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A B S T R A C T   

Introduction: The present study presents the development and validation of a clinical prediction 
model using random survival forest (RSF) and stepwise Cox regression, aiming to predict the 
probability of pelvic inflammatory disease (PID) progressing to sepsis. 
Methods: A retrospective cohort study was conducted, gathering clinical data of patients diag-
nosed with PID between 2008 and 2019 from the Medical Information Mart for Intensive Care 
(MIMIC)-IV database. Patients who met the Sepsis 3.0 diagnostic criteria were selected, with 
sepsis as the outcome. Univariate Cox regression and stepwise Cox regression were used to screen 
variables for constructing a nomogram. Moreover, an RSF model was created using machine 
learning algorithms. To verify the model’s performance, a calibration curve, decision curve 
analysis (DCA), and receiver operating characteristic (ROC) curve were utilized. Furthermore, the 
capabilities of the two models for estimating the incidence of sepsis in PID patients within 3 and 7 
days were compared. 
Results: A total of 1064 PID patients were included, of whom 54 had progressed to sepsis. The 
established nomogram highlighted dialysis, reduced platelet (PLT) counts, history of pneumonia, 
medication of glucocorticoids, and increased leukocyte counts as significant predictive factors. 
The areas under the curve (AUCs) of the nomogram for prediction of PID progression to sepsis at 
3-day and 7-day (3-/7-day) in the training set and the validation set were 0.886/0.863 and 0.824/ 
0.726, respectively, and the C-index of the model was 0.8905. The RSF displayed excellent per-
formance, with AUCs of 0.939/0.919 and 0.712/0.571 for 3-/7-day risk prediction in the training 
set and validation set, respectively. 
Conclusion: The nomogram accurately predicted the incidence of sepsis in PID patients, and 
relevant risk factors were identified. While the RSF model outperformed the Cox regression 
models in predicting sepsis incidence, its performance exhibited some instability. On the other 
hand, the Cox regression-based nomogram displayed stable performance and improved inter-
pretability, thereby supporting clinical decision-making in PID treatment.   
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1. Background 

Pelvic inflammatory disease (PID) is a syndrome that gives rise to an array of complications in women worldwide. It usually occurs 
when sexually transmitted pathogens spread from the lower reproductive tract to the upper reproductive organs, including the uterus 
and/or fallopian tubes, and possibly spreading to adjacent pelvic organs [1,2]. According to the U.S Centers for Disease Control and 
Prevention, the lifetime prevalence of PID in the United States is estimated to be 4.4%, impacting around 2.5 million people [3]. PID 
patients present with three strains of pathogens isolated from the genital tract: sexually transmitted pathogens like Neisseria gonor-
rhoeae, Chlamydia trachomatis, Mycoplasma genitalium, and Trichomonas vaginalis, pathogens related to bacterial vaginosis (BV), 
such as Vaginal alfalfa, Sneathia, and Megasphaera, and those typically related to gastrointestinal and respiratory infection, such as 
Bacteroides, Escherichia coli, and Streptococcus. However, PID is often associated with gonorrhoeae and chlamydia in only a subset of 
PID patients [4], necessitating timely diagnosis and treatment to avoid complications such as sepsis, septic shock, and even death. 
Sepsis is characterized by a rapid progression and has high morbidity and mortality, presenting significant challenges to clinicians 
worldwide, despite advanced diagnostic methods and intensive care. Even if patients survived, 15%–20% of them may experience 
long-term sequelae of pelvic inflammatory disease (SPID), including chronic pelvic pain, PID relapse, infertility, and ectopic gestation 
[5,6]. These conditions significantly impact the reproductive health and quality of life of women of childbearing age. Therefore, early 
identification of sepsis in PID patients is of great importance for disease prevention and effective treatment. 

Sepsis represents an immunity-mediated dysregulated response to infection [7], posing a significant challenge for critical care 
clinicians. It can induce septic shock and multiple organ dysfunction syndrome (MODS), commonly triggered by severe trauma, major 
surgery, and infections. The morbidity of sepsis in adults is approximately 189 cases per 100,000 person-years [8,9], and it carries a 
mortality rate of approximately 30% in the intensive care unit (ICU) [10,11], with a high incidence of sequelae among survivors. 
Around 16% of patients experience cognitive dysfunction after surviving sepsis [12]. To confirm the diagnosis of sepsis in patients with 
infection or suspected infection, an increase of more than 2 points from baseline in the Sequential (Sepsis-related) Organ Failure 
Assessment (SOFA) scores is required [13,14]. Due to the complexity of SOFA scoring, a bedside quick SOFA (qSOFA) has been 
introduced to identify critical patients. If a patient meets at least 2 items in qSOFA, further assessment is necessary to identify organ 
failure [7]. The pathophysiology of sepsis is intricate, involving multiple processes such as inflammatory response, immune response, 
coagulation dysfunction, and various changes in cellular function, metabolism, and microcirculation [15]. Therefore, further un-
derstanding of sepsis and its pathogenetic mechanisms is of significant value for clinical diagnosis, treatment, and patient prognosis. 
Timely administration of antibiotics is crucial for predicting the prognosis of sepsis [16]. However, due to the high heterogeneity and 
complexity of sepsis [17], uniform treatment is impractical [16,18,19]. Nonetheless, delayed treatment increases mortality in septic 
patients, underscoring the importance of timely prediction of the prevalence and phenotype of PID patients for favorable outcomes. 

Prediction models developed through traditional regression methods or machine learning techniques can integrate numerous 
predictive factors and offer personalized disease prediction [20]. Currently, there is no predictive model for PID progression to sepsis. 
Therefore, personalized and high-performance predictive tools are needed for effective management of such patients. Machine 
learning (ML), as a crucial branch of artificial intelligence, utilizes algorithms to unveil intricate interactions between data, and its 
application in the biomedical field encompasses various tasks such as classification, prognosis, transcriptomics, imageomics, and drug 
response prediction [21,22]. For the purpose of this study, the random survival forest (RSF) was chosen as the ML method for pre-
dicting survival outcomes. RSF, a decision tree-based algorithm, holds great promise in practical application [23–25]. Compared to 
other methods, RSF not only facilitates the identification of the most relevant features through variable feature importance but also 
effectively reduces data dimensionality [26,27]. This distinctive trait allows the final prediction results to be averaged over the 
predictions of each tree, thereby ensuring more precise survival predictions [28]. Consequently, the RSF algorithm was selected to 
yield more reliable and accurate prediction results when dealing with intricate survival analysis problems. Therefore, the focus of this 
study is to establish an RSF model to predict the progression of PID to sepsis and to compare it with traditional Cox regression 
approach. 

The aim of this study is to develop and validate a prediction model based on the RSF algorithm to forecast the prevalence of sepsis in 
women with PID, in which the performance of the RSF model was compared with that of Cox proportional hazards models. Addi-
tionally, the internal validation dataset was utilized for evaluating the prognostic performance of the model. 

2. Materials and methods 

2.1. Data sources 

We retrospectively analyzed patient information and clinical data for PID diagnosed between 2008 and 2019. The data was ob-
tained from the Medical Information Mart for Intensive Care (MIMIC)-IV database (ICD-9-CM diagnosis codes: 614, 615; ICD-10-CM 
diagnosis codes: N7). To determine the index date of diagnosis, we looked back to the first date when the same ICD-9-CM/ICD-10-CM 
code was recorded by any medical specialist during the medical visit or admission. Cases with missing data were excluded from this 
study. All patients were observed for research purposes in the ICU. 

Our research team was granted permission and received certification to access the MIMIC database (certificate number: 52249934). 
PostgreSQL (version 14.6) was utilized for the extraction of information on PID patients, and sepsis was diagnosed based on the Sepsis- 
3.0 criteria [7,29]. The primary outcome was the incidence of sepsis. According to the criteria outlined in “Sepsis 3.0,” sepsis is defined 
as a two-point or more increase in the SOFA score, in conjunction with diagnosed or suspected infections (Table 1). This modification 
in the scoring system marks a crucial advancement in “Sepsis 3.0,” as compared to the earlier Systemic Inflammatory Response 
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Syndrome (SIRS) criteria, the SOFA score is better equipped to accurately reflect changes in organ function [7]. The dataset offered the 
following risk factors: adrenaline, antibiotic, anticoagulant, hemodialysis, neutrophil count, organ transplant, platelet (PLT) counts, 
red blood cell (RBC) count, sex hormone, vitamin B, vitamin D, white blood cell (WBC) counts, pneumonia, peritonitis, lupus, urinary 
system infection, anemia, renal failure, and age. The follow-up duration ranged from admission/preliminary diagnosis of sepsis to 
discharge. 

To protect patient privacy, all data in the database were de-identified. Therefore, informed consent was not required. The study 
followed recommendations for transparent reporting of multivariate prediction models for individual prognostic or diagnostic claims 
[30]. 

2.2. Covariates 

Data extraction was performed using structured query language. In cases where patients had multiple ICU admissions, data from 
their first admission were selected. Baseline characteristics were collected within the first 24 h of admission and encompassed the 
following categories: (1) demographic information: age, body weight, body mass index (BMI), race, marital status, time of admission, 
time of discharge, and time of progression to sepsis; (2) vital signs: blood pressure; (3) laboratory test results: WBC counts, hemoglobin, 
RBC counts, PLT counts, aspartic transaminase (AST), alkaline phosphatase (AKP), cholesterol, triglyceride, globulin, total protein, 
serum creatinine, C-reactive protein (CRP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), lactic acid (LA), serum 
potassium (K+), and serum sodium (Na2+). (4) Comorbidities: diabetes, peritonitis, gastritis, nephritis, thrombophlebitis, phlebitis, 
Acquired Immunodeficiency Syndrome (AIDS), renal failure, liver failure, tumor, pneumonia, and coronary heart disease. (5) Surgical 
history: laparoscopy, hysteroscopy, digestive system operations, hemodialysis, and organ transplantation. (6) Medications: antidia-
betic agents, antihypertensive agents, glucocorticoids, sex hormones, non-steroidal anti-inflammatory drugs (NSAIDs), epinephrine, 
antibiotics, antineoplastic agents, vitamin-D, vitamin-E, vitamin-C, vitamin-B, vitamin-A, and anticoagulants. 

2.3. Dealing with missing data 

Variables were extracted from the MIMIC-IV database. In case where a variable had missing values exceeding 21%, it was excluded. 
Finally, multiple imputation techniques were applied to handle the missing values of the remaining variables. 

2.4. Statistical analysis 

The data for each variable was split into a training set and a validation set at a ratio of 7:3. The former was used for nomogram 
construction and the latter for validation. Categorical variables were expressed using percentiles (%), abnormally-distributed 
continuous variables were represented using the interquartile range (P25, P75), and normally-distributed continuous variables were 
presented as mean and standard deviation (Mean ± SD). The Chi-square test was performed for comparison of categorical data be-
tween the two groups, while the t-test and non-parametric test were employed for comparing continuous data. 

Cox regression was employed for feature selection. Variables with a p-value less than 0.05 in univariate analysis were included in 

Table 1 
Diagnostic criteria and major clinical characteristics of patients with sepsis.  

Clear evidence of 
infection 

Clinical presentation, laboratory tests, imaging, or bacterial culture 

Sequential 
Organ 
Failure 
Assessment 
Score 

System 
Score 

Respiration Coagulation Liver Cardiovascular Central 
nervous 
system 

Renal 

PaO2/FiO2 

mmHg (kPa) 
Platelets ×
103/μL 

Bilirubin 
mg/dL 
(μmol/L)  

Glasgow 
Coma Scale 
Scoreb 

Creatinine 
mg/dL 
(μmol/L) 

Urine 
output 
mL/d 

0 ≥400 (53.3) ≥150 <1.2 (20) MAP ≥70 mmHg 15 <1.2 (110)  
1 <400 (53.3) <150 1.2–1.9 

(20–32) 
MAP <70 mmHg 13–14 1.2–1.9 

(110–170)  
2 <300 (40) <100 2.0–5.9 

(33–101) 
Dopamine <5 or 
dobutamine (any 
dose)a 

10–12 2.0–3.4 
(171–299)  

3 <200 (26.7) 
with respiratory 
support 

<50 6.0–11.9 
(102–204) 

Dopamine 5.1–15 or 
epinephrine ≤0.1 or 
norepinephrine ≤0.1a 

6–9 3.5–4.9 
(300–440) 

<500 

4 <100 (13.3) 
with respiratory 
support 

<20 >12.0 (204) Dopamine >15 or 
epinephrine >0.1 
norepinephrine >0.1a 

<6 >5.0 (440) <200 

Patients were diagnosed with sepsis if their sofa increased by more than 2 points at the same time of definite infection. 
PaO2, partial pressure of oxygen; FiO2, fraction of inspired oxygen; MAP, mean arterial pressure. 

a Catecholamine doses are given as μg/kg/min for at least 1 h. 
b Glasgow Coma Scale scores range from 3 to 15; higher score indicates better neurological function. 
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Table 2 
Baseline characteristics in patients with PID.  

Parameters Overall Train Test p 

n 1064 745 319  
Suffer From Sepsis (%) 21 (2.0) 14 (1.9) 7 (2.2) 0.922 
Time (Median [Iqr]) 2.62 [1.25, 4.39] 2.62 [1.24, 4.37] 2.61 [1.27, 4.51] 0.714 
Race (%)    0.010 
Asian 62 (5.8) 49 (6.6) 13 (4.1)  
Black 330 (31.0) 226 (30.3) 104 (32.6)  
Other 210 (19.7) 163 (21.9) 47 (14.7)  
White 462 (43.4) 307 (41.2) 155 (48.6)  
Marital Status (%)    0.092 
Divorced 68 (6.4) 47 (6.3) 21 (6.6)  
Married 437 (41.1) 306 (41.1) 131 (41.1)  
Other 8 (0.8) 7 (0.9) 1 (0.3)  
Single 522 (49.1) 371 (49.8) 151 (47.3)  
Widowed 29 (2.7) 14 (1.9) 15 (4.7)  
Hemodialysis (%) 4 (0.4) 3 (0.4) 1 (0.3) 1.000 
Sex Hormone (%) 14 (1.3) 10 (1.3) 4 (1.3) 1.000 
Adrenaline (%) 6 (0.6) 5 (0.7) 1 (0.3) 0.789 
Antibiotic (%) 667 (62.7) 471 (63.2) 196 (61.4) 0.631 
Anticoagulant (%) 693 (65.1) 476 (63.9) 217 (68.0) 0.220 
Hypotensor (%) 292 (27.4) 207 (27.8) 85 (26.6) 0.759 
Organ Transplant (%) 5 (0.5) 5 (0.7) 0 (0.0) 0.328 
Laparoscope (%) 214 (20.1) 162 (21.7) 52 (16.3) 0.052 
Digestive System Operation (%) 396 (37.2) 280 (37.6) 116 (36.4) 0.758 
Hysteroscope (%) 7 (0.7) 6 (0.8) 1 (0.3) 0.620 
Acquired Immune Deficiency Syndrome (%) 5 (0.5) 5 (0.7) 0 (0.0) 0.328 
Alzheimer Disease (%) 3 (0.3) 3 (0.4) 0 (0.0) 0.614 
Leukemia (%) 6 (0.6) 2 (0.3) 4 (1.3) 0.128 
Enteritis (%) 80 (7.5) 49 (6.6) 31 (9.7) 0.098 
Pneumonia (%) 97 (9.1) 63 (8.5) 34 (10.7) 0.304 
Peritonitis (%) 798 (75.0) 548 (73.6) 250 (78.4) 0.113 
Liver Failure (%) 8 (0.8) 5 (0.7) 3 (0.9) 0.937 
Liver Cirrhosis (%) 16 (1.5) 10 (1.3) 6 (1.9) 0.699 
Hypertension (%) 80 (7.5) 49 (6.6) 31 (9.7) 0.098 
Fracture (%) 62 (5.8) 44 (5.9) 18 (5.6) 0.980 
Coronary Disease (%) 37 (3.5) 26 (3.5) 11 (3.4) 1.000 
Hypothyroidism (%) 129 (12.1) 88 (11.8) 41 (12.9) 0.708 
Thyroiditis (%) 10 (0.9) 10 (1.3) 0 (0.0) 0.083 
Thyroid Disease (%) 134 (12.6) 93 (12.5) 41 (12.9) 0.948 
Connective Tissue Disease (%) 6 (0.6) 2 (0.3) 4 (1.3) 0.128 
Phlebitis (%) 14 (1.3) 11 (1.5) 3 (0.9) 0.682 
Systemic Systemic Lupus Erythematosus Erythematosus (%) 12 (1.1) 7 (0.9) 5 (1.6) 0.568 
Rheumatoid Arthritis (%) 20 (1.9) 12 (1.6) 8 (2.5) 0.459 
Urinary System Infection (%) 200 (18.8) 136 (18.3) 64 (20.1) 0.545 
Anemia (%) 451 (42.4) 312 (41.9) 139 (43.6) 0.656 
Burn (%) 12 (1.1) 9 (1.2) 3 (0.9) 0.951 
Renal Failure (%) 225 (21.1) 159 (21.3) 66 (20.7) 0.875 
Nephritis (%) 53 (5.0) 37 (5.0) 16 (5.0) 1.000 
Diabetes Mellitus (%) 164 (15.4) 115 (15.4) 49 (15.4) 1.000 
Gastritis (%) 48 (4.5) 32 (4.3) 16 (5.0) 0.721 
Thrombophlebitis (%) 14 (1.3) 11 (1.5) 3 (0.9) 0.682 
Neoplasms (%) 311 (29.2) 207 (27.8) 104 (32.6) 0.131 
Vitamin A (%) 6 (0.6) 5 (0.7) 1 (0.3) 0.789 
Vitamin B (%) 15 (1.4) 6 (0.8) 9 (2.8) 0.023 
Vitamin D (%) 147 (13.8) 97 (13.0) 50 (15.7) 0.293 
Vitamin E (%) 4 (0.4) 2 (0.3) 2 (0.6) 0.742 
Hypoglycemic Agents (%) 3 (0.3) 2 (0.3) 1 (0.3) 1.000 
Antineoplastic Drugs (%) 45 (4.2) 28 (3.8) 17 (5.3) 0.317 
Nsaids (%) 868 (81.6) 616 (82.7) 252 (79.0) 0.182 
Glucocorticoids (%) 183 (17.2) 131 (17.6) 52 (16.3) 0.675 
BMI (Median [Iqr]) 28.40 [23.80, 34.50] 28.40 [23.80, 34.70] 28.50 [23.85, 34.00] 0.786 
Neutrophil Count (Median [Iqr]) 68.65 [59.18, 79.00] 68.50 [59.00, 79.10] 69.20 [59.80, 78.60] 0.574 
PLT Count (Median [Iqr]) 289.00 [239.00, 351.25] 291.00 [239.00, 352.00] 286.00 [236.00, 351.00] 0.592 
Hemoglobin (Median [Iqr]) 12.40 [11.20, 13.30] 12.40 [11.30, 13.40] 12.30 [11.20, 13.30] 0.631 
Sodium (Median [Iqr]) 139.00 [137.00, 141.00] 139.00 [137.00, 141.00] 139.00 [137.00, 141.00] 0.985 
Potassium (Median [Iqr]) 4.00 [3.80, 4.20] 4.00 [3.80, 4.20] 4.00 [3.70, 4.20] 0.473 
RBC Count (Median [Iqr]) 4.25 [3.94, 4.56] 4.27 [3.95, 4.58] 4.24 [3.93, 4.54] 0.552 
WBC Count (Median [Iqr]) 8.10 [6.40, 10.80] 8.10 [6.50, 10.80] 8.00 [6.20, 10.85] 0.527 
Age (Median [Iqr]) 39.00 [30.00, 51.00] 38.00 [30.00, 50.00] 40.00 [31.00, 53.00] 0.037  
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stepwise Cox regression, and those with a p-value less than 0.05 in stepwise Cox regression were finally incorporated into the Cox 
proportional hazard model. The hazard ratio (HR) with its 95% confidence interval (CI) for each predictor variable was calculated via 
Cox proportional hazard regression. To address potential multicollinearity in the model, we calculated the variance inflation factor 
(VIF) for each variable in the model and subsequently excluded variables with a VIF exceeding 5. Then, a nomogram was built using 
the significant predictor variables identified from the Cox proportional hazard model. This nomogram considered multiple clinical 

Table 3 
Univariate and multivariable analyses for the relationship between the candidate risk factors and Incidence rate of sepsis in the primary cohort.  

Parameters HR 95%CI P HR 95%CI P 

Adrenaline 11.06 (1.35–90.8) 0.0253   
Age 1.03 (1–1.06) 0.0356   
Antibiotic 6.77 (0.88–52.03) 0.0660   
Anticoagulant 6.22 (0.8–48.08) 0.0800   
Alzheimer Disease 0 (0-Inf) 0.9978   
Body Mass Index 0.97 (0.9–1.04) 0.3738   
Leukemia 0 (0-Inf) 0.9978   
Enteritis 1.06 (0.14–8.2) 0.9572   
Digestive System Operation 1.02 (0.34–3.05) 0.9651   
Pneumonia 12.61 (4.21–37.8) ＜0.0001 8.1 (2.49–26.36) 0.0005 
Peritonitis 0.34 (0.12–0.97) 0.0437   
NSAIDs 0.38 (0.13–1.15) 0.0872   
Liver Failure 0.00 (0.00-Inf) 0.9980   
Liver Cirrhosis 0.00 (0.00-Inf) 0.9975   
Hypertension 1.06 (0.14–8.2) 0.9572   
Coronary Disease 2.33 (0.3–17.94) 0.4161   
Fracture 2.18 (0.48–9.95) 0.3137   
Hemodialysis 19.84 (2.53–155.73) 0.0045 26.9 (2.93–247.32) 0.0036 
Hemoglobin 0.81 (0.61–1.08) 0.1524   
Acquired Immune Deficiency Syndrome 0.00 (0.00-Inf) 0.9978   
Hypotensor 2.2 (0.75–6.47) 0.1530   
Hysteroscope 0.00 (0.00-Inf) 0.9978   
Hypothyroidism 0.00 (0.00-Inf) 0.9977   
Thyroid Disease 0.00 (0.00-Inf) 0.9976   
Thyroiditis 0.00 (0.00-Inf) 0.9982   
Connective Tissue Disease 0.00 (0.00-Inf) 0.9978   
Phlebitis 0.00 (0.00-Inf) 0.9973   
Hypoglycemic Agents 0.00 (0.00-Inf) 0.9981   
Antineoplastic Drugs 2.05 (0.27–15.8) 0.4896   
Systemic Lupus Erythematosus 8.76 (1.14–67.42) 0.0371   
Laparoscope 0.29 (0.04–2.19) 0.2288   
Rheumatoid Arthritis 3.27 (0.37–28.68) 0.2845   
Married 0.38 (0.08–1.9) 0.2389   
Other 0.00 (0.00-Inf) 0.9985   
Single 0.33 (0.07–1.64) 0.1754   
Widowed 0.00 (0.00-Inf) 0.9978   
Urinary System Infection 7.37 (2.45–22.21) 0.0004 3.02 (0.87–10.47) 0.0814 
Neutrophil Count 1.05 (1.00–1.10) 0.0354   
Organ Transplant 24.25 (5.23–112.42) 0   
PLT Count 0.99 (0.98–1.00) 0.0175 0.99 (0.98–0.99) 0.0015 
Potassium 1.91 (0.64–5.68) 0.2451   
Anemia 16.22 (2.11–124.74) 0.0074 7.12 (0.86–59.1) 0.0692 
Race (Black) 0.38 (0.07–2.09) 0.2654   
Race (Other) 0.4 (0.07–2.4) 0.315   
Race (White) 0.33 (0.06–1.75) 0.1937   
RBC Count 0.27 (0.1–0.73) 0.0099 0.62 (0.24–1.61) 0.3246 
Sex Hormone 15.73 (3.44–71.92) 0.0004 31.52 (5.18–191.92) 0.0002 
Sodium 1.03 (0.85–1.25) 0.7347   
Renal Failure 4.78 (1.65–13.87) 0.0040   
Burn 0.00 (0.00-Inf) 0.9976   
Nephritis 1.5 (0.19–11.55) 0.6985   
Diabetes Mellitus 1.96 (0.61–6.33) 0.2583   
Glucocorticoids 2.05 (0.65–6.43) 0.2192   
Vitamin A 0.00 (0.00-Inf) 0.9981   
Vitamin B 10.17 (1.32–78.37) 0.0260   
Vitamin D 3.05 (0.99–9.41) 0.0528   
Vitamin E 0.00 (0.00-Inf) 0.9981   
WBC Count 1.09 (1.01–1.16) 0.0186 1.18 (1.07–1.30) 0.0008 
Gastritis 1.74 (0.22–13.42) 0.5975   
Thrombophlebitis 0.00 (0.00-Inf) 0.9973   
Neoplasms 1.73 (0.59–5.04) 0.3165    
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variables and their interdependencies to estimate the probability of progression to sepsis among PID patients at 3/7 days. By scoring 
the patients according to the input multivariate Cox proportional hazard regression, the aggregate scores provided the corresponding 
probability of disease onset, allowing for more accurate prediction. Subsequently, an RSF model was developed using ML algorithms. 
Firstly, bootstrapping was employed to randomly select N samples from the training set, generating N survival trees, where the unused 
samples during the training of each tree are called out-of-bag (OOB) samples. The OOB error is the metric used for evaluating the 
performance of the model, and a lower OOB error indicated better model performance. The “tune()” function was utilized to find the 
best parameters for the model (mtry and nodesize), combining different parameters in the training set to calculate the OOB error. The 
parameter mtry denotes the number of variables randomly sampled as candidates at each split. While a smaller value promotes di-
versity in decision trees, it can also introduce significant bias. The nodesize parameter specifies the minimum data points required to 
create a terminal node in a tree. A smaller value might lead to more complex, overfitted trees, whereas a larger value may yield an 
overly generalized model. Through this process, we identified the optimal combination of parameters that minimized the total error of 
RSF. The learning curve was then plotted based on the selected optimal parameters to determine the optimal number of trees (ntree). 
The ntree parameter refers to the number of decision trees to be included in the random forest. Increasing the number of trees generally 
enhances model performance, but it may also lead to longer computation times and may lead to overfitting. In this way, a final RSF 
model was established based on the selected optimal parameters, and the variables were ranked for importance within the RSF al-
gorithm framework. 

The area under the time-dependent receiver operating characteristic (ROC) curve (time-dependent AUC) was adopted to assess the 
model’s discrimination. The ROC curve was used to assess the effectiveness of the predictive model [31], plotting true positive rate 
(sensitivity) against false positive rate (1-specificity) using various binary classification methods with different cut-off values or 
thresholds. A higher AUC value closer to 1 indicated better accuracy, with an AUC greater than 0.7 indicating good model perfor-
mance. The calibration curve was used to assess the consistency between predicted values and actual outcomes. All statistical analyses 
were performed using R4.2.1 (https://www.r-project.org/), utilizing specific packages such as tableone (0.13.2) for data description, 
survival (ver.3.3.1) for Cox regression, rms (ver.6.3.0) for nomogram construction, and randomForestSRC for parameter selection and 
RSF construction. A two-sided p-value less than 0.05 indicated statistical significance. 

3. Results 

3.1. Baseline characteristics of the cohorts 

A total of 1746 PID patients were recorded in MIMIC-IV, and 1064 of them were included in this study after excluding cases with 
missing values of one or more variables. These patients were randomly divided into a training set (745 patients) and a validation set 
(319 patients) at a ratio of 7:3. The baseline characteristics of these two datasets are presented in Table 2. Significant differences in 
race, age, and use of Vit-B were observed between the two sets, while no significant differences were found in other characteristics (p 
> 0.05). The age at admission ranged from 18 to 91 years (median: 38, IQR: 30, 50). The follow-up duration ranged from 0.01 to 28.99 
days (median: 2.615, IQR:1.2475, 4.39). Patients who progressed to sepsis were more likely to have a history of hemodialysis, 
decreased PLT counts, pneumonia, hormone use, and increased WBC counts, compared with those who did not. Among the 54 sepsis 
patients, 21 were between 20 and 39 years old (38.89%), 14 were between 40 and 64 years old (25.92%), and 19 were over 65 years 

Fig. 1. Prediction nomogram for 3/7-day risk of progression to sepsis in PID patients.  
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old (35.19%). Within a median follow-up period of 0.37 days, 11 cases (52.4%) progressed to sepsis. To predict the prevalence of 
sepsis, various factors, including demographical information, vital signs, laboratory tests, comorbidities, medications, and surgical 
history of the main cohort were analyzed using univariate Cox regression. Several potential predictors were identified with a p-value <
0.05, such as adrenaline, hemodialysis, neutrophil counts, organ transplant, PLT counts, RBC counts, hormone use, Vit-B, Vit-D, WBC 
counts, pneumonia, peritonitis, lupus, urinary system infection, anemia, renal failure, and age (p < 0.05). All these variables were 
included in multivariate Cox proportional regression, where hemodialysis, PLT counts, pneumonia, hormone use, and WBC counts 
were finally chosen as the predictors for the predictive model (p < 0.05) (Table 3). All variables in the model had VIF < 5 (hemo-
dialysis, 1.049; PLT count, 1.213; sex hormone, 1.026; WBC count, 1.283; pneumonia, 1.042). 

3.2. Prognostic nomogram of 3-day/7-day occurrence 

A nomogram was constructed using the five variables to predict the 3-day/7-day risk of progression to sepsis in PID patients. Each 
independent predictor was assigned a weighted score, with different scales applied to hemodialysis, PLT counts, pneumonia, hormone 
use, and WBC counts, represented as No-Yes, 100–1000, No-Yes, No-Yes, and 0–50, respectively. The highest possible total score was 
160. A perpendicular line was drawn from each variable state to the line segment of points, and the resulting score (points) was 
determined. After obtaining scores for all variables, they were added together to calculate the patient’s total score (Total Points). Using 
the total points as a reference, a vertical line was drawn downward to meet the 3/7-day probability line segment, representing the 
likelihood of sepsis occurring within that timeframe. The disease probability was higher when the score, derived from adding up the 
distribution points for each prognostic factor, was higher. (Fig. 1). 

For instance, a PID patient had PLT counts of 300*109/L (78 points) and WBC counts of 11*109/L (12 points), with no history of 
hemodialysis (0 point), pneumonia (0 point), and hormone use (30 points). The patient’s total points were 120, indicating a 3-day 
probability of approximately 10% and a 7-day probability of approximately 20%. 

Similarly, another PID patient had PLT counts of 500*109/L (55 points) and WBC counts of 7*109/L (9 points). This patient had 
received hemodialysis (22 points) and hormone treatment (30 points), with no history of pneumonia (0 point). The total points for this 
patient were 116, indicating a 3-day probability of approximately 4% and a 7-day probability of approximately 5. 

3.3. Nomogram performance assessment 

To evaluate the nomogram’s performance, the Cox regression model was used, and AUC was calculated. The AUC for predicting 
progression progressing to sepsis at 3/7 days was 0.886/0.863 (Fig. 2A) in the training set and 0.824/0.726 in the validation set 
(Fig. 2B). The c-index of the model was 0.8905, indicating its strong predictive ability. The AUCs being close to 1 signifies the high 
accuracy of the nomogram. Moreover, both sets displayed smooth ROC curves, suggesting minimal risk of overfitting. 

Additionally, the calibration curve demonstrated that the predictive model neither significantly overestimated nor underestimated 
the risk, ensuring a high level of consistency and calibration for the model (Fig. 3A and B). 

The DCA of 3-day and 7-day risks in the training set and validation set are shown in Fig. 4A–D. Across a threshold probability range 
of 1.0%–24.0%, the nomogram demonstrated its ability to effectively identify the progression to sepsis, resulting in significant net 
clinical benefits for patients with PID. The DCA indicated that a large proportion of PID patients could benefit from the predictive 
model, making it a valuable tool for clinical decision-making. 

Fig. 2. ROC of predictive nomogram for 3/7-day progression to sepsis in PID patients in training set and validation set (A) training set, (B) vali-
dation set. 
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Fig. 3. Calibration curve of predictive nomogram for 3/7-day progression to sepsis in PID patients in training set and validation set (A) training set, 
(B) validation set. Notes: The X-axis represented the predicted risk, the Y-axis represented the actual risk, and the diagonal dotted line represented 
the ideal prediction of the ideal model. The solid lines represented the performance of the nomogram, and the one closer to the diagonal dotted line 
indicated a better prediction. 

Fig. 4. (A) DCA of 3-day risk, training set; (B) DCA of 3-day risk, validation set; (C) DCA of 7-day risk, training set; (D) DCA of 7-day risk, training 
set; Notes: the X-axis represented the threshold probability, the Y-axis represented the net benefit rate after the advantages deducting disadvantages, 
and the blue line indicated the 3/7 day risk of progression to sepsis. The Treat None line (green) indicated that all patients did not trigger the 
intervention, while the Treat ALL line (red) indicated that all patients triggered the intervention. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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3.4. RSF 

We employed random search to estimate the OOB error for different combinations of mtry and nodesize. Fig. 5 displays the results, 
indicating that the lowest OOB error rate was achieved when mtry = 3 and nodesize = 15. Consequently, we determined the optimal 
number of decision trees (ntree = 50). Using these optimal parameters, we proceeded to construct the final Random Forest (RF) model 
and ranked the importance of the variables. Fig. 6 shows that the WBC count emerged as the most crucial variable, followed by 
pneumonia, in predicting the outcome. 

3.5. Evaluation and validation of model performance 

We evaluated the performance of the RF model by calculating the AUC for predicting whether PID patients would develop sepsis 
within 3 and 7 days. Based on the RSF model, the AUC of the nomogram for predicting progression to sepsis among PID patients 
progressing within 3/7 days was found to be 0.939 (95% CI: 0.915, 0.962)/0.919 (95% CI: 0.874, 0.964) in the training set (Fig. 7A), 
and 0.712 (95% CI: 0.0565, 0.860)/0.571 (95% CI: 0.402, 0.740) in the validation set (Fig. 7B). Furthermore, the calibration curve 
showed that the model’s predicted probabilities were in good agreement with the actual outcomes, indicating excellent calibration 
ability (Fig. 8A and B). 

4. Discussion 

The escalation of mortality and disability rates among patients with PID progressing to sepsis underscores the critical importance of 
timely identification of high-risk patients. This identification has significant potential for optimizing clinical management and 
improving patient prognosis. In this study, we established and validated a clinical predictive model using both RSF and stepwise Cox 
regression, aiming to predict the likelihood of PID advancing to sepsis. Our robustness analysis revealed that the predictive model 
demonstrated favorable discrimination, calibration ability, and clinical applicability. 

The most common pathogens associated with PID are Chlamydia trachomatis and Neisseria gonorrhoeae. PID presents with various 
symptoms, including lower abdominal pain, discomfort, fever, vaginal discharge increased, vaginal bleeding, and dysuria. The con-
dition encompasses several diseases, such as endometritis, salpingitis, fallopian tube abscess, tubo-ovarian abscess (TOA), and pelvic 
peritonitis [2]. Clinical presentations can range from no symptoms to life-threatening TOA [32]. PID patients have weakened immune 
defenses, making them vulnerable to bacteria, which can potentially lead to the development of sepsis. TOA is a common complication 
of PID that affects approximately 30% of hospitalized women with PID. If not treated promptly, TOA can lead to serious complications 
like sepsis and multiple organ failure. Therefore, early recognition, therapeutic management, and proactive prevention are crucial in 
reducing the incidence of sepsis [33]. Treatment for acute PID with TOA poses challenges, and no consensus has been reached on the 
optimal strategy. The first-line approach usually involves the empirical use of broad-spectrum antibiotics [34–37]. However, 
approximately 25%–30% of the patients do not respond to this treatment and require surgical intervention [37,38]. Age, WBC counts, 
and diameter of the adnexal mass [39] are potential risk factors for pharmacological treatment failure [40,41]. In cases of pelvic 
abscesses or suspected inflammatory masses that persist or are suspected to have ruptured after 48 h of antimicrobial use, exploratory 

Fig. 5. The OOB error for different combinations of mtry and nodesize.  
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laparotomy is recommended to prevent sepsis or septic peritonitis. TOA-induced sepsis is the primary cause of high mortality in PID 
patients. Current diagnostic methods rely on clinical characteristics and laboratory tests, but they have limitations, particularly with a 
possibility of misdiagnosis in patients with atypical symptoms [42]. In acute settings, computed tomography (CT) scan is advantageous 
in distinguishing acute PID from appendicitis and other inflammatory or pelvic masses. Therefore, accurate imaging techniques are 

Fig. 6. (A) The relationship between the trees and error rate. (B) Variable Importance of the Candidate Characteristics in RSF Model.  

Fig. 7. (A) AUC of RSF of training data. (B) AUC of RSF of validation data.  
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crucial for diagnosing late effects such as suppurative tubitis, tubal ovarian abscess, chronic pelvic pain, and infertility. When con-
fronted with right lower abdominal pain, CT can be effectively employed to distinguish TOA from acute appendicitis. In TOA patients, 
the incidence of ovarian abnormalities, periovarian fat deposition, and rectal sigmoid wall thickening is significantly higher than that 
in acute appendicitis patients, whereas the incidence of cecal wall thickening and pericecal fat deposition in acute appendicitis patients 
is significantly higher in acute appendicitis patients. Among TOA patients, the most accurate CT feature involves identifying the 
inflamed mass with involvement of the ovarian veins and deep pelvic fat, extending to the contralateral pelvic fat [43]. On 
contrast-enhanced CT images, the primary manifestation of fallopian tube ovarian abscess typically presents as a multiform septal 
cystic mass with thick and uniformly enhanced wall within the appendix [44]. Sepsis induced by PID can be due to infections in the 
upper reproductive system infection, including endometritis, salpingitis, ovulitis, tubal and ovarian abscess, and gynecological pelvic 
peritonitis. Other causes may involve ovarian venous thrombophlebitis, uterine myoma in aseptic necrosis, and necrotic ovary in 
undiagnosed adnexal torsion [45]. Unmanaged sepsis can cause systemic vascular dilatation, peripheral vascular paralysis, and a 
significant decrease in effective circulatory blood volume [46], eventually progressing to tissue hypoperfusion (shock) and MODS. The 
timely identification of shock and early and sufficient fluid resuscitation are crucial factors that influence patient prognosis in 
PID-induced sepsis. The morbidity and mortality of PID-induced sepsis are directly associated with the duration and severity of 
hypoperfusion. Moreover, proper use of glucocorticoids, recombinant human activated protein-C, and vasopressors can contribute to 
improved outcomes, with strict blood glucose control and measures to prevent deep venous thrombosis and stress ulcers. 

Compared to recent studies on PID and concurrent sepsis, our investigation confirmed the significance of several key clinical in-
dicators. Recent basic and clinical research has established that systemic immune dysfunction, including increased WBC count, 
neutrophil infiltration, and systemic immune inflammation index [SII = (platelet count * neutrophils)/lymphocytes], correlates with 
the progression of infection and sepsis-related mortality in patients with PID and concurrent sepsis [47–52]. WBC count, a repre-
sentative biomarker in PID, primarily serves as a medium-term to short-term indicator reflecting the management of acute or chronic 
inflammatory responses and is commonly utilized for the diagnosis of sepsis. Research has underscored the clinical predictive value of 
cell count in the development and prognosis of TOA [53]. A previous study has reported the predictive value of total WBC and 
classified WBC counts for different sepsis stages [54]. Additionally, PCT or the combination of WBC and PCT has shown promising 
diagnostic and prognostic abilities [55]. In a prospective observational study focusing on early sepsis in elderly patients, the Modified 
Early Warning Score (MEWS) ≥ 3, WBC counts ≥ 11 × 109/L, neutrophil-to-lymphocyte ratio (NLR) ≥ 8, and monocyte distribution 
width (MDW) ≥ 20 have presented the highest diagnostic accuracy in all subgroups based on age [56]. 

Moreover, PLT count [57] has also been identified as a potential risk factor, with the extent of thrombocytopenia in sepsis being 
correlated with disease severity and prognosis. The precise etiology of this type of thrombocytopenia remains elusive; however, 
current evidence suggests that it may result from infection-induced inhibition of platelet production by megakaryocytes [58]. Research 
findings have highlighted that patients who do not respond to conservative TOA treatment exhibit significantly higher PLT counts 
upon admission compared to the successful treatment group [59]. The percentage of immature platelet fraction (IPF%) is considered 
an early cellular biomarker for predicting sepsis progression. Elevated IPF% and PCT levels are associated with sepsis, with IPF% 
negatively correlated with PLT counts [54]. Moreover, the rate of platelet aggregation has been identified as an independent predictor 

Fig. 8. The calibration curve of the training data in RSF Model.  
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for 28-day mortality. Mitochondrial dysfunction in platelets is observed early in patients with sepsis, leading to impaired PLT mito-
chondrial activity, membrane depolarization, and ultrastructural destruction. This results in a significant decrease in adenosine 
triphosphate (ATP) and mitochondrial membrane potential (MMP) but an increase in the opening of mitochondrial permeability 
transition pore (mPTP), which is positively associated with the PLT aggregation rate [60]. Microvascular hypoperfusion is a typical 
pathological feature of severe sepsis and septic shock [61]. The neutrophil extracellular traps (NET)-PLT-thrombin axis is implicated in 
promoting sepsis-induced intravascular coagulation and microvascular dysfunction [62]. 

Our analysis revealed a notable association between the use of hemodialysis therapy and the susceptibility to sepsis in PID patients. 
Recent research has illustrated that hemodialysis treatment heightens the occurrence of infectious complications, especially sepsis 
[63–65]. Consistently, our study indicated an elevated risk of sepsis development in PID patients who had undergone hemodialysis 
treatment. Hemodialysis (HD) plays a crucial role in predicting the outcomes of sepsis. The risk of sepsis in HD patients is primarily 
associated with bloodstream infections related to vascular access, which are commonly observed in dialysis patients using central 
venous catheters [66,67]. This makes them particularly vulnerable to sepsis as it allows pathogenic bacteria to enter their blood-
stream—patients undergoing hemodialysis experience significant alterations in microbial species, metabolic pathways, antibiotic 
resistance, and virulence factors. Notably, specific factors like erythromycin-resistant methylase, pyridoxine 5-phosphate oxidase, and 
streptomycin-acetyltransferase show substantial increases [64]. Interestingly, we found that pneumonia is a contributing factor to the 
onset of PID and its progression to sepsis. This observation is in line with Jamie Morgan’s description that severe pneumonia can lead to 
acute respiratory distress syndrome requiring mechanical ventilation, as well as severe sepsis and septic shock syndrome [68]. 

Furthermore, our results suggest that glucocorticoids represent a risk factor for sepsis, aligning with our initial hypothesis. During 
the course of sepsis onset and progression, dual factors invariably contribute to both hyperinflammation and immune suppression. 
Early administration of glucocorticoids in patients with sepsis can impede their ability to combat infection, ultimately leading to 
immune paralysis and uncontrolled inflammation. 

In brief, the five factors included in the nomogram are reliable prognostic factors for sepsis in PID patients, making them valuable 
tools in clinical practice. Healthcare professionals can use these factors to implement appropriate treatment measures, effectively 
reducing the risk of PID progressing to sepsis. 

Our analysis results revealed that in the training set, the ROC curves of the RSF model slightly outperformed those of the Cox 
regression model, indicating better performance of the RSF model, while in the validation set, it’s the other way around. Compared 
with the Cox proportional hazard model, the RSF model allows for cross-validation using internal data to ensure high prediction 
accuracy, and it can capture the nonlinear effects of predictive variables and the interactions between predictors, without the need for 
proportional hazards assumption testing [24,25]. Nevertheless, the RSF model is prone to overfitting, while the Cox regression model 
demonstrates relatively stable performance. In addition, in Table 3, the HR of peritonitis lower than 1 is statistically significant. This 
indicates that the detection of early peritonitis is helpful for subsequent treatment. Because there is a certain lag in treatment and drug 
treatment, patients who fail to detect peritonitis in the early stage usually will not receive the corresponding examination and 
treatment. In contrast, once peritonitis is diagnosed, patients will have a greater chance to receive targeted treatment and exclude the 
possibility of reproductive system inflammation, which will help prevent the occurrence and progression of PID. From the perspective 
of disease definition, there is some overlap between peritonitis and pelvic inflammatory disease, but not all PIDs are peritonitis, and 
vice versa. Therefore, the early detection and treatment of peritonitis will bring more benefits. 

Limitations of this study should be noted. Being retrospective and based on the MIMIC-IV database, there may be inevitable data 
loss and bias. Additionally, the study focused only on European and American populations, potentially leading to deviations in 
population characteristics. To enhance the model’s feasibility, validation with larger external cohorts is necessary, although a vali-
dation cohort (30% of the total dataset) was randomly assigned to verify the model’s superiority. 

5. Conclusion 

In conclusion, this study presents a prognostic nomogram containing five factors: hemodialysis, PLT counts, pneumonia, hormone, 
and WBC counts, for predicting 3-/7-day progression to sepsis in critical PID patients admitted to the ICU. The risk prediction 
nomogram demonstrated AUCs of 0.886/0.863 and 0.824/0.726 for the training and validation sets, respectively, with a c-index of 
0.8905, indicating the potential of this model to aid clinicians in risk stratification and decision-making for PID patients to improve 
their clinical treatment. Furthermore, we developed a well-calibrated RSF model to evaluate the prognostic risk for adult PID patients 
and predict whether patients can achieve clinical stability. With further validation and modification, this model can support clinical 
decision-making to improve the care of hospitalized PID patients. 
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