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Abstract: This commentary reviews the role of the Alzheimer amyloid peptide Aβ on basal synaptic
transmission, synaptic short-term plasticity, as well as short- and long-term potentiation in transgenic
mice, with a special focus on N-terminal truncated Aβ4-42. Aβ4-42 is highly abundant in the brain of
Alzheimer’s disease (AD) patients. It demonstrates increased neurotoxicity compared to full length
Aβ, suggesting an important role in the pathogenesis of AD. Transgenic Tg4-42 mice, a model for
sporadic AD, express human Aβ4-42 in Cornu Ammonis (CA1) neurons, and develop age-dependent
hippocampal neuron loss and neurological deficits. In contrast to other transgenic AD mouse models,
the Tg4-42 model exhibits synaptic hyperexcitability, altered synaptic short-term plasticity with
no alterations in short- and long-term potentiation. The outcomes of this study are discussed in
comparison with controversial results from other AD mouse models.

Keywords: Alzheimer’s disease; N-truncated Aβ; transgenic mouse models; long-term potentiation;
electrophysiology; synapse; field potential; Tg4-42

1. N-Terminally Truncated Amyloid-β Variants in Alzheimer’s Disease

It is generally well accepted that Alzheimer’s disease (AD) is neuropathologically characterized
by extracellular beta-amyloid plaques (Aβ) and neurofibrillary tangles. These pathologies, although
typical and important for neuropathological diagnosis of AD, do not convincingly explain synaptic
deficits and neuron loss, which are the basis for clinical AD [1]. The amyloid hypothesis was originally
based on the discovery that inherited forms of AD can be induced by an enhanced production
of full length Aβ peptides [2]. Aβ is released by proteolytic processing of the amyloid precursor
protein (APP) [3]. Of interest for the current review is that N-truncated Aβ peptides are major
constituents of AD plaques. It was discovered already in 1985 that Aβ (Phe-4; Aβ4–x), beginning with
phenylalanine at position 4, is a main component of amyloid plaques [4]. Other studies supported the
initial findings, and added pyroglutamate Aβ as an additional N-truncated amyloid species [5–10],
which was previously reviewed in detail [11].

Our group has recently developed a transgenic mouse model for sporadic AD [12]. The Tg4-42
mice express human Aβ4-42 and develop an age-dependent massive CA1 pyramidal neuron loss
in the hippocampus. The hippocampus-specific expression of Aβ4-42 correlated well with spatial
reference memory deficits assessed by the Morris water maze test [12,13]. These findings indicate
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that N-truncated Aβ4-42 triggers behavioral deficits comparable to AD-typical memory dysfunction,
even without plaque formation and appearance of neurofibrillary tangles.

In order to demonstrate that the Tg4-42 mouse model is a unique AD mouse model, we compared
the Aβ pathology to 5XFAD mice [14], a widely used mouse model with typical amyloid plaques.
Both models were analyzed with a pan-Aβ antibody in order to visualize intraneuronal Aβ and
plaque deposits in CA1 neurons of the hippocampus of 3-month-old transgenic mice. Immunostaining
demonstrates strong intraneuronal Aβ accumulation only in the Tg4-42 model (Figure 1A–C), but not
in 5XFAD (Figure 1D–F). As expected, 5XFAD mice showed significant extracellular plaque deposition
throughout the hippocampus and cortex [14].
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Figure 1. Amyloid pathology in 3-month-old Tg4-42 and 5XFAD. Immunohistochemical staining
showing Tg4-42 as an example for an Alzheimer’s disease (AD) mouse model with intraneuronal
Aβ and 5XFAD as an example for abundant plaque pathology. Significant intraneuronal Aβ was
only detected in CA1 in Tg4-42 mice (A–C), but not in 5XFAD (D–F), whereas plaques were only
found in the hippocampus of 5XFAD mice. Immunohistochemistry was performed on 4 µm paraffin
sections, as previously described [12]. The polyclonal antibody 24311 recognizes pan-Aβ (1:500;
rabbit [12]). Biotinylated secondary anti-rabbit and anti-mouse antibodies (1:200) were purchased from
DAKO (Glostrup, Denmark). Staining was visualized using the ABC method, with a Vectastain kit
(Vector Laboratories, Burlingame, CA, USA) and diaminobenzidine as chromogen. Counterstaining
was carried out with hematoxylin (Merck, Darmstadt, Germany). Scale bar: (A,D) 200 µm; (B,E) 100 µm;
(C,F) 50 µm.

2. Synaptic Alterations in the Tg4-42 Mouse Model

The decline in synaptic function is an early event in AD pathology. It is mainly related to
pathological alterations in the hippocampal formation of AD patients, and correlates well with the
clinical symptoms and cognitive dysfunction [15]. Interestingly, expression of Aβ4-42 in the CA1 area
of the hippocampus in Tg4-42 mice induced certain aspects in synaptic dysfunction and plasticity
at a time point prior to neuron death in this model [16]. The main outcomes of this study are
summarized as follows. In order to study the possible chronic neurotoxic effects of N-truncated
Aβ4-42 on synaptic function and plasticity orthodromically evoked field potentials were recorded in
hippocampal slices. Field excitatory postsynaptic potentials were evoked at the CA3/CA1 region and
orthodromic responses were recorded in the stratum radiatum of the CA1 region [16]. Details on the
recording conditions were previously published [16]. In short, two slices from each brain of male
hemizygous Tg4-42 and wildtype littermate controls (3 months of age) were used (6–8 animals per
group). Field excitatory postsynaptic potential (fEPSPs) were evoked by 0.1 ms unipolar stimuli using
a steel wire microelectrode. Responses were recorded using glass electrodes [17]. Sampling rate
was 20 kHz. The acute hippocampal tissue slices were subjected to three different test paradigms,
i.e., input–output curves, paired-pulse facilitation (PPF), as well as recording for short-term (PTP,
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STP) and long-term potentiation (LTP). Input–output curves were recorded for stimulation intensities
of 10–150 µA. fEPSP amplitudes were normalized to their absolute minimum. Four consecutive
stimulus trains were pooled and averaged for each stimulus intensity. Remarkably, a left shift of
the input–output curve was observed. This is an indication for altered basal excitatory synaptic
transmission (Figure 2A). The increased neuronal excitability corroborated this finding with the
half-maximal stimulus intensity in 3-month-old Tg4-42 mice (Figure 2B). It has been shown that PPF is
a paradigm for synaptic short-term plasticity [18] with a mostly presynaptic origin [19]. Using the half
maximal stimulus intensity obtained from input–output recordings, this twin-pulse stimulation was
measured at eight different interstimulus intervals (25–200 ms), and calculated as the ratio of the second
fEPSP to the first fEPSP amplitude. Recordings revealed characteristic PPF amplitudes declining fast
with increasing interstimulus interval duration (Figure 2C). Noticeably, Tg4-42 mice showed lower
output intensities—a sign for a decline in short-term plasticity (Figure 2C). Furthermore, the effect
of N-truncated Aβ4-42 on post-tetanic potentiation (PTP), short-term potentiation (STP), as well as
long-term potentiation (LTP) at the Schaffer collateral CA1 pathway was examined. Post-tetanic
potentiation is mostly considered to be of presynaptic origin [20], and lasts between 30 s and several
minutes. When applying brief high-frequency stimuli trains to the Schaffer collaterals, three different
phases can be distinguished: PTP, STP, and LTP. Presynaptic accumulation of Ca2+ causes PTP
that readily decreases after Ca2+ clearance. In this phase, PTP is N-methyl-D-aspartate (NMDA)
receptor-independent. By contrast, the following two phases (STP, LTP) are of postsynaptic origin,
and NMDA receptor-dependent forms of potentiation [21]. Baseline fEPSPs were determined using the
half-maximal stimulus intensity and a low stimulation frequency (measured every 15 s; 4× averaged
for 1 min) and recorded for 10 min. Different forms of synaptic potentiation were induced by applying
three tetanic stimuli, and trains of 100 Hz for 1 s every 5 min. After the third tetanic stimulus, recordings
were continued for additional 65 min. Absolute fEPSP amplitudes were normalized to the average of
pre-tetanus baseline fEPSP amplitudes. Post-tetanic potentiation was defined as the maximal response
within 1 min after the third tetanic stimulus. STP and LTP were defined as the period between 12th
and 21st min, and 65th and 75th min after induction, respectively. Induction of synaptic potentiation
induced PTP of fEPSP amplitudes with no significant difference between wildtype and Tg4-42 mice
(Figure 3A,B). The same was true for STP, which remained stable (Figure 3A,B). Tg4-42 mice showed
stable LTP even after 65 min after the high-frequency stimulation (Figure 3A,B). The extent of LTP in
Tg4-42 mice was not different compared to wildtype mice.

Therefore, one can conclude that the expression of N-truncated Aβ4-42 in the hippocampus of
Tg4-42 mice leads to neuronal hyperexcitability, and affects synaptic short-term plasticity, while no
significant changes in STP or LTP were observed [16]. This is partially in contrast to previous studies
in other AD mouse models. As it is now well established that Aβ4-42 oligomers are highly soluble in
comparison to full length Aβ1–42, we believe that the controversial lack of changes in STP and LTP are
due to the different biophysical characteristics of both peptides.

Additionally, distinct Aβ levels might determine synaptic activity in young Tg4-42 mice,
as described above. The expression levels of amyloid peptides may influence synaptic activity
at the presynaptic site [22]. It is likely that enhanced synaptic excitability could be triggered by
the oligomerization state of Aβ. A change in basal synaptic function was recently detected in
a mouse model that harbors two FAD-linked mutations. Megill and colleagues found an increase in
fEPSP slope and fiber volley amplitude in 2-month-old transgenic mice [23]. Another transgenic
mouse model overexpressing mutated APP and mutated Presenilin-1 in neurons also showed
hippocampal hyperactivity, as seen in the Tg4-42 model [24]. Previously, Kamenetz et al. observed
that activity-dependent Aβ secretion induces a negative feedback loop, thereby influencing neuronal
hyperactivity [25]. In good agreement with the outcomes of the Tg4-42 study [16], treating hippocampal
CA1 neurons of wildtype mice with nanomolar concentrations of Aβ dimers induced hyperactivity as
well [24]. The authors hypothesized that Aβ dimers may induce inward currents, leading to increased
firing rate of action potentials and an increase in intracellular Ca2+ concentrations [24]. Hippocampal
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synaptic hyperactivity influences compensatory mechanisms that may be part of network dysfunctions
in the hippocampus [26]. These in vitro studies are supported by a report demonstrating that patients
with mild cognitive impairment exhibited hyperactivity in the hippocampus/parahippocampal
region [27].
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Figure 2. Aβ4-42 induced neuronal hyperexcitability and affects short-term plasticity in 3-month-old
Tg4-42 mice (taken from [16]). Impact of Aβ4-42 on basal synaptic function and short-term plasticity
in acute hippocampal tissue slices of Tg4-42 and controls at 3 months of age. (A) An altered basal
excitatory synaptic transmission was demonstrated by a left shift of the input–output curve; (B) The
half-maximal stimulus intensity (dashed lines in A) corroborated this observation; (C) Paired-pulse
facilitation (PPF), quantified as a paradigm for synaptic short-term plasticity, was affected in Tg4-42
mice in comparison to wildtype control mice. (A + C) Mean ± SD. n = number of slices per group
(B) Mean ± SD. The number of slices analyzed is indicated at the bottom of the bars. Half-maximal
stimulus intensity: unpaired t-test, ** p < 0.01. Amplitude fEPSP2/fEPSP1: unpaired t-test, * p < 0.05.
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Figure 3. N-truncated Aβ4-42 did not alter short-term and long-term plasticity in 3-month-old Tg4-42
mice (taken from [16]). Effects of Aβ4-42 on synaptic plasticity were assessed in hippocampal slices
of Tg4-42 and wildtype (WT) littermate controls. Post-tetanic potentiation (PTP = was defined as the
maximal response within 1 min after the third tetanic stimulus. Short-term potentiation (STP) and
long-term potentiation (LTP) were defined as the period between 12th and 21st min, and 65th and 75th
min after induction, respectively. (A + B) Induction of potentiation by trains of high-frequency stimuli
triggered PTP, STP, and LTP in both Tg4-42 and control mice. Recordings of STP and LTP revealed
stable amplitudes in hippocampal slices of Tg4-42 and WT. Mean ± SD. n = number of slices per group.
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3. Neurophysiological Alterations in Mouse Models for AD

Numerous other groups found neurophysiological alterations in various mouse models for AD.
Progressively more and more studies tried to analyze how amyloid Aβ can affect neuronal and
synaptic functioning. For example, several signaling pathways are impaired after receptor binding
of Aβ peptides [28]. In the course of this, cellular dysfunction or cell death has been associated with
binding of Aβ oligomers to the Frizzled receptor and the low-affinity nerve growth factor. Alternatively,
Aβ might be involved in the loss of insulin receptors, bind to prion protein, or interact with cell surface
APP, impair kinase activity, impair Ca2+ currents at glutamatergic and GABAergic synapses, or directly
form pores for Ca2+ in the synaptic membrane [28]. Aβ also might affect NMDA receptor functioning
like Ca2+ homeostasis, oxidative stress, and synapse loss [29–32], and affect mGluR5 receptor clustering,
diffusion properties of mGluR5, and elevated intracellular Ca2+ [33]. Aβ might interact with α7
nicotinic acetylcholine receptors, receptor for advanced glycation endproducts, and Ephrin type-B
receptor 2 [22]. How Aβ might impair synaptic plasticity is still a matter of scientific debate [34,35].

An overview of neurophysiological alterations in the hippocampus of different mouse models is
presented in Table 1, including Tg4-42 and 5XFAD as examples for models with abundant intraneuronal
Aβ and/or plaques, respectively.
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Table 1. Overview of neurophysiological alterations in hippocampal slices from transgenic Alzheimer mouse models. Electrophysiological recordings of fEPSPs in
CA1 subfield (adapted from [16]).

Mouse Line (Mutations) (Promoter) Intra-Neuronal Aβ Plaques Input-Output Curve (IO) PPF PTP/STP LTP

Tg4-42 [12]
(none)
(Thy-1)

>2 m: yes none 3 m: yes ↑
>12 m: none

3 m: yes ↓
>12 m: none

>3 m: none/
>3 m: none >3 m: none

TBA2.1hom [36]
(Aβ3E-42 → Aβ3Q-42)

(Thy-1.2)
>1 m: yes >1 m: yes 2 m: none

5 m: yes ↓ n.a. n.a./
n.a.

2 m: none
5 m: yes ↓

Tg2576 [37–41]
(APP: Swe)

(PrP)
>2 m: yes >6 m: yes

2–8 m: none [39,40]
15–17 m: none [40]

12 m: none/yes [41] ↓
18 m: yes [41] ↓

3 m: none [39]
<17 m: none [40] <18

m: none [41]

n.a./
n.a.

3 m: none [39]
2–8 m: none [40]

15–17 m: yes [40] ↓
<18 m: none [41]

PD-APP [42,43]
line H6

(APP: Ind)
(PDGF-β)

n.a. 2–5 m: none
8–10 m: yes

1–4 m: yes ↓
8–10 m: yes ↓

1–4 m: n.a.
8–10 m: none

n.a./
n.a.

1–4 m: n.a.
8–10 m: none

PD-APP [42,44]
line 109

(APP: Ind)
(PDGF-β)

n.a. 27 m: yes 4–5 m: none
27–29 m: yes ↓

4–5 m: yes ↑
27–29 m: yes ↓

n.a./
n.a.

4–5 m: yes ↓
27–29 m: none

PD-APP [42,44]
line J9

(APP: Ind, Swe)
(PDGF-β)

n.a. 2–4 m: none
8–10 m: yes 2–4 m: yes ↓ n.a. n.a./

n.a. n.a.

PD-APP [26,45,46]
line J20

(APP: Ind, Swe)
(PDGF-β)

n.a. >2 m: yes 3–6 m: yes [45] ↓
4–7 m: yes [26] ↓

3–6 m: none [45]
4–7 m: none [26]

n.a./
n.a.

3–6 m: yes [45] ↓
4–7 m: none [26]

APP23 [47–49]
(APP: Swe)
(Thy-1.2)

4 m: yes >9 m: yes
3–9 m: none

12–18 m: yes ↓
24 m: none

n.a. n.a./
n.a.

3 m: none
6 m: yes ↓

9–12 m: none
18 m: yes ↑
24 m: none

5XFAD [14,50–53]
(APP: Swe, Flo, Lon, PS1: M146L,

L286V)
(Thy-1)

>1.5 m: yes >2 m: yes 4 m: none
5.5 m: yes ↓ <6 m: none n.a./

n.a.
4 m: none

5.5 m: yes ↓
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Table 1. Cont.

Mouse Line (Mutations) (Promoter) Intra-Neuronal Aβ Plaques Input-Output Curve (IO) PPF PTP/STP LTP

APPSLPS1KI [54–56]
(APP: Lon, Swe,

PS1: M233T/
L235P)

(Thy-1 (APP), PS1 knock-in)

>1.5 m: yes >2 m: yes n.a. 2–4 m: n.a.
6 m: yes ↓

n.a./
n.a..

2–4 m: none
6 m: yes ↓

APPswe; PS1∆E9 [23,57–59]
(APP: Swe, PS1: deltaE9)

(PrP)
n.a. >6 m: yes

6 m: yes [58] ↓
1 m: yes [23] ↑
6 m: none [23]

6 m: none [58]
1 m: none [23]
6 m: yes [23] ↓

n.a./
n.a.

6 m: yes [58] ↓
1 m: yes [23] ↑
6 m: yes [23] ↓

TgCRND8 [60–63]
(APP: Swe, Ind)

(PrP)
n.a. >3 m: yes

2 m: none [61]
5 m: yes [61] ↓

6–12 m: yes [62] ↓

2 m: none [61,63]
5–6 m: none [61,63]

n.a./
n.a.

2–5 m: yes [61] ↑
6–12 m: yes [62] ↓

2 m: yes [63] ↓
6 m: yes [63] ↓

3xTg-AD [64,65]
(APP: Swe, tau: P301L, PS1: M146V)
(Thy-1.2 (APP, tau), PS1 knock-in)

>3 m: yes >6 m: yes

1 m: none [64]
6 m: yes [64] ↓
3 m: yes [65] ↓
8 m: yes [65]↓

1–6 m: none [64]
3 m: yes [65] ↓
8 m: yes [65] ↓

n.a./
1–6 m: none [64]

1 m: none [64]
6 m: yes [64] ↓
3 m: none [65]
8 m: yes [65] ↓
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As the focus of the current review is on similar experimental settings in the hippocampal CA1
region, we did not include other studies on altered synapse functions in other AD mouse models, e.g.,
PS2APP [66], SAMP8 [67], and PLB1Triple [68].

There are obvious discrepancies in the outcomes of the reports. The comparability of studies using
mouse models is hampered by several factors: different transgenic expression vectors and promotors,
expression levels of transgenes, genetic background of the strains, gender and age of the mice. Many of
the AD mouse models develop amyloid plaques, but no or minor neuron loss. The presence of low Aβ

levels facilitates the generation of LTP [28,69]. As discussed in detail by K. Dietrich [16], the variations
in different methodologies will impact the results of such assays: interface versus submission style
recording chambers, differences in the stimulus protocols, variations in the definition of parameters to
be analyzed, like the type of normalization of fEPSP, conditions of in vitro preparations, etc.

Most of the listed studies reported a decline of synaptic function, in contrast to the observations
in the Tg4-42 mouse model, with a significant increase in synaptic excitability and no impairment in
LTP. As mentioned already, the design of the experiments may influence their outcome, which may
account for diverging results of studies with the same AD models (Table 1). Reduced synaptic function
was often observed in young mice prior to plaque development.

Soluble (and/or intraneuronal) Aβ is a critical key player in AD-related synaptic deficits [70]:
The APP E693∆ transgenic model shows oligomerized, accumulated, and intraneuronal Aβ in
an age-dependent manner. Aβ plaques develop late, at the age of 24 months. A significant reduction
of PPF and LTP was reported in the granular cells of the dentate gyrus, with no effect on basal
synaptic transmission. This important report clearly demonstrated that Aβ oligomers trigger synaptic
deficits prior to plaque formation [70]. This correlation was further substantiated by studies using
other transgenic mouse models, e.g., APPSLPS1 KI [1], 3xTg-AD [64], acrAβ [71], and PD-APP [43].
Terry et al. have reported that only weak correlations exist between psychological values and plaques
and tangles, but the density of synaptic markers correlated well in the neocortex of patients with
Alzheimer’s disease [72]. The expression levels of synaptic proteins correlated well in AD cases
clinically classified by the Clinical Dementia Rating score with more severe cases having a progressive
decline [73]. Other studies corroborated these findings, and discuss that intracellular accumulation of
amyloid-β is a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease (reviewed
by [1,74,75]). The current study is in good agreement with these observations.

In addition to the amyloid hypothesis-driven research, there is an increasing interest in
gene–environmental interactions. For example, exposure to early life stress has recently been shown to
influence synaptic plasticity after induction of epileptic activity [76], and more specifically, early life
stress may alter amyloid-β processing and cognition in transgenic Alzheimer mice [77].

In summary, the Tg4-42 mice develop early synaptic deficits and neuron loss in the hippocampus,
which correlates well with learning and memory dysfunction [12,78]. This is likely due to soluble
oligomers of Aβ4-42. Of interest, these oligomers are derived from wildtype Aβ sequence and are
not mutated as in other studies (cf. [70]). Finally, besides pyroglutamate Aβ3–42, Aβ1–42, and Aβ1–40,
Aβ4-42 is a major species in the brain of AD patients, and is therefore an important player in the
etiology of AD (reviewed in [11]).
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Abbreviations

The following abbreviations are used in the manuscript:

AD Alzheimer’s disease
Aβ Abeta
APP β-amyloid precursor protein
MALDI-TOF Matrix-assisted-laser-desorption ionization time-of-flight
pyroGlu-3, AβpE3-x pyroglutamate Abeta starting with position 3
Asp-1 Abeta starting with aspartate at position 1
Ala-2 Abeta starting with alanine at position 2
Phe-4 Abeta starting with phenylalanine at position 4
Arg-5 Abeta starting with arginine at position 5
fEPSP field excitatory postsynaptic potential
PPF paired-pulse facilitation
Ca2+ calcium 2+
PTP post-tetanic potentiation
STP short-term potentiation
LTP long-term potentiation
NMDA N-methyl-D-aspartate
RM-ANOVA repeated measures ANOVA
WT wildtype
IO curve input–output curve
PS1 presenilin-1
Swe Swedish
Flo Florida
Lon London
Ind Indiana
m age in months
n.a. not analyzed
↓ decreased
↑ increased
sec seconds
min minutes
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