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ABSTRACT

PathDIP was introduced to increase proteome cover-
age of literature-curated human pathway databases.
PathDIP 4 now integrates 24 major databases. To fur-
ther reduce the number of proteins with no curated
pathway annotation, pathDIP integrates pathways
with physical protein–protein interactions (PPIs) to
predict significant physical associations between
proteins and curated pathways. For human, it pro-
vides pathway annotations for 5366 pathway or-
phans. Integrated pathway annotation now includes
six model organisms and ten domesticated animals.
A total of 6401 core and ortholog pathways have
been curated from the literature or by annotating or-
thologs of human proteins in the literature-curated
pathways. Extended pathways are the result of com-
bining these pathways with protein-pathway asso-
ciations that are predicted using organism-specific
PPIs. Extended pathways expand proteome cover-
age from 81 088 to 120 621 proteins, making pathDIP
4 the largest publicly available pathway database for
these organisms and providing a necessary plat-
form for comprehensive pathway-enrichment anal-
ysis. PathDIP 4 users can customize their search
and analysis by selecting organism, identifier and
subset of pathways. Enrichment results and detailed
annotations for input list can be obtained in differ-
ent formats and views. To support automated bioin-
formatics workflows, Java, R and Python APIs are

available for batch pathway annotation and enrich-
ment analysis. PathDIP 4 is publicly available at
http://ophid.utoronto.ca/pathDIP.

INTRODUCTION

Pathways are biological network models defining how
biomolecules cooperate to accomplish cellular tasks in dif-
ferent contexts. Pathways are assembled from physically-
interacting molecules such as proteins and thus, to obtain
a comprehensive image of pathways, we need to know all
their participating physical components and the physical in-
teractions among them. In addition, we need to know the
context, i.e. tissue or disease, where such interactions and
pathways are physiologically meaningful. Despite the ad-
vances and the amount of important information available
in human pathway databases, and their critical role in bioin-
formatics workflows and systems-biology research, at the
present time, they are still far from being complete.

To increase coverage of human pathway databases and
improve results of pathway-enrichment analysis, we have
developed pathway Data Integration Portal, pathDIP (1).
Through integration of data available in 22 widely used hu-
man pathway databases and physical protein–protein in-
teraction (PPI) networks obtained from IID (2) we in-
creased coverage of pathway annotations for human pro-
teins, improved consistency in coverage of individual path-
way sources for proteins, predicted pathway annotations for
thousands of proteins with no annotation in curated path-
way databases (i.e. pathway orphans), and provided annota-
tions on physical connections among each protein and pro-
tein members of each pathway. While pathways available in
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the source databases, i.e. core pathways, annotate 65% of the
human proteome, combining them with our network-based
predictions, i.e. extended pathways, increases this cover-
age to 92%. Moreover, leave-one-out cross-validation shows
that our predictions recover 87% of core pathway members.

Shortcomings of literature-curated human pathway
databases affect non-human organisms even more. It is im-
portant to address these caveats, since non-human organ-
isms are widely-used during validation experiments and
to find answers to diverse questions such as understand-
ing evolution, discovering molecular mechanisms in cells,
studying diseases and developing drugs. Therefore, under-
standing species-specific molecular networks and pathways
can directly and indirectly affect these areas.

At the present time, only a handful of sources, such
as BioCyc database collection (3)––including but not
limited to MouseCyc (4) and YeastCyc (5), in addi-
tion to HumanCyc (6), and 54 other organisms (Tier 1
and 2 Pathway/Genome Databases (PGDBs)), Consensus-
PathDB (7), KEGG (8), Panther (9), Reactome (10) and
WikiPathways (11) provide pathway annotations for non-
human organisms. However, most non-human pathway an-
notations in ConsensusPathDB, KEGG, Panther, Reac-
tome and WikiPathways are predictions using orthologs
of human proteins, leaving only limited sets of literature-
curated pathways covering a small fraction of non-human
proteins. Importantly, identifying literature-curated and or-
tholog pathways in these sources is often difficult or impossi-
ble. Several non-human organisms in pathDIP 4 have two or
three source databases, including chicken, cow, fly, mouse,
rat, worm and yeast. Mouse and yeast have the largest num-
ber of pathways with 495 and 458 pathways, and 4353 and
1196 annotated proteins, respectively (Table 1).

In pathDIP 4, we focused on improving annotations
and analysis services for human proteins and sixteen non-
human organisms (cat, chicken, cow, dog, duck, fly, guinea-
pig, horse, mouse, pig, rabbit, rat, sheep, turkey, worm
and yeast). We approached caveats due to lack of avail-
able resources and annotations, low coverage for species-
specific proteins, and missing physical connectivity among
pathway proteins in non-human organisms through our
well-established network-based algorithm (1) and ortholog-
based consensus method.

PathDIP 4 provides pathway annotations for six model
and ten domesticated organisms (Table 1). We annotated
proteins with 6401 pathways (total across all species) by:
(i) core pathways, i.e. pathways from literature-curated
databases, (ii) ortholog pathways, i.e. pathway annotations
using protein orthologs in human and (iii) extended path-
ways, i.e. integration of species-specific PPIs with pathways
of the first two sets to obtain species-specific network-based
predictions and combining them with core and ortholog
pathways. Our predictions extend coverage of pathways for
proteins from 23 771 to 120 621 across seventeen species,
including human.

Human pathway annotations include the most up-to-
date versions of human databases, and two new sources
(ACSN2 (12) and Panther (9)) and cover 13,088 proteins
in core and 18 454 proteins in extended pathways. Further-
more, we have extended functionality of pathDIP 4 in sev-
eral ways, including services such as pathway source group-

ing, search pathways, miRNA-target search and JAVA,
Python and R APIs.

In this paper, we describe extensions of data and ser-
vices available through pathDIP 4 (http://ophid.utoronto.
ca/pathDIP), and provide examples on how these improve-
ments can help in approaching some important research
problems.

MATERIALS AND METHODS

Data collection and processing

Core pathways for human. We obtained protein members
of 5380 pathways from 22 pathway databases (Supplemen-
tary Table S1A): ASCN2 (12), BioCarta (13), EHMN (14),
HumanCyc (6), INOH (15), IPAVS (16), KEGG (17), Net-
Path (18), OntoCancro (19), Panther (9), PharmGKB (20),
PID (21), RB-pathways (22), Reactome (10), Signalink2.0
(23), SIGNOR2.0 (24), SMPDB (25), SPIKE (26), STKE
(27), System-biology.org (28), UniProt Pathways (https://
www.uniprot.org/help/pathway), WikiPathways (11). It is
worth mentioning that although KEGG uses computa-
tional methods to reconstruct human-specific pathways
from KEGG maps, the maps they use are extracted from
the experimental knowledge available in the literature.

Core pathways for model and domesticated organisms. We
downloaded and pre-processed pathways for seven model
and domesticated organisms (chicken, cow, fly, mouse, rat,
worm and yeast) from five sources (MouseCyc (4), Panther,
Reactome, WikiPathways and YeastCyc (5)) (Supplemen-
tary Table S1B). From any source that combines literature-
curated and ortholog pathways to human, we removed or-
tholog pathways. We did not include KEGG in the sources
of non-human pathways as it reconstructs species-specific
pathways from KEGG maps through computational meth-
ods that partly use protein ortholog information, which is
also used in pathDIP 4.

Protein IDs, orthologs and interactions. We downloaded
1:1 orthologs from Ensembl (29) release 92. Mappings be-
tween UniProt ID, NCBI Gene ID and protein names are
based on UniProt ID conversion service (as of May 2019).
Species-specific PPI networks of human and sixteen non-
human species were obtained from IID (2) (version 2018–
11) (Supplementary Table S1C).

Disease proteins. We obtained a list of 691 proteins asso-
ciated with psoriasis and 304 proteins associated with os-
teoarthritis from DisGeNET (http://www.disgenet.org, Au-
gust 2019) (30). For osteoarthritis, human proteins were
mapped to their 1:1 orthologs for each of the other 16
species (DisGeNET only includes human genes), while for
psoriasis the mapping was done only to mouse as mouse
models are the most frequently used animal models in pso-
riasis studies (31). Human proteins that had no orthologs in
any other species were discarded. Each list of proteins was
used to query pathDIP 4 in its relevant species. In human
only, we had two sets of extended pathways, one through
only experimentally detected PPIs and one through all PPIs
(i.e. combination of experimentally detected and compu-
tationally predicted). For psoriasis, we used these two sets
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Table 1. Coverage of different annotation sets (core, ortholog and extended pathways) for unique proteins and the number of pathways per annotation set
across different species, as well as the number and ratio of proteins annotated only through network-based predictions

PathDIP4 - Proteins PathDIP4 - Pathways

Species
Total # of 

Protein-coding 
genes*

Core Ortholog Extended
Count_Only
_Net-based

Count_Only
_Netbased/

Extended

Coverage of 
extended 
pathways 

Core Ortholog Extended

Human 20,000 13088 18454 5366 0.291 0.923 5380 5380

Cat 19,515 4271 5672 1401 0.247 0.291 3876 3876

Chicken 18,124 390 4566 6115 1431 0.234 0.337 135 3913 3956

Cow 23,858 857 6642 9501 2732 0.288 0.398 105 4283 4305

Dog 20,274 6059 8389 2330 0.278 0.414 4149 4149

Duck 16,565 404 466 62 0.1331 0.028 2659 2659

Fly 13,796 935 2387 7240 4315 0.596 0.525 183 2536 2674

Guinea_pig 18,253 6280 6290 10 0.002 0.345 5096 5096

Horse 21,454 2994 3909 915 0.234 0.182 3501 3501

Mouse 22,259 4353 10640 15754 4388 0.279 0.708 495 4607 5107

Pig 23,223 4426 5996 1570 0.269 0.258 3891 3891

Rabbit 19,904 4475 6094 1619 0.266 0.306 3881 3881

Rat 21,661 1597 8088 11979 3497 0.292 0.553 141 4401 4446

Sheep 21,217 2920 3857 937 0.241 0.182 3391 3391

Turkey 14,166 1002 1206 204 0.169 0.085 2058 2058

Worm 10,679 1355 1931 4444 1717 0.386 0.416 149 2250 2325

Yeast 6,049 1196 950 5255 3722 0.708 0.869 458 1373 1808

Total 23771 68035 120621 36216 0.3 6401 5142 6401

* Total number of protein-coding genes for organisms is from Uniprot Proteomes (https://www.uniprot.org/proteomes)

(both at 0.99 confidence level), in addition to the core path-
ways. For osteoarthritis, we used core and ortholog path-
ways.

Pathway member prediction

Predictions based on orthology. For each non-human or-
ganism, we replaced members of core human pathways with
their orthologs and kept only pathways with at least three
ortholog members (i.e. we did not consider a single protein
or a single interaction (two proteins) as a pathway) (Supple-
mentary Table S1D).

Predictions based on physical network connectivity. For all
seventeen species in pathDIP 4, we used species-specific PPI
networks (obtained from IID) to predict statistically signif-
icant protein-pathway associations as described in (1). For
human, we provide predictions using core pathways and two
sets of PPIs: (i) experimentally detected PPIs, and (ii) the
full set of human PPIs available in IID (i.e. the combina-
tion of experimentally detected and computationally pre-

dicted with high confidence). For non-human species, we
used only one set of PPIs, i.e. the full set of species-specific
PPIs, to predict strong physical associations between each
protein and each pathway in core (if available) or ortholog
pathway sets.

Calculation of recovery rate for human. We divided
the number of protein-pathway pairs annotated both as
‘Known’ (experimentally detected and available in the liter-
ature) and ‘Pred’ (network-based predictions) by the num-
ber of protein-pathway pairs in the core pathways table
whose protein is present in human PPI network (experimen-
tal only or experimental and predicted).

Procedure to compare recovery between ortholog pathways
and network-based predictions. We used three sets of
species-specific protein-pathway pairs for these compar-
isons:



D482 Nucleic Acids Research, 2020, Vol. 48, Database issue

i) A subset of core pathways whose titles have exact
matches in human and protein members that are avail-
able in the species-specific PPI network;

ii) Ortholog pathways;
iii) Predictions based on only core pathways (i.e., predic-

tions based on ortholog pathways were not considered)
and species-specific PPI networks.

Next, in each organism, we compared the overlap of
protein-pathway pairs in set 1 with protein-pathway pairs
in sets 2 and 3.

Procedure to compare conservation of DNA replication path-
way across different species. We focused on species with
available core pathways (chicken, cow, fly, mouse, rat, worm,
yeast). For these species, we collected proteins from core, or-
tholog and extended pathways whose titles include ‘DNA
replication’. We then looked at the number of orthologs
present from one species to the next closest in evolutionary
terms.

Enrichment analysis. We used Fisher’s Exact test followed
by correction for multiple hypothesis testing by two differ-
ent methods, Bonferroni and False Discovery Rate to cal-
culate enrichment of input at two levels of pathways and
pathway titles as explained in (1).

Word clouds. Term enrichment was performed as above,
and word clouds were generated using Wordle (http://www.
wordle.net).

Jaccard Index. Jaccard Index is the result of dividing the
size of overlap by the size of union of any two sets of path-
ways and was performed in R 3.6.0.

PORTAL DESCRIPTION

Data

PathDIP 4 annotates 120 621 protein-coding genes to 6401
pathways across human and 16 non-human organisms (Ta-
ble 1). Only 23 771 of these genes have core pathway annota-
tions, thus, pathDIP 4 provides novel pathway annotations
for 96 850 pathway-orphan genes. Importantly, 36 216 genes
are annotated only through network-based pathway associ-
ation predictions.

Functionalities

We have substantially expanded pathDIP 4 services and
functionalities. Novel pathDIP 4 features include catego-
rization of pathway sources, search using miRNA targets,
search using pathway terms, and pathDIP APIs. Here we
describe all previous and novel features in pathDIP 4.

Search genes tab.

Input and settings. One of the novel features in pathDIP
4 is that users can select the species of interest and input
pathDIP 4 with a list of proteins or genes specific to that
species. Input list can contain UniProt ID, NCBI Entrez
Gene ID or protein names. While pathDIP 4 input list is

Table 2. Classification of pathway source databases according to their
context-specificity, and their colour-coding in pathDIP 4. This categoriza-
tion facilitates selecting pathway databases in the context that is most suit-
able to each study

Pathway DB Category Databases
Metabolic pathway DBs EHMN, HumanCyc, UniProt_Pathways
Drugs & small molecules PharmGKB, SMPDB
Signaling and regulatory PharmGKB, PID, stke, SIGNOR2.0, Spike
Genome maintenance OntoCancro, RB-Pathways

General pathway DBs

BioCarta, INOH, IPAVS, KEGG, 
Panther_Pathway, REACTOME, 
systems-biology.org, SignaLink2.0, 
WikiPathways

Cancer pathway DBs ACSN2

not case-sensitive, it returns case-sensitive protein names
which is important in model organisms. Users can also se-
lect any subset of pathway source databases, as well as one
of the listed annotations sets for each species, i.e. core, or-
tholog or extended (by predictions at different confidence
cut-offs) pathways.

Enrichment analysis. PathDIP 4 performs enrichment
analysis at two different levels, pathways and pathway key-
terms (words and expressions). To calculate the enrichment
score, pathDIP 4 uses the Fisher’s Exact Test, followed by
correction for multiple hypothesis testing by two different
methods, Bonferroni and False Discovery Rate.

- Pathway-enrichment analysis: uses the input list and the
selected annotation sets to find the pathways significantly
enriched with proteins or genes in the input list.

- Term-enrichment analysis: uses biologically informative
terms in enriched pathway titles to find which terms are
significantly over-represented in enriched pathway titles.
To extract the set of terms, we first defined a set of 393 rules
to remove non-informative words and unnecessary char-
acters and define multi-word terms (e.g. cell-cycle). Next,
we cleaned this list through manual curation.

This service helps summarize and visualize pathway-
enrichment results, and is particularly helpful when result
lists from pathway-enrichment analyses contain hundreds
of pathways.

Color-coding of pathway source databases. We have
grouped pathway databases according to their content into
six categories (32): metabolic, drugs and small molecules,
signaling and regulatory, genome maintenance, general and
cancer pathway databases (Table 2). It helps users to select
subsets of pathway databases suitable for their study.

Search miRNAs tab. PathDIP 4 provides users a pipeline
through integration of mirDIP (33), a miRNA–target
database, and pathDIP 4, to perform pathway annotation
and enrichment analysis of miRNA targets in one step.
Instead of querying mirDIP first, taking its output and
putting it in pathDIP 4 input format, users can input a list of
miRNA IDs and select the level of confidence for miRNA–
target pairs (33). Next, they select pathway sources and an-
notation set. pathDIP 4 first sends the input list of miRNA

http://www.wordle.net
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IDs and confidence settings to mirDIP and receives the list
of miRNA–targets. Next, it uses the list of target proteins to
perform pathway annotation and analysis using parameters
set for pathways. The output contains annotation and en-
richment analysis results for the list of miRNA targets. This
service is available only for human as mirDIP is a human-
specific miRNA–target database.

Search pathways tab. Through this tab, users can perform
annotation and enrichment analysis of any subset of path-
ways (not limited to a particular database). This service,
which is new to pathDIP 4, uses the table of terms explained
above (see term enrichment analysis) and enables users to
select the list of pathways most suitable to their study.

PathDIP 4 provides two approaches to input search key-
words. The first approach is to use a list of characters pro-
vided in Search Pathway tab. Upon clicking on each charac-
ter, a list of pathway title keywords starting with that char-
acter appears. Users can click on any of the keywords to add
it to the list of pathways of their interest. The second option
is to use a drop-down search box. Users can type any part
of a keyword. If any keyword including the typed charac-
ter is available in pathDIP 4, a drop-down list containing
those keywords appears that allows users to select the full
keyword.

After selecting the keywords and databases of interest,
users can search and receive a list of pathway titles including
those keywords. PathDIP 4 allows users to review and refine
this list of pathways. Next, they input a list of protein/gene
IDs and select one of the pathways sets for further anno-
tation and enrichment analysis only across their selected
pathways. If user selects ‘save as tab delimited’ instead of
‘search’, a file containing input genes annotated with path-
ways including the selected words will be downloaded.

API. PathDIP 4 provides Java, Python and R APIs to fa-
cilitate programmatic use of pathway annotation and en-
richment analysis.

RESULTS AND DISCUSSION

PathDIP 4 content

PathDIP 4 annotates 120 621 proteins with 6401 pathways
across seventeen organisms, in three pathway tables.

Core pathways. Core pathways integrate literature-
curated pathways available in 24 pathway databases and
annotate 23 771 proteins in eight species (human: 13 088,
chicken: 390, cow: 857, fly:935, mouse: 4353, rat: 1597,
worm: 1355, yeast: 1196) (Table 1). However, while twenty-
two of these resources focus on human, we found only five
sources with literature-curated pathways for non-human
organisms and the number of these pathways remains
limited (Supplementary Table S1B).

Ortholog pathways. Ortholog pathways are predictions
based on direct mapping of human core pathway mem-
bers to their ortholog proteins in other organisms (Supple-
mentary Table S1D). In PathDIP 4, 68 035 proteins across
16 species are annotated to ortholog pathways. Although

this approach improves the coverage of pathway annota-
tion for non-human organisms, the annotations are bound
to the limitations of core human pathways, i.e. high rate of
pathway orphans and low overlap across different source
databases. In addition, only fractions of the proteins in these
organisms have orthologs available in human.

Figure 1A shows the distribution of conservation of path-
ways across organisms. The least conserved pathways (con-
served in no or one organism) are enriched in terms ‘defec-
tive’ and ‘biosynthesis’ while the pathways conserved in all
organisms are enriched in words ‘signaling’, ‘degradation’,
‘RNA’, ‘transcription’, ‘response’, ‘wnt’, ‘APC-C’, ‘mitotic’,
‘Cell-cycle’, ‘apoptosis’, etc. The term ‘metabolism’ was
over-represented in both groups (Supplementary Table
S2A).

Extended pathways. Although predicting pathway anno-
tations for non-human proteins through their human or-
thologs significantly improves coverage of pathways for
non-human organisms, it is not sufficient due to caveats in
human pathways and limitations of ortholog mapping.

Extended pathways combine core and ortholog pathways,
with predictions based on significance of physical connec-
tivity of each protein with members of each core or ortholog
pathway. Association-prediction based on network proper-
ties of proteins and genes has been applied to different re-
search questions in molecular and systems biology (34–38).
Compared to other network-based measures, connectivity-
significance has been shown to be one of the best predic-
tors of association (for example, to a group of disease genes
or pathways) (39). PathDIP 4 annotates 120 621 proteins
in human and sixteen non-human organisms. Furthermore,
despite its relatively conservative approach (compared with
other available algorithms such as (39)), extended pathways
annotate 36 216 pathway orphan proteins in sixteen species,
i.e., proteins with no pathway annotations available in core
or ortholog pathways.

In human, extended pathways increase coverage of path-
way annotations for proteins from 65% (13 088 proteins) to
92% (18 454 proteins) and cross-validation determined re-
covery rate of up-to 87% for core pathways (Table 3).

Comparison of ortholog versus extended pathways

Coverage for proteins. Comparing coverage of ortholog
versus network-based predicted pathways for proteins
shows that in all seventeen species combined, almost 30%
of extended pathways are pathway orphans in core and
ortholog pathways and have obtained their annotations
through only network-based predictions (Table 1). Across
non-human species, network-based-only predictions cover
between ∼0.2% (guinea-pig) and 70% (yeast) of extended
pathways with median 27%. This highlights the importance
of network-based predictions, even though in many organ-
isms all network-based predictions are based on connec-
tivity of proteins with only ortholog pathways and through
only orthologous PPIs (due to lack of available experimen-
tal data).

Recovery for core pathways. To compare the recovery rate
of ortholog-based versus network-based predictions, we fo-
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Figure 1. (A) Distribution of the number of non-human organisms covered by each ortholog pathway. Pathways with count organism ‘16’ are human
pathways for which we provide ortholog pathways in all non-human organisms, while pathways with count organism ‘0’ are human pathways with no
ortholog pathways in pathDIP 4. (B) Recovery rate for core protein-pathway pairs through ortholog and network-based predictions. In chicken and cow,
where almost all available PPIs used for network-based predictions are orthologous ones, networks do not improve recovery, whereas in fly, yeast and worm,
in which experimental PPIs are more prevalent, networks improve recovery drastically. (C) Comparing coverage of the three largest pathway databases
pathDIP 4 (core, ortho, extended), full Reactome (i.e. combination of core and ortholog pathways) and full WikiPathways for proteins across different species
shows that extended pathways in pathDIP 4 annotate the largest number of proteins compared with the other two databases. The only two exceptions are
chicken and pig. Among all 24 source databases, Reactome and WikiPathways provide the two largest number of core pathways in human (separately) and
in non-human organisms (combined) (details in Supplementary Tables S1A and B). Plots generated using R package ggplot2 (version 3.2.1).

cused on the seven organisms for which both core and or-
tholog pathways are available, i.e. chicken, cow, fly, mouse,
rat, worm and yeast. Details are provided in ‘methods’ sec-
tion and (Supplementary Table S2B).

Figure 1B shows recovery rate of ortholog pathways ver-
sus network-based pathways. Importantly, network-based
predictions improve recovery of ortholog pathways for core
protein-pathway pairs differently across different species.
While in chicken and cow, PPIs improve recovery rate only
slightly (1.03, 1.06), in fly, worm and yeast, networks im-
prove the recovery by a factor of 2.20, 1.41, 2.37. In mouse
and rat, the improvements are 1.11 and 1.10, respectively.
Our further investigation showed that in chicken and cow,
<0.5% of PPIs are experimentally detected; thus, the ma-
jor source of PPIs are orthologous PPIs whose proteins
are a subset of proteins we used for ortholog pathway pre-
dictions. Similarly, in mouse and rat, experimentally de-
tected PPIs constitute 10 and 2.8% of the full network.

However, in worm, fly and yeast, experimentally detected
PPIs make ∼22%, ∼57% and 80% of the PPI network,
respectively. A similar trend is observed for the number
of proteins in experimental versus orthologous PPI net-
works (Supplementary Figure S1A and Supplementary Ta-
bles S2C and D). These numbers can explain the differences
in recovery rates of ortholog versus network-based protein-
pathway predictions across different species, and reinforce
the importance of integration of data with different types
of sources to extract relevant information. In fact, experi-
mental PPIs, whose detection method is independent of or-
tholog proteins, improve recovery-rate markedly better than
using only orthologous PPIs.

Comparison of pathDIP 4 with other databases

Comparison of core, ortholog and extended pathways in
pathDIP 4 with the combination of literature-curated and
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Table 3. Coverage and recovery rate of core pathways, extended pathways using only experimental PPIs, and extended pathways using full (combination
of experimental and predicted) PPIs for human proteins (top row) and their pathway memberships (bottom row) in pathDIP 4.

Human pathways Curated
Extended using experimental PPIs
(0.95)

Extended using experimental and
predicted PPIs (0.95)

Coverage for protein-coding genes 65% 89% 92%
Recovery for known pathway
members

- 59% 87%

Extended pathways are based on 95% confidence cut-off.

ortholog pathways in Reactome and WikiPathways, the two
largest publicly available databases for ortholog pathways
in organisms, shows that coverage of pathDIP 4 for pro-
teins in most of the organisms is higher than coverage of
the other two databases (Figure 1C). For several organisms,
the protein coverage of ortholog pathways in PathDIP 4 is
lower than the coverage of ortholog pathways in Reactome
(release 68). However, when the extended pathways are se-
lected, the coverage of PathDIP 4 becomes higher than that
of Reactome. Two exceptions are chicken and pig. Lower
coverage of ortholog pathways in pathDIP 4 for proteins is
due to using a more reliable set of orthologs (inclusion of
only 1:1 orthologs) compared with Reactome. Supplemen-
tary Figure S1B compares the number of pathways available
in different pathway sets in pathDIP 4, full Reactome and
full WikiPathways per species.

While network-based predictions are specific to PathDIP
4, to the best of our knowledge, it is the only available inte-
grated resource that provides direct distinction between core
and ortholog pathways. In addition, direct miRNA–target
pathway analysis, pathway source classification, and term-
enrichment analysis are additional useful features specific
to pathDIP 4.

Example applications

Conservation of DNA replication pathway across different
species. To show the quality of our predictions across
species, we looked at a pathway that is highly conserved:
DNA replication (40). Figure 2A shows that proteins anno-
tated only with core pathways are conserved among mam-
mals or among lower organisms (fly, worm and yeast), while
inclusion of orthologs and predicted pathway annotations
extends the overlap from human to yeast. Interestingly, 14
genes present in the ortholog pathway set in cow have or-
thologs in the core pathways in fly (PRIM2, POLE, RPA1,
RFC3, RFC5, MCM7, CDC45, ORC5, ORC2, CDC6,
CDT1, MCM10, ORC4, ORC1), providing experimental
support for the ortholog approach. When considering core
and predicted pathway annotations for human, the over-
lap of DNA replication proteins between human and other
seven species increases. 40 proteins (listed in Supplemen-
tary Table S3A) are present in all the species from human
to yeast. Of these, 9 are present in yeast core pathways, 11
in yeast ortholog pathways and the remaining 20 in pre-
dicted pathways. Interestingly, all 20 are present only in pre-
dicted pathways in all the 7 species considered, even though
among them there are proteins that have been described be-
ing involved in DNA replication (i.e. MRE11A (41), XPO1
(42), SMC2 (43)). Of note, three proteins annotated with
predicted DNA replication pathways in human have or-

thologs in other species that are annotated with core path-
ways (HIST1H3J, HIST2H3D and TOP1MT between hu-
man and mouse; HIST2H3D and TOP1MT between hu-
man and rat).

Ranking the non-human organisms suitable for disease-
related functional genomics studies. Osteoarthritis-
associated genes were obtained from DisGeNET and their
orthologs in other species were used to query pathDIP 4
using core pathways to observe disease-specific pathway
conservation. Overlap of core pathways among the species
with available core pathways is quite poor (Figure 2B),
while the overlap notably improves among all species when
we consider ortholog pathways (Figure 2C and Supplemen-
tary Table S3B). The three invertebrate species, fly, worm
and yeast did not have any enriched pathway. Duck had
only one enriched pathway, which was also present in all
remaining twelve species and in human: Endochondral
Ossification, a process essential for osteoarthritis develop-
ment (44). A total of 76 pathways were present in 11 out
of 14 vertebrates, and these included processes linked to
osteoarthritis such as TGF-beta signaling (45), GPCRs
(46) and inflammation (47), as visible in (Supplementary
Figures S2A and B).

Interestingly, model organisms used to study osteoarthri-
tis include mouse (Jaccard Index (JI) with human is 0.88),
rat, guinea pig (JI for both: 0.63), dog (JI: 0.57), rabbit (JI:
0.53), horse (JI: 0.42) and sheep (JI: 0.23) (48). Our data
suggest not studying molecular mechanisms of osteoarthri-
tis parallel to human in sheep, whereas cow, as the second
highly overlapping organism (after mouse, JI: 0.68), is a
good candidate (Supplementary Table S3C). Cow has nat-
urally occurring osteoarthritis (49) and has been previously
proposed as a model organism for knee osteoarthritis due to
the similarity of its knee to the human’s (50). Cat, turkey and
duck have very little overlap (JI: 0.3, 0.008 and 0.001, re-
spectively) while pig and chicken have an intermediate over-
lap (JI: 0.47 and 0.46, respectively). Commercial pigs have
been used as model organisms for naturally occurring os-
teoarthritis (51), even if their knee structure is less similar
to the human one than cow (50), while chicken has been
proposed in the past but never really used (52), to the best
of our knowledge.

This analysis highlights the application of pathDIP 4 data
in selecting the right model organism (even beyond the most
commonly used ones if needed) for the type of molecu-
lar mechanism to be studied, especially when the aim is to
translate any finding to human diseases and treatments.

Psoriasis: network-based predictions extend the set of
disease-related pathways. We used the genes associated to
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Figure 2. (A) Conservation of DNA-replication pathways across multiple species. For DNA replication pathways in each species, orthologs to human were
considered, and overlap of orthologs per consecutive pairs of species are shown. Each bar represents an organism and each color represents genes present
in ortholog (bottom), expanded (middle) and core (top) DNA replication pathways. Flow among bars depicts the number of proteins with orthologs from
the starting organism to the landing one. Flow color grows darker with the number of organisms in which a set of proteins is conserved. (B) Overlap among
core pathways in different species after enrichment analysis using osteoarthritis genes or their orthologs. (C) Heatmap of Jaccard indices of pathways across
different species. Human pathways were obtained using core pathways while for every other species only ortholog pathways were used. Plots generated based
on R package alluvial (version 6.3.0) modified by authors, UpSetR (version 1.3.3), and ggplot2 (version 3.1.0).

psoriasis to obtain pathway-enrichment using human core
and extended sets as described in ‘Materials and Meth-
ods’ section. We obtained 1148 pathways in core pathways,
1737 in extended using experimental PPIs and 2531 in ex-
tended using all PPIs (experimental and predicted) (Supple-
mentary Tables S3D and E). A total of 972 such pathways
were common among the three sets, and included pathways
linked to MAPK and NFKB signaling and to immune pro-
cesses (Supplementary Figures S3A and B). A total of 719
pathways were exclusively annotated as extended using ex-
perimental and predicted PPIs and included signaling and
metabolism (Supplementary Figure S3C).

A total of 25 and 69 pathways were specific to the core
and extended pathways respectively. Two psoriasis experts
reviewed the two sets of pathways, aiming to verify whether
they are linked to psoriasis. The two experts strongly dis-

agreed on nine pathways (three from literature and six from
extended), for a discordance rate of 9.5% (Supplementary
Tables S3F and G). Sixteen pathways from the literature set
were voted as related to psoriasis, five were ‘maybe related’
and one was considered unrelated. Of the extended set, 37
were labeled as related, 16 as ‘maybe’ or ‘don’t know’ and
10 as non-related to psoriasis. Addition of the 37 psoria-
sis related pathways to the set of enriched pathways only
through predicted pathways shows the importance of our
predictions in performing comprehensive pathway analysis.
Moreover, having only 10 non-related out of 69 extended
pathways, along with 37 related and 16 gray zone (‘maybe’
or ‘don’t know’) shows that the extended pathways mostly
include pathways that are known to be or that can be mean-
ingful to the proteins being analysed rather than only ran-
dom pathways.
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Psoriasis is a disease restricted to humans and it has been
reported sporadically in few other animals, making it diffi-
cult to identify a proper model organism and translate find-
ings from the model organism to human. At the present
time, mouse models mimicking the disease are the most fre-
quently used (31), so we queried mouse orthologs of human
psoriasis related genes in mouse pathDIP 4, using core, or-
tholog and extended pathways. Twenty-seven pathways were
enriched in core, 1129 in ortholog and 2534 in extended path-
ways. Thirteen pathways were present in all three sets, while
two and 1075 were present in the overlap of extended path-
ways with either core or ortholog pathways (respectively)
(Supplementary Table S3H). Term-enrichment performed
on the union of these 1090 mouse pathways shows very
similar terms when compared to 972 overlapping human
pathways (Supplementary Figure S4A and B). This sug-
gests conservation of molecular mechanisms of psoriasis in
mouse and explains why mouse models have been successful
even though mice do not spontaneously develop psoriasis.

SUMMARY AND CONCLUSION

PathDIP 4, compared with its previous versions, is sub-
stantially expanded and improved in several ways. In addi-
tion to human, it extends pathway annotations for sixteen
non-human species through integrating different data types
from several sources, provides new services such as pathway
database classification and search pathways, as well as Java,
Python and R APIs, and offers features specific to pathDIP
4 such as direct miRNA-target search for human and term
enrichment analysis.

Limited coverage of core pathways for protein-coding
genes of human and non-human organisms (Table 1), along
with the slow growth rate of core pathway annotations (57%
in 2016 versus 65% in 2019 in human) demonstrates the
importance of devising computational methods that use
data integration to predict physically and biologically rel-
evant protein-pathway associations. PathDIP 4 integrates
core pathway data from 24 pathway databases (nineteen
only for human, three for both human and organisms and
two only for organisms). Limited coverage of literature-
curated source databases affects pathDIP 4 too. Thus, we
used two well-established prediction methods to improve
coverage of pathway annotations for proteins, and improve
consistency across data from different pathway sources. In
pathDIP 4, extended pathways in human increase coverage
for protein coding genes to 92%, while they extend protein
coverage to 9.56 times for model organisms (Table 1).

It is worth mentioning that despite all the improvements,
pathDIP 4 annotations and analysis results are not free
of errors and limitations in their sources. For example, in
addition to their incompleteness and inconsistency, differ-
ent data sources have been created for different purposes,
cover different contexts and include different levels of detail.
However, with the improvement of our source databases,
coverage and quality of data in pathDIP 4 will improve, too.
For example, while pathDIP 2.5 cross-validation in 2016
showed recovery rate for core pathways in human to be 71%
(1), in pathDIP 4 recovery rate has increased to 87% (Table
3).

Combined, our annotations cover 120 621 unique pro-
teins in human, six model organisms, and ten domesticated
animals, from which only 23 771 proteins have pathway an-
notations in the literature (for details see Table 1). While
in most of the organisms, network-based annotations over-
lap with high fraction of ortholog pathways (See ‘compari-
son of ortholog versus extended pathways’ section), 36 216
proteins are annotated only through network-based pre-
dictions, supporting the importance of data integration to
extract present, but hidden information in different data
sources and types.

Our three use-cases are only a few examples to high-
light how improved coverage for proteins in multiple species
provides a unique resource that enables comprehensive en-
richment analysis, hypotheses generation, in silico valida-
tion and explanations in basic, translational and clinical re-
search.
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