in Portuguese PT-BR. The second database was proposed by [47] and collected at the Indiana University Hospital in the 
United States. The third database, which was proposed by [48] has 112, 120 frontal chest X-ray images, belonging to 30, 805 unique 
patients and it was called NIH Chest X-ray. The X-ray images from all the databases were converted to 224x224 resolution to fit the 
model input. In Table 1, the databases used are presented with the number of sample information, as well as the proportion used 
3

1 https://openai .com /blog /better -language -models/.

https://openai.com/blog/better-language-models/


Heliyon 10 (2024) e27516G. Veras Magalhães, R. L. de S. Santos, L. H. S. Vogado et al.

Table 2

Results obtained by the XRaySwinGen model.

MODEL DATA BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE

Ours Proposed 
Dataset

0.731 0.691 0.672 0.661 0.748 0.741 0.659

Ours IU X-ray 0.377 0.239 0.168 0.124 0.300 0.322 0.202

Ours NIH Chest 
X-ray

0.396 0.329 - - 0.404 0.393 0.170

Chen et al. IU X-ray 0.470 0.304 0.219 0.165 0.371 0.187 -

for training, validation, and testing. The models are trained with a batch size of 6 for 25 epochs using the Adam optimizer. Also, 
the encoder and decoder embedding dimensions are 192 and 768, respectively. The experiments were performed in a Google Colab2

programming environment with an Intel Xeon CPU @2.20 GHz, 13 GB of RAM, and a Tesla graphics card. T4 16 GB. The FP16 
precision was used in training as it is commonly used in modern hardware accelerators, such as graphics processing units (GPUs) 
and tensor processing units (TPUs), to accelerate calculations in deep learning [49,50].

3.3. Evaluation metrics

To evaluate the quality of the medical reports generated by the models, the Bilingual Evaluation Understudy (BLEU) [51], ROUGE-
L [52], METEOR [53] and SPICE [54] scores were calculated. These metrics are widely covered in works within the field [35,11,22], 
enabling the comparison and tracking of the evolution of works over the years.

BLEU is an evaluation metric commonly used for NLP tasks, particularly machine translation. However, we will use in this work 
to evaluate the text generation problem. It measures the quality of text predicted by the model compared to the reference text by 
comparing the n-gram overlaps between the two. The more overlap between the predicted text and the reference text, the higher the 
BLEU score. BLEU-1 evaluates word by word individually, BLEU-2 evaluates combinations of two by two words, BLEU-3 evaluates 
grouping by three words, and BLEU-4 evaluates combinations by four words; thus the evaluation is stricter.

This metric is calculated following Equation (1) below:

𝐵𝐿𝐸𝑈 =𝐵𝑃 ⋅ 𝑒𝑥𝑝

(
𝑁∑
𝑛=1

𝑤𝑛 log𝑝𝑛

)
, (1)

4. Results

According to the results achieved by our models and listed in Table 2, the metrics are aligned with published work in the research 
area. Regarding the model trained with the Proposed Dataset, which is a PT-BR dataset, even with a great diversity of natural textual 
medical reports present in the dataset, the model achieves the highest scores. Standardization in patient care and completion of 
medical reports certainly enabled these results to be achieved.

About the model trained on IU X-ray data, it is crucial to note that while our model yields lower results than Chen et al. [12]
model in BLEU[1-4] and ROUGE-L, it outperforms the METEOR score. In other words, our model demonstrates higher accuracy in 
placing tokens within sentences. In addition, there is a mismatch in the test dataset size between our work and Chen’s, as not all the 
images for IU X-ray have an associated medical report.

Finally, there are 15 distinct classes in the NIH Chest X-ray database (see Table 3), which were converted into text to compose an 
adapted medical report. It is worth noting that on this basis, the medical reports are much smaller, mainly composed of one or two 
words only, so, when checking the metrics it is possible to see that the BLEU[3-4] values were affected, thus assuming lower values. 
However, the BLEU[1-2], ROUGE-L, and METEOR reached values of 0.396, 0.329, 0.404, and 0.393 respectively, suggesting that the 
model started the process of generalization and relationship of the image with the texts. As this database has the most significant 
number of training samples, submitting it to a new training session with a new parameter adjustment and a more significant number 
of epochs can achieve better results.

5. Discussion

This work proposed a multimodal model to automatically generate textual medical reports from X-ray images. We were the first 
to include the Swin Transformer architecture as an image encoder in the task of automatically generating medical reports from 
radiological exams to maximize the capture of image details, bearing in mind that any pixel can compromise the final result. In 
addition, the work is hindered by challenges such as the scarcity of detailed medical reports in natural language and the prevalent 
focus on image classification rather than comprehensive textual information in existing databases.
4
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Table 3

Mapping of NIH Chest X-ray classes.

Numeric class Text

0 No Finding
1 Atelectasis
2 Cardiomegaly
3 Effusion
4 Infiltration
5 Mass
6 Nodule
7 Pneumonia
8 Pneumothorax
9 Consolidation
10 Edema
11 Emphysema
12 Fibrosis
13 Pleural_Thickening
14 Hernia

To carry out experiments and validate our work, we used three databases, two of which are public and in English (IU X-ray 
and NIH Chest X-ray) and one was obtained from Brazilian private hospitals and is in Portuguese PT-BR (Proposed Dataset). The 
results point to some important conclusions: The model can quickly learn to generate text in a new language even if it is not the 
same as your decoder; The model can generate reports for a wide variety of diagnoses with good accuracy; Compared to the state-
of-the-art model by Chen et al. [12] the model appears promising with room for parameter adjustment, data augmentation and 
fine-tuning.

The proposed dataset is composed of 40% abnormal and 60% normal high-definition images, and the number of words in 
their medical reports varies between 30 and 120. In general, medical reports are very detailed and objective with observations or 
descriptions separated by a period. The model trained with this dataset achieved the highest results in all the evaluation metrics. 
High BLEU[1-4] scores indicate a significant degree of similarity between the generated medical report and the human-generated 
reference. These BLEU results are corroborated by a high ROUGE-L score, indicating a substantial overlap in long-range content 
between the model output and the reference. Lastly, the results achieved in METEOR and SPICE scores indicate that the model is 
performing well in terms of both fluency and semantic similarity with reference, in other words, the model is generating coherent 
and contextually relevant text.

The model trained with the IU X-ray dataset results in lower BLEU[1-4] and ROUGE-L scores than the model of Chen et al.,
which might be aggravated by the sample distribution. During the processing of the dataset, it was filtered frontal images and some 
images did not match a report and vice versa which resulted in the numbers presented in Table 1. Despite the reduced dataset, it was 
possible to achieve close results on the metrics mentioned before and surpass Chen et al. [12] on METEOR. The SPICE score was not 
presented in their work, but our result of 0.202 indicates that the agreement between the model generation and the human reference 
is not good in terms of semantic content. A future modification in training this model will be to acquire the updated database and 
use the frontal and lateral X-ray images.

The model trained with NIH Chest X-ray yields a higher BLEU[1-2] score than the model trained with IU X-ray. BLEU[3-4] was not 
calculated because the reports consist of a maximum of two words here. Even though it was a classification base, the aim was to use 
its size to understand how the model would behave with this amount of data. The model successfully learned the predefined classes 
in the database, as evidenced by the results of the BLEU[1-2], ROUGE-L, and METEOR metrics. However, since it is a generative 
model with a limited number of classes, the model frequently hallucinates and produces sentences slightly longer than the expected 
class; therefore, the SPICE score is low.

As a side result of the research, an API/webpage was created to receive an X-ray image, returning the textual information about 
the patient’s diagnosis. The proof of concept API/webpage is currently hosted at HuggingFace.3 Fig. 2 shows the main window of 
the running API/webpage.

As part of future work, the intention is to adjust the parameters of the proposed model to enhance performance, achieve improved 
results, and reduce the utilization of computational resources. For instance, modifications may include training the models with 
different configurations such as Swin-T, Swin-S, or Swin-B depths, varying patch size, window size, and embedding size. New 
experiments are planned with both the databases employed in this study and the exploration of additional databases like MIMIC-CXR-
JPG [15], ROCO [55], PEIR Gross [13], and ImageCLEF [56]. Another suggested avenue for future exploration involves conducting 
experiments that involve the combination of all the databases. Additionally, there is a proposal to refine image captioning metrics 
with a particular emphasis on human evaluation, ensuring nuanced aspects such as contextual relevance and visual semantics are 
adequately captured, surpassing existing standards like CIDEr or ChexBert. Finally, the plan includes the incorporation of new data 
learning techniques, such as Contrastive Learning [57], and Data Augmentation [58], among others.
5
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Source: author’s collection

Fig. 2. API/webpage created to use XRaySwinGen.
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