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Abstract

Mammalian genomes are pervasively transcribed outside mapped protein-coding genes. One class of extragenic
transcription products is represented by long non-coding RNAs (lncRNAs), some of which result from Pol_II transcription of
bona-fide RNA genes. Whether all lncRNAs described insofar are products of RNA genes, however, is still unclear. Here we
have characterized transcription sites located outside protein-coding genes in a highly regulated response, macrophage
activation by endotoxin. Using chromatin signatures, we could unambiguously classify extragenic Pol_II binding sites as
belonging to either canonical RNA genes or transcribed enhancers. Unexpectedly, 70% of extragenic Pol_II peaks were
associated with genomic regions with a canonical chromatin signature of enhancers. Enhancer-associated extragenic
transcription was frequently adjacent to inducible inflammatory genes, was regulated in response to endotoxin stimulation,
and generated very low abundance transcripts. Moreover, transcribed enhancers were under purifying selection and
contained binding sites for inflammatory transcription factors, thus suggesting their functionality. These data demonstrate
that a large fraction of extragenic Pol_II transcription sites can be ascribed to cis-regulatory genomic regions. Discrimination
between lncRNAs generated by canonical RNA genes and products of transcribed enhancers will provide a framework for
experimental approaches to lncRNAs and help complete the annotation of mammalian genomes.
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Introduction

A most striking finding of modern genomic biology has been the

identification of a large amount of transcription that occurs outside

mapped protein-coding genes and generates a heterogeneous

spectrum of transcripts [1,2], which may in principle exert broad

regulatory or effector functions [3–5]. These data imply that the

amount of information contained in the complex genomes of

eukaryotes, and higher eukaryotes in particular, is much higher

than the classical linear models of genomic organization can

accommodate [6]. The abundance of non-coding transcription

also generates novel conceptual and experimental challenges.

Probably the most outstanding and urgent issues are (i) to define

how many, and which, of the transcriptional events occurring

outside protein-coding genes are functional and regulated (as

opposed to those that represent noise) [7,8]; (ii) to discriminate if

functionality is conveyed by the transcript, by the act of

transcription, or both; (iii) to classify functional transcription sites

as canonical RNA genes or regulatory sequences undergoing

transcription, like enhancers and locus control regions (LCRs), that

in anecdotal cases were shown to be transcribed and to generate

ncRNAs [9–13].

Regarding functionality, the two extreme views are that most of

this extragenic non-coding transcription merely represents noise,

namely the consequence of unscheduled but productive collisions

of RNA polymerases with random genomic regions, and that most

of the products of non-coding transcription are functional RNA

molecules exerting downstream functions [3,7]. Examples of

transcriptional noise may be represented both by the recently

described ‘‘ripples’’ of transcription extending from one protein

coding-gene into the adjacent genomic regions [14] and by the

spurious intragenic transcription initiation events, which in yeast

seem to be actively suppressed [15]. In several cases, including the

Xist, Air, and Kcnq1ot1 ncRNAs [12,16–23], specific functions

have been ascribed to selected lncRNAs on the basis of loss- or

gain-of-function experiments. Evidence for functionality of

lncRNAs as a class also stems from evolutionary analyses

indicating that purifying selection has acted on both the promoters

and the internal sequences of lncRNA genes to eliminate

nucleotide substitutions, insertions and deletions [3,8,24,25].
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Two aspects of these evolutionary signatures of functionality

deserve a more detailed analysis. First, the overall level of

conservation, albeit significant, is comparatively low, with point

mutations occurring with a frequency about 10-fold higher in

lncRNA sequences as compared to protein-coding genes, although

lncRNA splice sites tend to be conserved [24,25]. Second,

conservation was found to be much higher at promoters than

within the transcript sequences [24,26], which may indicate either

the stronger sequence constraints of regulatory regions as

compared to the ncRNA products or that at least in some cases

the target of purifying selection may be represented by the act of

transcription rather than by its products.

The concept that transcription has roles other than generating

functional products mainly stems from the analysis of cis-

regulatory elements like LCRs and enhancers. Unidirectional

transcription of the b-globin LCR by RNA Pol_II [9] is required

to generate and maintain an open chromatin domain [10].

Similarly, the switch of polycomb group response elements (PRE)

from a repressed to an activated state in Drosophila requires

intergenic transcription through the PRE, indicating that in some

cases transcription may provide an anti-silencing mechanism [27].

Additional examples of non-coding transcription correlating with

(and causing) locus activation were described in the LCR of the

major histocompatibility complex II locus [28], in the T cell

receptor locus [11], and upstream of the lysozyme gene in

activated macrophages [13]. Non-coding transcription occurring

close to protein-coding genes also has the potential to cause gene

repression. Transcription of the non-coding gene SRG1 through

the promoter of SER3 in yeast interferes with binding of

transcription factors and subsequent activation, thus providing a

paradigmatic example of transcriptional interference mediated by

non-coding transcription [29]. Similarly, the Ubx gene in Drosophila

is repressed by non-coding transcription elongating from the

upstream bxd locus, which results in complementary and non-

overlapping patterns of expression of Ubx mRNA and bxd ncRNAs

[30]. In some (but not all) cases described above, formal evidence

was provided that the act of transcription per se (rather than the

transcripts) mediates downstream effects. For instance, intergenic

transcription extending in the yeast PHO5 promoter is required for

nucleosome eviction and gene activation; however, increasing the

level of the unstable lncRNA generated in this region didn’t affect

gene activation [31]. In other cases the lncRNA generated by

extragenic transcription was found to impart regulation. For

instance, nascent ncRNAs were shown to act as platforms for the

recruitment of an RNA-binding transcriptional regulator upstream

of the CCND1 gene [20], and the Evf2 ncRNA (derived from an

ultraconserved regulatory region) was shown to act in trans to

coactivate the homeodomain TF Dlx-2 [12].

Mechanistically, transcriptional elongation causes a broad

spectrum of effects to the underlying chromatin template,

including chromatin remodeling, nucleosome eviction, and

changes in the acetylation and methylation state of histone tails

[32,33], effects that are all due to the association of multiple

enzymatic activities with the elongating Pol_II complex [34,35].

Direct biochemical and genetic evidence supporting this type of

mechanism comes from a recent time-resolved analysis in S. Pombe:

transiently inducible non-coding Pol_II transcription upstream of

the fbp1 locus caused a wave of chromatin remodeling preceding,

and required for, binding of activating transcription factors to

cognate sites in the fbp1 promoter [36]. However, the possible role

of the nascent, very low abundance ncRNAs generated by

transcription upstream of fbp1 was not directly addressed.

In spite of all these observations, it is still unclear to what extent

each of these reports represents an anecdotal description of

uncommon gene regulatory mechanisms or conversely a paradig-

matic example of a more general contribution of non-coding

transcription to gene control. Moreover, the extent to which

transcription occurring outside protein-coding genes indicates

underlying RNA genes rather than Pol_II elongation along distant

cis-regulatory regions (like enhancers and LCRs) is completely

unknown.

Here we took advantage of a dataset of extragenic Pol_II sites in

a model of highly regulated gene expression (endotoxin-stimulated

primary macrophages). Using chromatin signatures we discrimi-

nated between transcribed enhancers and transcription start sites

(TSS) of RNA genes. Remarkably, 70% of extragenic transcription

sites (which were frequently up- or down-regulated by endotoxin

stimulation) corresponded to genomic regions with an enhancer-

type chromatin signature. These Pol_II peaks overlapped with

annotated lncRNAs, were associated with binding sites for

inflammatory transcription factors, and displayed enhancer

activity in reporter assays. We also identified about 700 extragenic

Pol_II clusters with a typical signature of active TSS and highly

enriched for CpG islands, thus likely representing the 59 end of

bona fide RNA-coding genes. Overall, enhancers overlap a

sizeable fraction of extragenic transcription sites in higher

eukaryotes.

Results

Regulated Extragenic Transcription Upstream of LPS-
Inducible Genes

We first determined the genomic distribution of RNA Pol_II in

unstimulated and activated mouse macrophages (stimulated for

2 h with LPS in the presence of gamma interferon, cIFN). These

ChIP-Sequencing datasets (described in [37]) were generated with

an antibody recognizing all isoforms of the large RNA Pol_II

subunit, Rbp1, irrespective of their phosphorylation state.

Author Summary

Mammalian genomes contain vast intergenic regions that
are extensively transcribed and generate various types of
short and long non-coding RNAs (ncRNAs). Although in
some cases specific functions have been assigned to
intergenic transcripts, the functional significance of this
transcriptional output remains largely unknown, and the
possibility exists that part of this transcription reflects
noise generated by random collisions of the transcriptional
machinery with the genome to generate meaningless
transcription. In this study we used chromatin signatures
to characterize extragenic transcription sites targeted by
RNA Polymerase II (RNA Pol II) in a highly regulated
response—endotoxin activation of macrophages. We
found that a significant portion of extragenic transcription
sites are associated with the chromatin signature charac-
teristic of enhancers. Consistent with their chromatin
signature, we found that these extragenic transcription
sites are under purifying selection and contain binding
sites for inflammatory transcription factors, as well as for
PU.1, a hematopoietic transcription factor that marks
enhancers in macrophages. Moreover, much of this
extragenic transcription is regulated by stimulation. We
also identified hundreds of transcribed regions with a
signature of canonical RNA genes. Our data indicate that
extragenic transcription sites can be efficiently classified
using chromatin signatures, which will be relevant for
functional annotation of mammalian genomes.

Non-Coding Transcription at Enhancers
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Therefore, they provide a snapshot of global Pol_II distribution

over the mouse genome.

We first browsed genomic regions containing genes regulated by

LPS stimulation, like cytokine and chemokine genes, to identify sites

of extragenic transcription. Figure 1A shows an example of extragenic

Pol_II sites induced by LPS stimulation and located upstream of the

inflammatory chemokine gene Ccl5. Upstream Pol_II peaks are

extremely broad, covering about 20 kb of extragenic sequence with

no annotation of known or predicted exons; moreover their height is

much lower than that found inside the coding region. Upstream

Pol_II signals do not seem to be continuous (with three or four distinct

clusters) and stop just upstream of the Ccl5 TSS. Upstream of another

chemokine gene, Cxcl11 (Figure S1), two discrete inducible peaks can

be observed, covering an area of about 10 kb. Although these peaks

overlap a gene (Art3) that extends in antisense orientation over

Cxcl11 (and the closely spaced Cxcl10), they cannot be ascribed to

the activity of Art3, which is very poor in these cells (as indicated by

the very small amount of Pol_II loaded on its TSS). Intergenic Pol_II

(with no continuity with the Pol_II signals tracking from the 39 of

Cxcl11) can also be detected in the space separating the 39 of Cxcl11

from the 59 of Cxcl10. Other examples are shown in Figure S1.

To determine if Pol_II is actively transcribing these extragenic

regions, we also generated ChIP-Seq datasets using an antibody

specific for an elongating Pol_II isoform (phosphorylated at Ser5

of the carboxy-terminal domain of Rbp1) [38]. Ser5 profiles

confirmed that Pol_II binding upstream of Ccl5 reflects active

transcription (Figure 1B).

Upstream Extragenic Transcription Frequently Precedes
the Induction of the Adjacent Coding Gene

To start characterizing the properties of the extragenic transcrip-

tion described above, we first analyzed kinetics of induction of the

corresponding ncRNA relative to that of the downstream coding

gene. We carried out quantitative RT-PCR with primers designed in

regions contained within the extragenic Pol_II peaks. In the case of

Ccl5 we explored the three regions of extragenic transcription

(named 21, 22, and 23) indicated in Figure 1A. Importantly, the Q-

PCR primers were designed at a fixed distance in order to generate

products of 200 nucleotides. Therefore, a positive signal implies the

existence of RNA species of at least 200 nt. The kinetics of activation

of these regions, as evaluated by the behavior of the corresponding

transcripts (Figure 2A), were very similar with each other, appearing

already at 309 after stimulation and reaching maximal levels between

60 and 90 min. At Cxcl11 the two upstream transcripts tested

appeared even faster, peaking between 30 and 60 min, to be then

rapidly downregulated (Figure 2B). In both cases, however, kinetics of

induction of upstream extragenic transcription preceded the

appearance of the mature mRNA generated from the downstream

coding genes, a concept also supported by the analysis of the nascent

transcripts (Figure S2). Moreover, extragenic transcription was

downregulated when the coding gene reached its maximal level of

expression, a result particularly obvious at Cxcl11. This type of

behavior was not specific to these two genes, as it could be detected at

several other genes associated with inducible upstream extragenic

transcription (Figure 2C). Therefore, extragenic transcription

Figure 1. Sites of regulated extragenic transcription upstream of LPS-inducible genes. (A) Pol_II ChIP-Seq data from unstimulated and
LPS+cIFN-stimulated macrophages at the Ccl5 gene and surrounding genomic regions. The extragenic Pol_II peaks (indicated as 21, 22, and 23)
and the genomic annotations (mm9) are shown. The y-axis indicates the number of ChIP-Seq tags. (B) Phosphorylated Ser5 Pol_II ChIP-Seq data at the
same genomic region. UT, untreated macrophages.
doi:10.1371/journal.pbio.1000384.g001

Non-Coding Transcription at Enhancers
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associated with inducible gene expression at these loci displays a clear

temporal pattern in which upstream (presumably non-coding)

transcription precedes the induction of the downstream protein-

coding gene. This kinetic behavior is reminiscent of the relative

temporal profiles of non-coding versus coding transcription observed

in other systems. At the fbp1 gene in S.Pombe, a rapidly induced, low-

level upstream transcription (which is required for chromatin opening

at the locus) precedes downstream gene activation and is turned off

when the gene is activated [36].

Importantly, all the ncRNAs we detected in this analysis

accumulated at very low levels, usually hundreds of folds less than

the adjacent coding genes. This may reflect the combination of a

low transcription rate (indicated by both the low intensity of both

the Pol_II peaks and the nascent transcripts shown in Figure S2)

and a high instability of the final product (see below).

Inducible Upstream Extragenic Transcripts Are Strand-
Specific, Poly-Adenylated, Unspliced, and Very Unstable
Nuclear Species

Detailed structural characterization of these inducible extragenic

transcripts is hindered by their very low abundance. Priming the

reverse reaction with oligo-dT indicates that transcripts generated

upstream of Ccl5 are poly-adenylated (Figure 3A). Moreover, they

can be detected exclusively in the nuclear compartment (Figure 3B).

Priming the cDNA synthesis with antisense primers located upstream

of the 59 of Ccl5 showed that upstream transcription generates long

unspliced RNAs extending for a few kilobases (Figure 3C). However,

using the same cDNAs we couldn’t obtain Q-PCR signals in peaks

further upstream (indicated as 22 and 23 in Figure 1A) (unpublished

data). cDNAs primed by multiple oligonucleotides on the opposite

strand didn’t generate any Q-PCR product (unpublished data),

Figure 2. Inducible upstream extragenic transcription frequently precedes the activation of the adjacent protein-coding gene.
Kinetics of induction of Ccl5 (A) and Cxcl11 (B) mRNAs relative to those of the upstream extragenic transcripts. Extragenic Ccl5 transcripts (#21, 22,
and 23) correspond to the Pol_II peaks shown in Figure 1. Cxcl11 transcripts #21 and #22 correspond to the regions in Figure S1A. Cells were
stimulated with LPS+cIFN as indicated. y-axes indicate mRNA (left) or ncRNA (right) levels relative to those of a housekeeping gene (TBP). (C) Kinetics
of mRNA induction of a panel of protein-coding genes together with the associated extragenic transcripts. The corresponding Pol_II ChIP_seq data
(2h LPS+cIFN stimulation) are shown on the right. Shaded areas indicate the extragenic Pol_II peaks. For Trim25 and Zcchc2, amplicons correspond to
the Pol_II peak closest to the 59 of the gene.
doi:10.1371/journal.pbio.1000384.g002

Non-Coding Transcription at Enhancers
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indicating that transcription is strand-specific, occurring on the upper

strand toward Ccl5, and as such unlikely to reflect random

transcriptional events occurring at open chromatin.

Finally we measured the stability of these transcripts using an

actinomycinD chase. In comparison to both the mRNAs

generated by the associated protein-coding genes and some known

lncRNAs (like Xist and Neat), the upstream non-coding transcripts

were very unstable, being reduced by 80% to 90% after a 30 min

actinomycinD treatment (indicating a half-life lower than 7.5 min)

(Figure 3D and Figure S3). High instability of a subset of lncRNAs

both in yeast and mammals mainly depends on degradation by the

nuclear exosome [39,40] and often results in the generation of

more stable short RNA products [41], which in principle might be

responsible for downstream functional effects.

Another interesting property of some of the upstream transcripts is

that, unlike mRNAs, they are poorly sensitive to DRB treatment

(Figure 3E). DRB is an inhibitor of Cdk9, the catalytic subunit of the

elongation factor pTEFb [42]. Cdk9 acts on multiple substrates to

promote Pol_II entry into the elongation phase and cotranscriptional

mRNA processing. The previous finding that up to 40% of nuclear

RNA synthesis is unaffected by DRB treatment, as opposed to the

95% reduction of cytoplasmic polyadenylated transcripts [43], may

indirectly suggest that at least part of extragenic transcription is

subjected to control mechanisms different from those acting at

protein coding genes, and specifically that P-TEFb may not be

required for Pol_II activity at some of these regions.

Genome-Wide Annotation of Extragenic Pol_II
Transcription Sites

Browsing through the data indicated some major challenges

towards a systematic and correct identification of extragenic Pol_II

peaks. The most obvious one was represented by the extension of

elongating Pol_II molecules several kilobases beyond the end of

annotated protein coding genes, namely in regions that by

definition are extragenic. This is most likely due to the lack of

specific and strong termination signals for RNA Pol_II. Moreover,

alternative TSSs located upstream of the annotated ones

contribute to create ambiguity in extragenic Pol_II peak

annotation. To systematically annotate sites of extragenic

transcription, we first filtered out all Pol_II signals overlapping

UCSC known genes as well as peaks within 10 kb from the 39 end

of annotated genes (which after several tests proved to be an

optimal length to eliminate most signals due to Pol_II tracking

from the upstream gene). It is important to stress that because of

this design, our analysis does not take into account gene

boundaries, which represent a major source of long and short

non-coding RNAs [40,41,44–47].

The initial list was eventually curated for additional filtering

(mainly to eliminate Pol_II signals showing continuity with

upstream genes), leading to 4,588 high-confidence extragenic

Pol_II peaks. Using a statistical approach for ChIP-Seq data

analysis [48] we classified these peaks as constitutive (895),

inducible (1,482), or repressed (2,211) in response to stimulation

(Figure 4A and Table S1).

Classification of Extragenic Pol_II Sites Based on
Chromatin Signatures

Chromatin signatures generated by specific combinations of

post-translational modifications of core histone tails are powerful

and sensitive indicators of functionality [49–51]. A simple, yet

informative combination of modifications includes the mono-

methylation of H3K4 (H3K4me1) and the tri-methylation of the

Figure 3. Characterization of the extragenic transcripts generated upstream of LPS-inducible genes. (A) Polyadenylation of extragenic
Ccl5 transcripts. Total RNA was reverse-transcribed using oligo-dT primers. cDNA was then amplified with primers corresponding to regions 21, 22,
and 23 upstream of Ccl5 (as in Figure 1). (B) Upstream extragenic transcripts are nuclear RNAs. Macrophages were fractionated before RNA
extraction. RNA from the cytoplasmic and nuclear fractions was then reverse transcribed and amplified with the indicated primers. Neat1 is a nuclear
non-coding RNA that was used as a control of the fractionation procedure. (C) Extragenic transcription upstream of Ccl5 generates long unspliced
transcripts. RNA was reverse transcribed using antisense primers in the region just upstream of Ccl5 TSS, as indicated. cDNA was then PCR-amplified
using primers in the extragenic region 21 (as in Figure 1A). (D) Extragenic Ccl5 and Cxcl11 transcripts are very unstable. Cells were stimulated with
LPS for 2 h, followed by a 30 min actinomycinD (5 mg/ml) chase. mRNAs for Ccl5 and Cxcl11 and the corresponding extragenic transcripts were
measured by quantitative PCR. UT, untreated. (E) DRB insensitivity of extragenic Ccl5 and Cxcl11 transcripts. Macrophages were stimulated with LPS
for 2 h in the presence or absence of DRB (50 mg/ml), as indicated. UT, untreated.
doi:10.1371/journal.pbio.1000384.g003

Non-Coding Transcription at Enhancers
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Figure 4. Identification of enhancer-associated and promoter-associated extragenic Pol_II transcription sites. (A) Pie chart showing
the three groups of extragenic Pol_II peaks (classified on the basis of Pol_II changes after stimulation) in untreated and LPS+cIFN-treated
macrophages. Numbers refer to Pol_II peaks before SVM classification, clusterization, and filtering against Ensembl protein-coding genes. (B) The pie
chart shows the results of the machine-learning approach used to classify extragenic Pol_II clusters as belonging to promoters or enhancers.
Numbers refer to Pol_II peaks after clusterization and filtering against Ensembl protein-coding genes. (C) Enhancer and promoter predictions. Regions
of extragenic Pol_II transcription were classified as enhancers or promoters/TSSs using a machine-learning algorithm recognizing alternative
H3K4me3/H3K4me1 patterns. Each line represents a 5 kb region centered around the summit of a Pol_II peak (62.5 kb). Peaks are shown from
chromosome 1 (top) to chromosome X (bottom). (D) Examples of predicted promoters and enhancers. ChIP-Seq profiles at regions containing
representative extragenic transcription sites belonging to the two groups are shown. The coordinates indicate the position of the Pol_II peak. The
green square indicates a CpG island. (E) Association of predicted enhancers and promoters with CpG islands. Expected and observed fractions are
shown. (F) Correlation between LPS-induced Pol_II changes at predicted transcribed enhancers and at the neighboring protein-coding gene.
Inducible enhancers (upper panel) and repressed enhancers (lower panel) are shown. Observed (obs) and expected (exp) fractions for each group of
genes (constitutive, repressed, and inducible genes) are shown together with the respective p value (the p value may refer to either an over- or an
under-representation). Expected fractions were calculated on the basis of the relative frequency of each group (constitutive, induced, repressed
genes) with respect to all Pol_II positive genes. n.s., non-significant.
doi:10.1371/journal.pbio.1000384.g004

Non-Coding Transcription at Enhancers
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same residue (H3K4me3). TSSs of genes that are either active or

poised for activity are characterized by high levels of H3K4me3

(peaking just downstream of the TSS and confined to a few

nucleosomes), flanked on both sides by regions enriched for

H3K4me1. Conversely, enhancers display high levels of

H3K4me1, usually distributed over several kilobases, associated

with low or no H3K4me3 (H3K4me1hi/H3K4me3lo domains)

[52,53]. Enhancers are also frequently bound by the histone

acetyltransferase p300 [52].

In order to assign the extragenic Pol_II clusters in our dataset to

either TSSs of lncRNA genes or to enhancers, we used a machine-

learning algorithm (Text S1). The algorithm was instructed to

discriminate enhancers from promoters using the H3K4me3/

H3K4me1 chromatin profiles at 556 informative (unambiguous)

extragenic p300 peaks (described in [54]) and the H3K4me3/

H3K4me1 profiles at an identical number of promoters/TSSs

with a broad range of Pol_II levels. This approach was validated

by multiple tests (see Text S1) including its ability to properly

classify ChIP-Seq peaks of the macrophage TF PU.1, which we

found to be strongly but not exclusively enriched in enhancers

[54]: PU.1 peaks that were classified as promoters/TSSs using this

algorithm overlapped annotated TSSs of UCSC known genes in

67% of cases, while PU.1 peaks classified as enhancers overlapped

annotated TSS only in 7% of cases (and in most cases visual

inspection confirmed that these TSS did not show a typical

signature of promoters).

A Large Fraction of Extragenic Pol_II Activity Occurs at
Enhancers

We thus applied this machine-learning algorithm to the dataset

of 4,588 extragenic Pol_II peaks described above. We found that

3,227/4,588 peaks were contained in regions with a chromatin

signature of enhancers, 1,004 were in regions with a signature of

active or poised TSSs, while 357 were associated with regions with

a non-predictive signature. Peaks were then clustered (see

Methods) and then filtered against Ensembl protein coding genes

to definitively discard regions with protein-coding potential. The

final dataset consisted of 3,216 Pol_II clusters, including 2,236

enhancers (69%), 779 promoters (24%), and 201 unpredictable

regions (7%) (Figure 4B and Table S4). Chromatin signatures at

the enhancer and promoter groups are shown in Figure 4C, and

examples of predicted enhancers and promoters associated with

extragenic Pol_II clusters are shown in Figure 4D. The chromatin

signature at the region upstream of Ccl5 is also compatible with its

enhancer activity (Figure S4). If these predictions are correct, an

obvious expectation is that the group associated with the

promoter/TSS signature should be enriched for CpG islands.

This was indeed the case: 165/779 promoters (21.2%) were

associated with an underlying CpG island (p,1e-3) as compared

to only 11/2,236 enhancer clusters (0.5%, which is similar to what

was found in random sets of genomic sequences with similar

composition) (Figure 4E). The association between putative

ncRNA genes and CpG islands is clearly much lower than

observed at protein-coding genes (72%) [55]; however, our results

are similar to those reported by Ponjavic et al. for ncRNA genes

expressed in mouse development, which were associated with CpG

islands in about 30% of cases [56]. The TSSs of annotated, bona-

fide RNA genes (like Neat1, Malat, and Xist) [2] have chromatin

features analogous to those of protein-coding genes and perfectly

fitting the pattern of our promoters/TSSs group (Figure S5 and

unpublished data). This is in keeping with the notion that lncRNA

genes can be retrieved using the same H3K4me3/H3K36me3

chromatin signature that was originally described at active protein

coding genes [25].

We next investigated the relationship between the transcrip-

tional activity of predicted enhancers and that of the associated

protein-coding genes. First, we assigned predicted transcribed

enhancers to adjacent coding genes if distant from them less than

20 kb. We considered this restrictive criterion essential to limit

incorrect or arbitrary matches. Enhancers whose association with

Pol_II was induced or increased by stimulation were strongly

associated with inducible genes (p,1e-7 when compared to the

expected fraction), while association with constitutive and

repressed genes was underrepresented in a statistically significant

manner (Figure 4F and Table S5). In a specular manner, repressed

enhancers were associated with repressed genes, albeit at low

statistical significance (Figure 4F). It should be stressed that

repressed enhancers are also associated with a large number of

genes that are induced by stimulation. Although from a statistical

point of view this group of inducible genes is underrepresented as

compared to what is expected, the possibility should not be

discounted that transcriptional downregulation of an enhancer

may be involved in the activation of the associated gene, possibly

by relieving transcriptional interference [29].

Evidence for Active Transcription at Enhancers
In the cases shown in Figure 2 we could detect and measure

low-abundance long RNAs ($200 nt) generated at regions of

extragenic Pol_II binding. However, Pol_II recruitment to

chromatin is not necessarily followed by elongation [57,58]. To

address this crucial issue, we carried out several complementary

analyses and experiments. First, we analyzed the overlap between

extragenic Pol_II sites and annotated ncRNAs datasets. We used

two different catalogues: a ‘‘macroRNA’’ dataset (2,168 ncRNAs)

generated by the FANTOM consortium by massive cDNA

sequencing [26] and then filtered to eliminate RNAs overlapping

all current protein-coding gene annotations [24,59], and a dataset

of large intervening ncRNAs (1,408 ‘‘lincRNAs’’) identified by the

H3K4me3/H3K36me3 chromatin signatures characteristic of

bona fide active genes [25] and then filtered against the Ensemble

protein-coding genes (Table S2). These two catalogues show little

overlap, suggesting that each of them includes only a small fraction

of a presumably much larger ncRNA repertoire [59]. 26/2,236

predicted enhancers and 21/779 promoters/TSSs overlapped

annotated macroRNAs (albeit low, the overlap was statistically

significant) (Table S3). LincRNAs were associated with the

promoter group (122/779; 15.6%) and, to a lower extent, to the

enhancer group (167/2,236; 7.4%) (Table S3). As lincRNAs were

identified on the basis of an H3K4me3/H3K36me3 chromatin

signature that distinguishes active genes, the overlap with the

enhancer group may appear surprising. However, visual inspec-

tion of these enhancers was consistent with the notion that they

represent regulatory regions located within these extended

H3K4me3/H3K36me3 domains (see Figure S6).

Second, using a database of CAGE tags generated from the

FANTOM consortium [60], we found that the transcriptional

potential of 72% of regions in the promoter group and 53% in the

enhancer group was supported by overlapping CAGE tags. In

interpreting these data it should be considered that the lncRNAs

generated at the b-globin LCR do not contain a CAP at their 59

end [61], which implies that a fraction of the transcripts generated

at regulatory regions is not represented in CAGE tags libraries.

Interestingly, the median distance between multiple CAGE tags is

significantly higher in enhancers than in promoters (Figure 5A).

These data confirm the transcriptional potential of predicted

enhancers and suggest that while TSSs are tightly clustered in the

promoter group, they are distributed over broader distances in the
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enhancer group (presumably generating primary transcripts with

heterogeneous 59 ends).

Third, we generated ChIP-Seq datasets in untreated and LPS-

treated macrophages using an antibody that recognizes the large

Pol_II subunit Rbp1 only when phosphorylated at Ser5 of its C-

terminal domain (CTD). Ser5 phosphorylation by TFIIH occurs

at the transition to transcription initiation and is maintained

throughout the length of transcribed genes to be then removed by

a phosphatase at the very 39 end [38]. Ser5-P was extensively

associated with both predicted enhancers and promoters in our

datasets (Figure 5B, Table S6). Median Ser5 peak length is 479 bp,

with a minimum of 110 bp and a maximum of 7341 bp, indirectly

suggesting that in most cases long (.200 nt) primary transcripts

are generated. This result confirms that, independently of the final

abundance of the transcripts, enhancers associated with Pol_II are

actively transcribed. Similar results were obtained for promoters

(Figure S7).

Fourth, we analyzed by quantitative RT-PCR a representative

set of 100 predicted enhancers within the whole range of p values

associated with the corresponding Pol_II peaks (as in Table S1).

Figure 5. Evidence for active transcription at Pol_II-associated enhancers. (A) Distribution of the median distance between CAGE tags
clusters overlapping the regions predicted as either enhancers or promoters. (B) Correlation between total and active Pol_II (phosphorylated at Ser5
of the CTD) at enhancers. The graphs illustrate the distance between extragenic Pol_II peaks predicted as enhancers and the closest P-Ser5 Pol_II
peak. (C) Extragenic regions associated with RNA_Seq signals display higher Pol_II occupancy than those without RNA-Seq signals.
doi:10.1371/journal.pbio.1000384.g005
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Primers were designed to generate 200 nt amplicons. 96/100

tested regions generated detectable transcripts (Table S7),

indirectly indicating that the vast majority of extragenic Pol_II

peaks likely generate transcripts.

Due to their very low abundance, a comprehensive analysis of

extragenic ncRNAs and their detailed structural characterization

present obvious difficulties. RNA sequencing is a powerful

approach for detection of potentially all RNA species in a cell,

although low abundance transcripts can be identified only at very

high sequencing depth. As an initial step toward characterization

of enhancer-associated transcripts, we generated an RNA-Seq

dataset in untreated macrophages using total nuclear RNAs. At

the level of sequencing depth we reached (11.5 million aligned tags

from four Solexa GAII lanes) we could detect 225,439 transcripts

corresponding to 13,702 RefSeq genes and 28,247 UCSC known

genes. We found RNA-Seq tags overlapping 193/484 promoters

and 369/1,660 enhancers active in untreated macrophages

(corresponding to the constitutive and repressed groups; p,1e-3

compared to random sets of intergenic genomic sequences). In

most cases, however, low density of tags precluded the identifica-

tion of well-defined transcripts. Importantly, the extragenic regions

associated with RNA-Seq tags displayed median Pol_II signals

about 1.5 orders of magnitude higher than the regions for which

transcripts could not be detected at this sequencing depth

(Figure 5C). Therefore, only the transcripts produced at the

extragenic regions with high transcriptional activity could be

detected (Table S4). Nevertheless, these data further confirm that

Pol_II-bound extragenic regions are in general subjected to active

transcription.

Evidence of Functionality of Enhancer-Type Extragenic
Transcribed Regions

While a large fraction of extragenic transcription sites bear an

enhancer-associated chromatin signature, this doesn’t demon-

strate that these regions have functional properties of enhancers.

We first searched the predicted enhancers for evolutionary

signatures of functionality and specifically for evidence of

purifying selection. We used phastCons scores in placental

mammals [62] to measure the degree of conservation in the

three groups of extragenic Pol_II clusters. Both promoters and

enhancers were strongly conserved, with overall higher scores in

the promoter group (Figure 6A). In both groups conservation was

statistically significant as compared to matched random sequence

sets (Figure 6B). Conversely, the group of Pol_II clusters with a

non-informative chromatin signature did not significantly deviate

from random sets.

Sequence conservation in both the enhancer and the promoter

group was stronger in the central regions (and precisely in the

sequences just flanking the summit of the Pol_II peaks) and it was

progressively diluted moving outwards.

We next cloned some of these predicted enhancer sequences in

a plasmid bearing a minimal promoter driving luciferase

expression and tested their ability to increase reporter gene

activity. All the sequences tested increased basal expression and

some provided responsiveness to LPS stimulation (Figure 6C). The

first sequence from the left was also assayed for orientation-

independence of enhancer activity (Figure 6C). As additional

evidence that these regions are in fact bona fide enhancers, we

tested their ability to fold onto the neighboring promoter using

chromosome conformation capture (3C) [63]. The transcribed

regions upstream of Ccl5 and Cxcl11 were in fact both associated

with the regions surrounding the respective TSS (Figure S8).

Association was not dependent on stimulation as it could be found

also in basal conditions. In fact, stimulation reduced to a various

extent the degree of looping.

Finally, we evaluated the degree of overlap between extragenic

Pol_II and binding of the transcription factor PU.1, which (in

addition to being recruited to active promoters) is very extensively

associated with enhancers in macrophages [54]. Considering a

search space of 6500 nt surrounding ChIP-Seq PU.1 peaks, we

found that 84.4% of enhancer-type extragenic Pol_II clusters were

associated with PU.1 binding (Figure 6D; see Figures S4 and S6

for some examples). PU.1 association with promoter/TSS-type

transcribed regions was also very frequent (69.3%), while Pol_II

peaks with a non-predictive chromatin signature were associated

with PU.1 only in 33.8% of cases. Such a substantial association

between extragenic Pol_II and binding of a sequence-specific TF

(72% overlap considering the entire dataset) strongly argues

against the notion that this extensive transcriptional activity is

mere noise and conversely confirms its nature as a regulated

process.

Different Sets of Transcription Factors Are Associated
with Different Behaviors of Enhancer-Associated
Extragenic RNA Pol_II

Enhancer functionality depends on the transcription factor

binding sites (TFBS) contained in their sequence. TFs activated

by stimulation with LPS+IFNc include NF-kB/Rel family

members [64], IRFs (interferon regulatory factors) [65], and

STAT1 [66]. Moreover, the hematopoietic Ets family member

PU.1, which is constitutively expressed at highest levels in

macrophages, is highly enriched in enhancers, where it provides

context dependence to responses driven by inflammatory TFs

[54]. We therefore searched our dataset of 2,236 predicted

enhancers associated with extragenic Pol_II for enriched TFBSs.

To this aim, we first assembled a library of 338 position weight

matrices (PWMs) by combining the DNA binding motifs in the

Jaspar database [67] and those in a recently reported set of

PWMs for 104 mouse transcription factors [68]. Then we divided

the enhancers in three groups based on Pol_II behavior

(constitutive, inducible, and repressed) and used a statistical

approach [69] to score TFBS enrichment in each group relative

to two background sets (namely the whole mouse chr 19 and a set

of all 5 kb sequences located upstream of the TSSs of mouse

RefSeq genes).

In the inducible group we found a strong enrichment for IRFs

and STAT1 (which bind related sites and were recognized by five

distinct PWMs), as well as for NF-kB/Rel (identified by four

PWMs) (Figure 7A and Table S8). Moreover, the dataset was

strongly enriched for PU.1/Spi1 PWMs, which is in keeping with

its association with enhancers [54]. The constitutive group, in

addition to a strong enrichment for PU.1/Spi1, showed a

comparatively lower but anyway significant enrichment for

IRF/STAT1 and NF-kB/Rel PWMs (Table S8). In this regard,

it should be noticed that some of the enhancers that we define as

‘‘constitutive,’’ in fact show LPS-induced increases in Pol_II levels

that do not reach the threshold we set for the inclusion among the

inducible peaks. Remarkably, the group of putative enhancers

repressed by stimulation was strongly enriched for PU.1/Spi1 but

not for any of the PWMs for the inducible, inflammatory TFs

associated with the other two groups (Table S8). Therefore the

enhancers whose association with Pol_II is reduced by stimula-

tion appear to represent a distinct group with a completely

different TFBS composition. Importantly, also the group of the

induced promoters (and to a lesser extent the one including the

constitutive promoters) was enriched for binding sites for

inflammatory TFs (Table S8), indicating that the TFs driving
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the inflammatory gene expression program also control many

canonical RNA genes.

We next evaluated if the identified TFBSs are functional. Some

of the inducible Pol_II peaks in the region upstream of Ccl5 scored

positively for IRF3 (as well as other IRFs) and NF-kB, which are

known to coregulate Ccl5 expression [70]. Blocking IRF3 and NF-

kB activity with specific mutants in stable Raw264.7 macrophage

cell lines (kindly provided by G. Cheng, UCLA) blocked not only

the induction of the Ccl5 mRNA but also the appearance of the

upstream non-coding transcripts (Figure 7B). Moreover, the NF-

kB subunit p65/RelA was recruited to the Ccl5 upstream region

(Figure 7C), thus further supporting the functionality of the

identified sites. Interestingly, maximal p65 recruitment to this

region preceded recruitment to the NF-kB binding sites contained

in the Ccl5 promoter, which is in keeping with the faster kinetics of

induction of upstream transcription as compared to that of the

Ccl5 mRNA (as shown in Figure 2).

Enhancer Associated Extragenic Transcription May
Promote Domain-Wide Acetylation and Pol_II Loading on
Downstream TSSs

As we could detect thousands of enhancer-associated extragenic

Pol_II peaks with distinct behaviors, some degree of functional

heterogeneity is expected. Moreover, definitive understanding of

the function of each extragenic transcription site would require

dedicated genetic approaches to interfere with Pol_II loading and/

or elongation (like the knock-in of transcriptional terminator

sequences; see for instance [11,36]). Attempts to deplete ncRNA

generated at enhancers by RNAi were not successful, which likely

Figure 6. Signatures of functionality at enhancer-associated extragenic transcription sites. (A) Sequence conservation at extragenic Pol_II
transcription sites. Average conservation scores (phastCons score per bp) in the enhancer, promoter, and unpredictable groups are shown. Pol_II
peaks were centered around their summit. (B) Statistical significance of sequence conservation in the three groups was evaluated as compared to
random sets. The y-axis indicates the p value of the deviation from random. The horizontal grey line indicates the threshold for statistical significance
(set to p,0.01). (C) Functional evaluation of predicted enhancers in reporter assays. The indicated regions were subcloned in the pGL3 promoter
vector, which bears a minimal promoter, and transfected in Raw264.7 macrophage cells. Cells were stimulated with LPS for 16 h before harvesting.
Errors bars, S.D. (D) Overlap of extragenic transcription sites with an enhancer-associated chromatin signature with experimentally determined
binding sites of the hematopoietic transcription factor PU.1. PU.1 peaks 6 500 bp (identified in a ChIP-Seq experiment in untreated macrophages)
were considered. Black numbers refer to Pol_II clusters, while blue numbers refer to PU.1 peaks.
doi:10.1371/journal.pbio.1000384.g006
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reflects their constitutive instability (see Discussion). We tried

however to get an initial glimpse into the functional impact of

transcription through enhancers in this system. One model

supported by experimental data is that extragenic transcription

leads to the repeated passage of several Pol_II-associated enzymes,

including Swi/Snf remodeling complexes [71,72] and histone

acetyltransferases [35], through chromatin regions, thus leading to

extensive remodeling and changes in accessibility [32]. We first

found that macrophage activation is associated with a domain-

wide increase in acetylation at the transcribed regions upstream of

Ccl5 (Figure 8A and unpublished data). Domain-wide hyperace-

tylation was strongly reduced by treatment with actinomycinD but

not with the protein synthesis inhibitor cycloheximide (CHX).

Importantly, Ccl5 is a primary response gene and as such it is not

sensitive to CHX treatment [73]. Therefore, while new protein

synthesis does not impact on acetylation of the locus, new

transcription is required for maximal acetylation both at the TSS

and at upstream regions. ActD (but not CHX) treatment also

prevented recruitment of Pol_II at the Ccl5 TSS (Figure 8B, left).

Conversely, at a secondary gene (interleukin 6, IL-6), both CHX

and ActD completely blocked Pol_II recruitment (Figure 8B, left).

The effects of ActD on Pol_II recruitment to TSSs were not

general, as they could not be detected at two other genes tested

(Figure 8B, right). Therefore, with all the due cautions required in

experiments with global inhibitors, it seems that the act (or the

products) of transcription (rather than the induction of new protein

products) is involved both in acetylation through the Ccl5 locus

and in gene induction.

A similar behavior was found at the Cxcl11 upstream regions

(Figure 8C). Here we could detect a high basal level of acetylation

in the regions corresponding to the extragenic Pol_II peaks.

Acetylation was strongly increased by stimulation and returned to

basal levels upon ActD (but not CHX) treatment, thus indicating

that also in this case extragenic transcription (or its products) may

be involved in controlling the chromatin state of the locus.

Discussion

The main finding of this study is that RNA Pol_II association with,

and productive transcription of, a subset of cis-regulatory regions

accounts for a sizeable fraction of transcription sites located outside of

coding gene borders. It is important to notice that the design of our

study—which is based on the analysis of Pol_II occupancy in regions

not overlapping annotated protein-coding genes—implies that gene

boundaries, which contribute in a substantial manner to the

repertoire of short and long ncRNAs in mammalian cells

[40,41,44–47], were not taken into consideration.

The concept that enhancers and LCRs in some cases undergo

transcription was previously demonstrated at individual loci in

various experimental models [9–11,29,30,36]. Our data demon-

Figure 7. Enrichment of transcription factor binding sites in enhancer-type extragenic Pol_II transcription sites. (A) TFBSs enriched in
the set of inducible, enhancer-type extragenic transcription sites. Enrichment was evaluated using two reference datasets (see Methods). Each vertical
column in the heat-plot represents a Pol_II peak, while each row corresponds to an enriched PWM. Data are shown after hierarchical clustering.
Selected enriched PWMs for inflammatory TFs (IRFs, STAT1, NF-kB) are shown on the right. Increasing red color represents increasing probabilities for
a PWM to have a match in the region as compared to randomized sequences with the same nucleotide composition [69]. (B) IRF3 and NF-kB are
required for extragenic transcription upstream of Ccl5. Raw264.7 cell lines constitutively expressing a dominant negative Irf3 (IRF3DN) or a general
inhibitor of NF-kB (IkBa super-repressor, IkBaDN) were stimulated with LPS as indicated and Ccl5 mRNA or upstream extragenic transcripts were
measured by RT Q-PCR. (C) Binding of NF-kB to the Ccl5 promoter and to a region corresponding to the 21 Pol_II peak. NF-kB binding was measured
using an anti-p65 ChIP.
doi:10.1371/journal.pbio.1000384.g007
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Figure 8. Functional consequences of transcriptional inhibition on extragenic histone acetylation at the Ccl5 and Cxcl11 loci. (A)
H3K9 acetylation at the transcribed region (about 5 kb) upstream of Ccl5 was measured by ChIP in the absence or presence of CHX (10 mg/ml) or
ActD (5 mg/ml) as indicated. UT, untreated macrophages. Position of the amplicons (transcription start site [TSS] and five extragenic amplicons
indicated by progressive numbers) is indicated. (B) Left panel: inhibition of transcription but not translation blocks the activation of the primary
response gene Ccl5 [73]. Conversely, Pol_II recruitment to the TSS of the secondary gene IL-6 is equally sensitive to CHX and ActD. Right panel: ActD
does not inhibit Pol_II recruitment to IkBa and CD40. (C) Transcription is required for inducible H3K9 hyperacetylation at the transcribed region
upstream of Cxcl11. The position of amplicons at the TSS and upstream of the gene are indicated.
doi:10.1371/journal.pbio.1000384.g008
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strate on a genomic scale that this is a common occurrence.

However, based on our data on enhancers in this specific system

[54], as well as reports in other models [53], it seems clear that

non-transcribed enhancers (in the order of magnitude of dozens of

thousands in every given cell type) greatly outnumber the

transcribed ones, which raises some obvious questions.

First, can enhancers be classified on the basis of being

transcribed or not, and do Pol_II-transcribed enhancers represent

a functionally and mechanistically homogeneous group? A simple

model, compatible with a large body of experimental data, is that

functionality of transcribed enhancers and LCRs indeed depends

on the directional movement of Pol_II along their sequence [32].

Large chromatin domains often undergo regulated and extensive

modifications (like acetylation and reduction of nucleosomal

density) controlling their accessibility and functionality: in such

cases it is difficult to imagine how chromatin-modifying enzymes

recruited to discrete sites by association with sequence-specific TFs

can promote such large scale changes. Conversely, loading the

same enzymes onto elongating Pol_II complexes provides a

regulated and specific way to catalyze rapid changes across

extended regions, thus establishing transcriptional competence

(discussed in [32]). An example of a specific effect of the

transcription process itself, in which the ncRNA product

apparently has no direct role, is provided by the PHO5 gene in

yeast, whose activation requires nucleosome eviction stimulated by

non-coding transcription across its promoter [31]. When the level

of the ensuing ncRNA was artificially increased (by either

overexpression or by inactivation of the nuclear exosome), no

consequences on nucleosome depletion were found [31]. In other

cases it was shown that the ncRNAs generated from regulatory

regions is functional [8], either by controlling the deposition of

epigenetic modifications [21] or by promoting the recruitment

[20] or stimulating the activity [12] of transcriptional activators. In

some of these cases, it is implicit that the ncRNAs would act at the

production site, possibly when still associated with elongating

Pol_II. This model may well apply to ncRNAs generated at

enhancers, whose function may relate to the control of local

chromatin features. Overall, the role of ncRNA transcripts versus

transcription in conveying regulatory information likely varies

depending on the regulatory region considered, and ad hoc

experiments will be required to understand the relative frequency

of the two groups of mechanisms. For those enhancers whose

associated transcripts will be demonstrated to be functional (as in

[20]), their distinction from canonical RNA genes may appear

conceptually subtle and in the end rely exclusively on their distinct

chromatin signature. However, we believe that an additional

important aspect should be considered in distinguishing enhancers

that generate functional RNAs from canonical RNA genes: the

local and temporally restricted cis-regulatory role of the enhancer-

associated ncRNA (temporal restriction being related to the rapid

degradation of these transcripts after they are synthesized). On the

contrary, ncRNAs generated from canonical RNA genes in most

cases act at a distance from the production site (e.g. Neat1) [2];

even when acting in cis, as in the case of Xist and Air, they coat

(and functionally affect) broad chromosomal regions, thus in fact

exerting an activity that extends far beyond the borders of their site

of synthesis.

In this context, it appears very relevant to bring into focus the

conceptual and technical problems related to the mechanistic

dissection of the ncRNAs generated at regulatory regions.

Assessing the functionality of these ncRNAs will require that their

specific elimination or depletion be dissociated from any effect on

the underlying transcription. Therefore, knocking-in transcrip-

tional terminators to interfere with Pol_II elongation (see for

instance [11]) is in fact non-informative in this regard. Depletion of

ncRNAs by RNAi efficiently works when applied to stable

transcripts encoded by RNA genes [19]. However, enhancer-

generated transcripts are very unstable, possibly due to a

constitutive surveillance by the nuclear exosome [39,40], leading

to their complete degradation or the generation of short RNAs

[41]. Moreover, the role of nascent ncRNAs in targeting to

chromatin specific regulators with RNA binding modules (as

suggested in [20]) may be limited to a very short window of

opportunity during which proximity to chromatin is maintained,

namely the time of Pol_II passage over a specific genomic region.

Low level of expression of these ncRNAs (see Figure 2) may reflect

the restriction of their activity to the genomic regions where they

are synthesized. For both reasons, reducing their levels by RNA

interference (before they are degraded or before they exert a local

and transient functional activity) may not be feasible, at least using

simple tools. On the other hand, for those ncRNAs acting at their

site of production, overexpressing them cannot recapitulate their

normal function.

A second outstanding question pertains to the identity of the

determinants of enhancer association with RNA Pol_II factories

and of the molecular mechanisms controlling transcriptional

initiation at these regulatory regions. It seems clear that in some

cases Pol_II can be loaded at multiple positions along the

enhancer/LCR [61], a result in keeping with the presence of

multiple distant CAGE tag clusters at enhancer regions in our

dataset (Figure 5C). Still, the directionality of transcription (see

also Figure 3C) implies a tight control upon formation of the

preinitiation complex and rules out the possibility that transcrip-

tion is a mere consequence of random Pol_II collisions with

accessible loci.

A third related question is whether enhancer-associated

transcription is mechanistically different from transcription of

protein- and RNA-coding genes. This possibility is supported by

several observations, including the resistance to the general

elongation inhibitor DRB of part of nuclear transcription ([43]

and our own data) and, as discussed above, the fact that enhancer

associated transcription often initiates at multiple points along the

sequence of the enhancer [61], as if rules for initiation were less

stringent at enhancers as compared to protein and RNA genes.

One important aspect of extragenic transcription, and partic-

ularly the fraction not associated with putative RNA-coding genes

bearing a promoter signature at their 59 end, is that it should be

unambiguously distinguished from the transcriptional noise that

may arise from spontaneous collisions of the Pol_II transcriptional

machinery with some genomic sequences [7,8]. A form of noise

that has been recently described is represented by waves of

transcription extending from highly active immediate early genes

(IEGs) into neighboring sequences, including genes and intergenic

regions [14]. This ‘‘ripple effect’’ is somehow similar to the

inducible extragenic transcription we show here, and therefore it

deserves a careful analysis. The interpretation of the authors [14]

is that ripples start from IEGs and extend into the adjacent

regions: because of this behavior these Pol_II waves should be

considered noise, and specifically the downstream consequence of

a strong gene activation that cannot be confined to the limits of the

gene itself. It should be noticed that in the system used by Ebisuya

et al., namely growth factor stimulation of fibroblasts, IEG

induction is extremely fast, with Pol_II peaking in several cases at

10 min after stimulation. Therefore, this system offers limited

possibilities to identify complex temporal sequences in the

activation of upstream extragenic regions versus associated coding

genes. Conversely, the system used in this study has the advantage

that genes are induced in a kinetically complex fashion [73,74], in
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some cases relatively long after the initial stimulation. At genes like

Ccl5 and Cxcl11, as well as at several others (see Figure 2), this

kinetic behavior allowed us to identify a recurring temporal

pattern in which upstream non-coding transcription not only

precedes the induction of the neighboring protein-coding gene but

also peaks when the activity of the associated coding gene is hardly

detectable (which is similar to what was described at the inducible

fbp1 gene in yeast) [36]. Conversely, a ripple effect should parallel

RNA Pol_II activity at the associated coding gene and reach

maximal levels when the coding gene is at its peak of activity. A

second expected feature of a ripple effect is that extragenic waves

of Pol_II should show continuity with Pol_II elongating from the

inducible coding gene. In our dataset, this is an unusual

occurrence (see Figures 1 and 2 and Figure S1 for examples).

The direct evidence arguing against the possibility that

extragenic Pol_II reflects transcriptional noise comes from four

groups of data we obtained in this study: (1) the presence of an

enhancer-associated chromatin signature [52], (2) the enrichment

for inflammatory TFBSs like NF-kB and the IRFs, (3) the

functionality of some tested regions in heterologous reporter

assays, and most importantly, (4) the very extensive overlap

between sites of extragenic transcription and binding sites for the

TF PU.1, which is required for macrophage differentiation [75–

77] and function [78,79], and very extensively marks enhancers

[54]. The only group of extragenic Pol_II peaks (about 8% of the

peaks in the dataset) that in principle may represent noise

(although it is not possible to formally demonstrate it with our

analysis) is the one consisting of regions without an informative

chromatin signature: in fact, this group shows levels of sequence

conservation that are not significantly different from those of

random sequences (see Figure 6B). Overall, we can safely conclude

that transcribed extragenic regions with an enhancer-associated

chromatin signature represent in most cases sites of highly

regulated Pol_II recruitment and elongation, possibly relevant

for their function as enhancers.

An additional aspect worthy of attention is that at least in this

system extragenic Pol_II peaks are more frequently repressed than

induced by stimulation. While in many cases repression correlated

with downregulation of the associated genes, in several others it

correlated with gene activation of a neighboring gene. A

reasonable hypothesis in this case is that, similar to what was

described in other models [29,30], extragenic transcription

extending into neighboring genes may interfere with their activity:

therefore gene induction can occur only when transcription from

adjacent extragenic regions is switched off.

In conclusion, our study demonstrates that the pervasive

transcription occurring in mammalian genomes [1] is contributed

not only by RNA-coding genes but also by a large number of

enhancers associated with constitutive or regulated Pol_II

transcriptional activity. These data are relevant for functional

genomic annotations and at the same time indicate that Pol_II-

dependent transcription is integral to the activity of a fraction of

functional cis-regulatory elements.

Materials and Methods

Cell Culture and Materials
Bone marrow cells isolated from female Fvb/Hsd mice were

plated in 10 cm plates in 5 ml of BM-medium (high glucose

DMEM supplemented with 20% low-endotoxin fetal bovine

serum, 30% L929-conditioned medium, 1% glutamine, 1%

Pen/Strep, 0.5% Sodium Pyruvate, 0.1% b-mercaptoethanol).

Cultures were fed with 2.5 ml of fresh medium every 2 d.

Stimulations were carried out at day 7. Raw264.7 were cultured in

high glucose DMEM containing 10% low endotoxin FCS. Clones

stably expressing dominant negative IRF3 and IkBa super-

repressor were a gift of G. Cheng (UCLA) [70]. ActinomycinD,

cyclohexymide, and DRB were from Sigma and were used at a

final concentration of 5 mg/ml, 10 mg/ml, and 50 mg/ml,

respectively. The anti-p65 antibody used in the ChIP in

Figure 5C was from Santa Cruz (sc-372). The anti-acetylH3K9

antibody used in Figure 6 is from Millipore (#07-352).

ChIP-Seq Datasets
The RNA Pol_II and H3K4me3 ChIP-Sequencing datasets are

described in [37]. The H3K4me1 and PU.1 datasets are described

in [54]. Briefly, the RNA Pol_II ChIP-Seq experiment was carried

out in unstimulated and LPS+cIFN-stimulated (2 h) macrophages

using an antibody recognizing all isoforms of the large Pol_II

subunit, Rbp1 (Santa Cruz sc-899). The Ser5-Pol II ChIP-Seq

datasets were generated using the Ab5131 antibody from Abcam,

which recognizes the RNA Pol_II CTD repeat YSPT(pho-

spho)SPS. The H3K4me3, H3K4me1, and PU.1 datasets used

in this study were all obtained in unstimulated cells, and antibodies

were from Abcam (H3K4me3, Ab8580; H3K4me1, Ab8895) or

Santa Cruz (PU.1 sc-352). Datasets are available for download

from NCBI’s Gene Expression Omnibus (GEO, http://www.ncbi.

nlm.nih.gov/geo), accession numbers GSE17631, GSE19553,

GSE19991.

RNA Sequencing
Nuclei were isolated as described in the section below and total

nuclear RNA was extracted using Trizol. After quality control,

RNA was processed following the same standard Solexa protocol

recommended for mRNA sequencing. The dataset is available for

download from GEO, accession number GSE20370.

Quantitative RT-PCR and Nascent Transcript Analysis
RNA was extracted from macrophages using Trizol (Invitrogen)

and reverse transcribed with random hexamers. In some

experiments oligo-dT or gene specific oligonucleotides were used

to prime the reverse transcription, as indicated in the text. For

isolation of nascent transcripts, cells were lysed in HB buffer (10%

glycerol, 60 mM KCl, 15 mM NaCl, 1.5 mM HEPES pH 7.9,

0.5 mM EDTA) containing 0.3 M sucrose and 0.8% NP40.

Nuclei were then pelleted through a 0.9 M sucrose cushion in HB

buffer and then resuspended in 100 ml of NRB (75 mM NaCl,

20 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 50% glycerol, 100 mg/

ml yeast tRNA); lysis was carried out by addition of 750 ml of NLB

(0.3 M NaCl, 20 mM HEPES pH 7.6, 0.2 mM EDTA, 7.5 mM

MgCl2, 1 M urea, 1% NP-40, 100 mg/ml yeast tRNA). Chroma-

tin was then pelleted in microfuge at 4uC and nascent transcripts

extracted in Trizol. As control of the lack of genomic DNA

contamination, Q-PCR was also carried out on RNA that was not

reverse-transcribed. The sequences of the primers used are in

Tables S7 and S9.

Computational Approaches and Data Analysis
Computational procedures, including the machine-learning

algorithm used to classify enhancers and promoters, are described

in detail in Text S1.

Transient Transfections and Reporter Assays
RAW264.7 cells were transiently transfected in a 24-well format

with 0.8 mg of empty vector (pGL3-promoter vector, Promega) or

vectors containing the specified genomic regions (Table S10) with

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
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protocol. Twenty-four h after transfection, cells were treated with

LPS (10 ng/ml) and luciferase assay (Bright-Glo, Promega) was

performed 16 h after treatment. Values are expressed as fold

increase in luciferase counts over the empty vector for each cell

line.

Supporting Information

Figure S1 Inducible extragenic Pol_II peaks occurring
upstream of LPS-inducible genes. (A) The Cxcl9-Cxcl11

chemokine gene clusters with two Pol_II peaks upstream of Cxcl11

highlighted. (B–D) Three additional representative genomic

regions are shown. The extragenic Pol_II peaks are indicated by

horizontal lines. Peaks can also be detected at lower levels in

unstimulated macrophages.

Found at: doi:10.1371/journal.pbio.1000384.s001 (0.55 MB TIF)

Figure S2 Nascent, chromatin associated transcripts at
the Ccl5 (top) and Cxcl11 (bottom) loci were measured in
LPS+cIFN-stimulated cells as indicated. The amplicons

indicated are: TSS (transcription start site); A and B (correspond-

ing to two regions contained within the 21 peak in Figure 1 [for

Ccl5] and the 21 peaks in Figure S1A [for Cxcl11]). Pol_II ChIP-

Seq data in the same regions (2h LPS+cIFN stimulation) are also

shown. Error bars, s.e.m.

Found at: doi:10.1371/journal.pbio.1000384.s002 (0.25 MB TIF)

Figure S3 Stability of representative RNAs originating
from extragenic Pol_II transcription sites. (A) Macrophag-

es were stimulated with LPS for 2 h and then treated for 30 min

with actinomycinD (ActD). Stability of the upstream non-coding

transcripts is compared to that of the neighboring protein-coding

gene. At each panel the y-axis on the left (in red) indicates the

mRNA levels relative to those of the housekeeping gene TBP,

while the y-axis on the right (light blue) indicates the levels of the

neighboring upstream RNA generated by extragenic transcription.

(B) Stability of annotated ncRNAs, including Neat, Xist, two

Fantom transcripts, and two Linc RNAs.

Found at: doi:10.1371/journal.pbio.1000384.s003 (0.61 MB TIF)

Figure S4 An enhancer-associated chromatin signature
in the transcribed region upstream of Ccl5. The three

main sites of extragenic transcription are indicated by shaded blue

boxes. The two tracks at the bottom show the ChIP-Seq profiles of

PU.1 in the same region. PU.1 is a hematopoietic Ets family

member highly expressed in macrophages and showing a

widespread association with enhancers (Ghisletti et al., 2010 [54]).

Found at: doi:10.1371/journal.pbio.1000384.s004 (0.98 MB TIF)

Figure S5 Canonical lncRNA genes have a typical
promoter chromatin signature at their 59 end. ChIP-Seq

profiles at two representative genes, Malat1 (top) and Neat1

(bottom). The green box indicates a CpG island.

Found at: doi:10.1371/journal.pbio.1000384.s005 (0.80 MB TIF)

Figure S6 Examples of extragenic Pol_II peaks in
predicted enhancers overlapping annotated lincRNAs.
Four representative regions are shown. The H3K4me3/

H3K36me3 domains from Guttman et al. [25] are indicated by

red boxes, while enhancer predictions are indicated as black boxes.

Found at: doi:10.1371/journal.pbio.1000384.s006 (1.24 MB TIF)

Figure S7 Correlation between total Pol_II and phos-
pho-Ser5 Pol_II at extragenic regions with a promoter
prediction. The graphs display the distance between extragenic

Pol_II peaks predicted as promoters/TSSs and the closest

phospho-Ser5 Pol_II peak.

Found at: doi:10.1371/journal.pbio.1000384.s007 (0.27 MB TIF)

Figure S8 Chromosome conformation capture (3C)
assay at the Cxcl11 and Ccl5 loci. The position of the

anchor (constant) primer (red asterisk) and the Hind III restriction

sites used is indicated. Inverted images of ethidium bromide-

stained agarose gels are shown. n.s., non-specific band.

Found at: doi:10.1371/journal.pbio.1000384.s008 (0.55 MB TIF)

Table S1 A curated dataset of extragenic Pol_II peaks in
mouse macrophages. Peaks were divided in constitutive,

inducible, and repressed according to Pol_II behavior in response

to stimulation.

Found at: doi:10.1371/journal.pbio.1000384.s009 (0.42 MB XLS)

Table S2 Intergenic lncRNAs datasets used in this
study. The dataset termed ‘‘Ponjavic’’ is based on two datasets

generated by the FANTOM consortium [26] and then filtered to

eliminate all RNAs overlapping protein coding genes [24]. This

led to a set of 3,122 macroRNAs that was further filtered against

the current Ensemble protein coding gene annotations (mm_9)

leading to 2,168 independent long ncRNAs. The dataset termed

‘‘Guttman’’ contains long non-coding RNA predicted on the base

of H3K4me3/H3K36me3 chromatin signatures [25]. The

original set is made up of 1,673 domains that were remap to

mm9 and filtered against the current Ensemble protein coding

gene annotations, leading to a final set of 1,408 long ncRNAs.

Found at: doi:10.1371/journal.pbio.1000384.s010 (0.39 MB XLS)

Table S3 RNA Pol_II clusters overlapping annotated
intergenic lncRNAs. Clusters from Table S4 were overlapped

with both datasets of lncRNAs in Table S2. The clusters and their

matched lncRNAs are shown.

Found at: doi:10.1371/journal.pbio.1000384.s011 (0.13 MB XLS)

Table S4 Promoter and enhancer predictions. The

extragenic Pol_II peaks were analyzed for chromatin signatures

of enhancers or promoters using a machine-learning algorithm

(described in the methods section). The table shows the prediction

for each Pol_II peak. Peaks whose prediction was precluded are

grouped. The table also shows the final dataset used for most of the

analysis that resulted from a clustering and filtering procedure

(described in the Methods section) of the Pol_II peaks predicted as

promoters or enhancers. For each cluster the annotation of the

closest neighboring UCSC known gene as well as the total number

of RNA-seq transcripts, Q-PCR amplicons, and RNA repeats are

shown.

Found at: doi:10.1371/journal.pbio.1000384.s012 (1.29 MB XLS)

Table S5 Association between the transcriptional activ-
ity of enhancer-type extragenic Pol_II clusters with the
expression of the associated protein-coding genes.
Extragenic Pol_II peak clusters with a signature of enhancer were

assigned to the neighboring protein coding gene when distant less

than 20 kb. Transcriptional activity of the assigned coding gene

was evaluated on the basis of the Pol_II tag counts at 6500 bp

surrounding their TSS in untreated and LPS-treated macro-

phages.

Found at: doi:10.1371/journal.pbio.1000384.s013 (0.09 MB XLS)

Table S6 Phospho-Ser5 Pol_II datasets. Peaks detected in

untreated as well as LPS treated (2 h) macrophages against their

input are listed.

Found at: doi:10.1371/journal.pbio.1000384.s014 (9.40 MB XLS)

Table S7 Validation of 100 ncRNAs associated with
predicted enhancers. The table shows the genomic location of

the regions, the Q-RT-PCR data, the sequence of the primers

used, and the corresponding peak in Table S4.

Found at: doi:10.1371/journal.pbio.1000384.s015 (0.03 MB XLS)
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Table S8 Enrichment of TFBSs in the datasets of
predicted enhancers and promoters. The table shows the

results of the Clover analysis carried out using a library of 338

high-quality PWMs (130 from the Jaspar database and 208 from

Badis et al. 2009 [68]). The Summary shows the TFBS (PWMs)

that are over-represented in each of the six individual groups

(constitutive, inducible, and repressed enhancers; constitutive,

inducible, and repressed promoters). In the other sheets the

complete data for each group are shown. Each row represents a

Pol_II peak (after a filtering step to eliminate nearby opposite

predictions, see Methods section), while columns represent the

enriched motifs. The Clover scores for every matrix and every

peak are indicated. Matrices from the Bulyk group [68] are

indicated by the prefix BU, while Jaspar matrices are preceded by

the prefix MA.

Found at: doi:10.1371/journal.pbio.1000384.s016 (2.38 MB XLS)

Table S9 Primers used in this study. Primers used are

shown with reference to each figure.

Found at: doi:10.1371/journal.pbio.1000384.s017 (0.04 MB XLS)

Table S10 Regions used in the luciferase assay and
relative cloning primers.

Found at: doi:10.1371/journal.pbio.1000384.s018 (0.02 MB XLS)

Text S1 Computational methods. Chromosome conforma-

tion capture (3C) assay.

Found at: doi:10.1371/journal.pbio.1000384.s019 (0.08 MB

DOC)
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