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Abstract

Studies of feature-based attention have associated activity in a dorsal frontoparietal network with putative
attentional priority signals. Yet, how this neural activity mediates attentional selection and whether it guides
behavior are fundamental questions that require investigation. We reasoned that endogenous fluctuations in the
quality of attentional priority should influence task performance. Human subjects detected a speed increment
while viewing clockwise (CW) or counterclockwise (CCW) motion (baseline task) or while attending to either
direction amid distracters (attention task). In an fMRI experiment, direction-specific neural pattern similarity
between the baseline task and the attention task revealed a higher level of similarity for correct than incorrect trials
in frontoparietal regions. Using transcranial magnetic stimulation (TMS), we disrupted posterior parietal cortex
(PPC) and found a selective deficit in the attention task, but not in the baseline task, demonstrating the necessity
of this cortical area during feature-based attention. These results reveal that frontoparietal areas maintain
attentional priority that facilitates successful behavioral selection.
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(s )

To cope with the computational limits of visual processing, the brain selectively prioritizes a subset of visual
input. The selection of visual features, such as color and motion, has been associated with activity in a
frontoparietal cortical network. Yet, the role this activity plays in mediating selection and influencing
behavior is not clear. Using fMRI, we show that neural activity patterns in several frontoparietal areas
correlated with task performance. Furthermore, neurodisruption of the posterior parietal cortex (PPC) using
transcranial magnetic stimulation (TMS) selectively impaired feature selection. These results provide the first
evidence that the neural representation of prioritized features in frontoparietal areas play a causal role in
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Kselecting visual features.
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Introduction
Visual attention allows us to select relevant information
from the visual scene for prioritized processing. Given the
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profound effect of attention on perception (Simons and
Rensink, 2005), it is important to understand how atten-
tion is controlled both at the behavioral and neural level
(Corbetta and Shulman, 2002).
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Theories of attention have postulated that attentional
priority, which represents the behavioral importance of
visual objects, guides selection during perceptual pro-
cessing (Wolfe, 1994; Desimone and Duncan, 1995; Deco
and Rolls, 2004). On the neural level, attentional priority
signals have been linked to activity in dorsal parietal and
frontal areas. In particular, priority for spatial locations is
thought to be represented by spatially selective neural
responses in these areas (Silver and Kastner, 2009; Bisley
and Goldberg, 2010). This idea has been strongly sup-
ported by neurophysiological and neuroimaging studies
(for review, see Buschman and Kastner, 2015). In addition
to spatial locations, attention can also be directed to
nonspatial properties such as visual features (Yantis,
2000), and recent work has begun to characterize priority
signals for feature-based attention (Serences and Boyn-
ton, 2007; Liu et al., 2011; Liu and Hou, 2013; Ester et al.,
2016). Specifically, these studies have found that patterns
of neural activity in visual and dorsal frontoparietal areas,
in particular, areas along the intraparietal sulcus and the
precentral sulcus, can be used to decode the attended
feature value (e.g., red vs green color, leftward vs right-
ward motion). Although these studies demonstrate that
neural activity patterns vary with the attended feature,
they do not reveal how this activity mediates attentional
selection and whether it is causally involved in feature
selection and task performance.

Here, we investigate the neural-behavioral relation in
regions that have been implicated in the selection of visual
features. We reasoned that if neural activity encodes at-
tentional priority for visual features, then such activity
should be related to behavioral performance in a task
requiring feature-based selection. In an fMRI experiment,
we instructed human subjects to attend to one of two
superimposed motion directions and perform a speed
detection at psychophysical threshold (attention task). If
neural activity in this task encodes priority for features, the
quality of such signals should be better for correct than
incorrect trials. To provide a benchmark to evaluate the
quality of the priority signal, we measured neural activity
in a separate task where subjects viewed a single motion
direction (baseline task). We hypothesized that if atten-
tional selection in the attention task is successful, then
neural activity will resemble that in the baseline task,
inasmuch as attention reduces the influence from the
distracter. Conversely, neural activity for unsuccessful
selection in the attention task would share less resem-
blance to that in the baseline task. Thus, we predict that
the neural pattern similarity between the attention and
baseline task would vary with task performance.

To assess the causal role of neural activity on
feature-based selection, we used transcranial magnetic
stimulation (TMS) to disrupt identified neural signals for
attentional priority. We further hypothesized that if these
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signals represent priority for features, then neurodisrup-
tion would impair performance in the attention task, which
requires feature-based selection, whereas it would impair
performance less (or not at all) in the baseline task, which
does not require feature-based selection. Conversely, we
hypothesized that if these signals are related to general
motion processing, then neurodisruption would produce
equivalent impairments in both the attention and baseline
task. To test these predictions, we unilaterally targeted
representative brain areas that were identified as potential
loci for maintaining attentional priority or stimulus pro-
cessing.

Materials and Methods

fMRI experiment
Subjects

Twelve subjects participated in the imaging experiment
(five males, 20-29 years old). All subjects were neurolog-
ically intact, had normal or corrected-to-normal vision,
and were recruited from the Michigan State University
community (undergraduate and graduate students). They
gave written informed consent under the study protocol
approved by the Institutional Review Board at Michigan
State University and were remunerated at a rate of $20
per hour.

Visual display and stimuli

Visual stimuli were generated using MGL (http://gru.stan-
ford.edu/doku.php/mgl/overview), a set of OpenGL libraries
running in Matlab (Mathworks). In the psychophysics lab-
oratory, stimuli were presented on a 19”7 CRT monitor
(resolution: 1024 X 768, 60-Hz refresh rate) and subjects
had their heads stabilized by a chin rest that was posi-
tioned 85 cm away from the monitor. During MR scanning
sessions, a DLP projector (Psychology Software Tools)
projected the stimuli onto a rear-projection screen located
in the scanner bore. Subjects viewed the screen via an
angled mirror attached to the head coil at a viewing
distance of 60 cm. The projector had a resolution of 1024
X 768 and was updated at 60 Hz.

The stimuli were composed of one or two dot fields that
rotated in the clockwise (CW) or counterclockwise (CCW)
direction with 60% motion coherence. Each dot field was
contained within an annulus (eccentricity from 2.5° to 8°)
that was centered on a central cross (size: 0.5°) and
displayed on a black background. Each dot within a field
(dot color: gray; dot size: 0.1°; density: 1.1 dots/deg?) had
a lifetime of six frames (0.1 s) to deter subjects from
tracking individual dots. During training and imaging ses-
sions, the central cross was either yellow or cyan to help
subjects remember the current response mapping (see
Tasks).

Tasks
Attention task

At trial onset, subjects were cued to attend to CW or
CCW motion by a rightward or leftward-pointing arrow
cue, respectively (Fig. 1A). The cue appeared 0.77° above
the central cross and persisted on the display for 0.3 s.
The cue was then replaced with spatially overlapping CW
and CCW dot fields that were displayed for 4.1 s. Each
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Figure 1. Schematic of the attention and baseline tasks. A, Sequence of a valid trial in the attention task. Size of curved arrows
illustrates the speed of rotation. The fixation cross is either yellow or cyan (color not shown). B, Sequence of a target-absent trial in
the baseline task. For ease of illustration, frames depict black stimuli on a white background (colors are reversed in the actual

experiment).

dot field rotated around the center of the annulus at a
speed of 45°/s before a brief (0.2 s) speed increment
occurred in either direction. Subjects were instructed to
maintain fixation on the central cross and report whether
the speedup occurred in the cued direction. Thus, task
performance was contingent on the attended direction. If
CW (CCW) was cued when a CW (CCW)-speedup oc-
curred, and the subject reported the speedup, the trial
was classified as a hit. Alternatively, if the subject failed to
report the speedup, the trial was classified as a miss. On
80% of trials, the speedup occurred in the cued direction
(valid trials) and its magnitude was adjusted via best
Parameter Estimation by Sequential Testing (PEST), an
adaptive staircase procedure as implemented in the Pala-
medes toolbox (Prins and Kingdon, 2009), to maintain a
hit rate (performance) of 65%. The best PEST procedure
computed the maximume-likelihood estimate of an observ-
er’s speed increment threshold on each trial, on the basis
of all previous responses. Performance was assumed to
have the form of a Weibull function, with the slope fixed at
2, and the lapse rate and guess rate fixed at 1%. On
invalid trials (20% of trials), a speedup occurred in the
uncued direction (invalid trials) using the magnitude of the
preceding valid trial (i.e., the speedup on invalid trials was
not controlled via staircase).

For the attention task, we aimed to maximize the num-
ber of hit and miss ftrials to conduct our multivariate
analyses. To accomplish this, we used a 4:1 validity ratio
and titrated performance to an intermediate hit rate (65%).
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Although a lower hit rate, such as 50%, would mathemat-
ically maximize the number of hits and misses, such a low
performance level could discourage subjects from using
the cue.

An intertrial interval (ITl) followed the speedup, the ITI
was 4.2 s on 40% of trials, 6.4 s on 30% of trials, 8.6 s on
20% of trials, and 10.8 s on 10% of trials. During this
interval, subjects reported the presence or absence of a
speedup in the cued direction via a “present” or “absent”
response that was mapped onto a particular finger. To
differentiate the observed neural response for target de-
tection from that of a motor plan, we trained subjects to
use two inverse response mappings that were indicated
by the color of the central cross. When the cross was
cyan, subjects made present and absent responses with
their index and middle finger, respectively. When the
cross was yellow, the mapping was reversed. The re-
sponse mappings alternated across runs and were coun-
terbalanced within each subject.

Baseline task The baseline task (Fig. 1B) was identical
to the attention task, with the following exceptions: (1) an
arrow cue was not presented, hence, subjects viewed the
central cross for 0.3 s at the beginning of each trial; (2)
only one dot field was displayed; (3) a speedup occurred
on 70% of trials (target-present trials) and on the other
30% of trials (target-absent trials), no speedup occurred;
and (4) the hit rate was maintained at 50% via best PEST.
These behavioral manipulations were used to maximize
the number of correct rejections (when subjects reported
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absent on target-absent trials), as these served as the
baseline neural patterns in our multivariate analyses. In
particular, the low hit rate was chosen to dissuade sub-
jects from making too many false positive reports, which
would reduce the correct rejection rate.

Procedure

Training session Before the imaging session, subjects
completed at least two runs (50 trials/run) of each task in
the psychophysics laboratory for practice. To ensure that
subjects maintained fixation on the central cross, their left
eye was recorded at a sampling rate of 1000 Hz using an
Eyelink 1000 system (SR Research); the data were ana-
lyzed offline using custom Matlab scripts. Importantly,
subjects were only allowed to proceed with the imaging
session if their eye position was always within 2° of the
central cross.

Because speedup events only occurred at the end of a
trial, this could allow for a strategy where attention was
only directed to the stimulus later in the trial. Thus, we also
emphasized the importance of maintaining attention
throughout each trial and all subjects reported compli-
ance. We note that partial and/or inconsistent attentional
engagement would likely reduce the attentional signal and
increase noise in neural data. Hence, our observed effects
might be even stronger if attention had been engaged
more consistently throughout the stimulus duration.

Imaging session Before functional images were col-
lected, subjects completed, at most, 100 trials of each
task while they lay in the scanner; these trials were used
to calibrate the staircase to maintain the expected hit rate.
Then, subjects completed 12 fMRI runs (30 trials/run),
with six runs for each task in an alternating sequence.
Each run began with an 8.8-s fixation period and lasted
338.8 s; the images collected during the fixation period
were discarded to avoid magnetic saturation effects. For
the attention task, cue direction (CW vs CCW) and validity
(valid vs invalid) were randomly interleaved within each
run; whereas, during the baseline task, motion direction
(CW vs CCW) and trial type (target-present vs target-
absent) were randomly interleaved within each run. Eye
position was not monitored during this session.

MRI data acquisition

Imaging was performed on a GE Healthcare 3 T Sigma
HDx MRI scanner, equipped with an eight-channel head
coil, in the Department of Radiology at Michigan State
University. For each subject, high-resolution anatomic
images were acquired using a T1-weighted magnetization-
prepared rapid-acquisition gradient echo sequence (field
of view, 256 X 256 mm; 180 sagittal slices; 1-mm isotro-
pic voxels). Functional images were acquired using a
T2:*-weighted echo planar imagining sequence (repetition
time, 2.2 s; echo time, 30 ms; flip angle, 78°; matrix size,
64 X 64; in-plane resolution, 3 X 3 mm; slice thickness, 4
mm, interleaved, no gap). Thirty axial slices covering the
whole brain were collected. In each scanning session, we
also acquired a 2D T1-weighted anatomic image that had
the same slice prescription as the functional scans but
with higher in-plane resolution (0.75 X 0.75 X 4 mm). This
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image was used to align the functional data to the high-
resolution anatomic images for each subject.

Retinotopic mapping

In an independent scanning session, we mapped each
subject’s occipital visual cortex and several parietal areas
that contain topographic maps. For the occipital cortex,
we used rotating wedges and expanding/contracting
rings (eccentricity from 0.5° to 8.25°) to map the polar
angle and radial component, respectively (Sereno et al.,
1995; DeYoe et al., 1996; Engel et al., 1997). Four runs of
the wedge stimuli and two runs of the ring stimuli were
collected and averaged. A Fourier analysis was then ap-
plied to the averaged time course to derive the amplitude
and phase of the response, the latter forming the polar
angle map of the responses. Borders between areas were
defined as phase reversals in the polar angle map of the
visual field. The map was visualized on computationally
flattened representations of the cortical surface, which
were generated from a high-resolution anatomic image
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu) and
custom Matlab code.

Parietal areas were mapped with a memory delayed
saccade task that was modeled after previous studies on
parietal topography (Sereno et al., 2001; Schluppeck
et al., 2005; Konen and Kastner, 2008). Subjects fixated
on a central point while a peripheral (~10° radius) target
dot was flashed for 500 ms. The flashed peripheral stim-
ulus was quickly replaced by a ring of 100 distractor dots
randomly positioned within a ring with a radius of 8.5-
10.5°. The distractors remained on screen for 3 s, after
which subjects made a saccade to the remembered po-
sition of the peripheral target and then immediately made
a saccade back to the central fixation point. The position
of the peripheral saccade target shifted around the pe-
riphery from trial to trial in either a CW or CCW direction,
so that after eight trials the target completed one full
cycle. A trial lasted 5 s and six cycles were completed in
a single run. Two to four runs of the memory delayed
saccade task were collected and averaged, then borders
between parietal areas were defined as phase reversals in
the polar angle map.

Finally, we presented moving versus stationary dots
(eccentricity from 0.5° to 10°) in alternating blocks and
localized the human motion-sensitive area as an area near
the junction of the occipital and temporal cortex that
responded more to moving than stationary dots (Watson
et al., 1993). This area likely contained both MT and MST,
so we refer to it as MT+.

Overall, we identified the following areas in each sub-
ject: V1, V2, V3, V3A/B, V4, MT+, V7/IPSO0, IPS1, and
IPS2. We did not observe a consistent boundary between
V3A and V3B; hence, we defined an area that contained
both and labeled it V3A/B. We adopted the definition of V4
as a hemifield representation anterior to V3v (Wandell
et al.,, 2007). The V7/IPSO nomenclature was adopted
because its anatomic location is within the IPS in some
hemispheres and shares a foveal representation with IPS1
(Swisher et al., 2007). We could not reliably observe bor-
ders for more anterior IPS regions such as IPS3 and IPS4
in all subjects.
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fMRI data analysis

Preprocessing Functional MRI data were analyzed us-
ing mrTools (http://gru.stanford.edu/doku.php/mr-
Tools/overview) running in Matlab and custom code in
Matlab. Preprocessing of functional data included head
motion correction, linear detrending, and temporal high
pass filtering at 0.01 Hz. The 2D T1-weighted image was
used to compute the alignment between the functional
images and the high-resolution T1-weighted image, using
an automated robust image registration algorithm (Ne-
stares and Heeger, 2000). Functional data were converted
to percentage signal change by dividing the time course
of each voxel by its mean signal over a run. Then, data for
all runs of a task were concatenated, resulting in two time
series. All region of interest (ROI) analyses were performed in
individual subject’s native anatomic space.

Univariate analysis: deconvolution For the attention task,
we fit each voxel’s time series with a general linear model
containing five sets of regressors: four corresponding to
the two directions during valid trials (CW vs CCW) crossed
by response accuracy (hits vs misses) and the fifth corre-
sponding to invalid trials. We note that due to the low
proportion of invalid trials, false alarms were rather scarce
(5 = 5 false alarms across subjects), precluding a further
separation into CW and CCW trials. In the analyses de-
scribed below (see Multivariate analysis), we focus only on
valid trials in the attention task; hence, hits and miss trials
are referred to as correct and incorrect trials, respectively.
For the baseline task, the general linear model contained
seven sets of regressors: six corresponding to the two
motion directions (CW vs CCW) crossed by detection type
(hit vs miss vs correct rejection) and the seventh corre-
sponding to false alarms. Each regressor modeled the
fMRI response in a 17.6-s window after trial onset with a
set of finite impulse responses. The design matrix was
pseudo-inversed and multiplied by the time series to ob-
tain an estimate of the hemodynamic response for each
condition (deconvolution).

To obtain precise estimates of BOLD response ampli-
tude for each subject, we averaged their deconvolved
response across ROls to obtain an overall response pro-
file. These response profiles revealed a variable time-to-
peak across subjects that ranged from 4.4 to 8.8 s after
trial onset (time points 3-5). Voxel-wise estimates of re-
sponse amplitude for each condition were then computed
as the average deconvolved response from the time point
immediately preceding the subject’s peak to the time
point following the peak.

From the deconvolution model of each task, we ob-
tained a goodness of fit measure (r* value) for each voxel,
which was the amount of variance in the fMRI time series
accounted for by the model (Gardner et al., 2005). The r?
value indicated how much a voxel’s time series was
driven by the task. For each subject, we used their 2 map
of the attention task to define two frontal ROIs. These
ROIs were centered on voxels with maximal r* values that
formed separate clusters along the precentral sulcus: one
near the superior frontal sulcus and another near the
inferior frontal sulcus. These clusters are not separate on
the group map (Fig. 3A) but were distinct in individual
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subjects. At each location, we defined a ROI that ex-
tended to enclose the nearby sulcal junction while avoid-
ing the precentral gyrus (motor cortex). The dorsal ROI
coincided with the putative human frontal eye field (FEF)
and we referred to the ventral ROI as the inferior frontal
junction (IFJ); both areas were defined bilaterally.

Muiltivariate analysis: correlation To measure attentional
priority, we calculated the correlation between BOLD re-
sponse patterns when subjects attended to a feature
(attention task) and when they viewed the feature in iso-
lation (baseline task; Fig. 4). The output of the correlation
indexed the quality of the attentional priority signal, with
low (high) correlations reflecting weak (strong) feature
selection. Separate correlations were calculated for cor-
rect and incorrect trials.

BOLD response patterns were composed of voxel-wise
response amplitudes that were estimated using the de-
convolution analysis above, and represented the spatial
pattern of neural activity evoked when each feature was
viewed or attended. Attention patterns were constructed
using the response to CW and CCW-cued motion, con-
tingent on whether the behavioral response was correct or
incorrect during the attention task (four patterns in total).
Baseline patterns were constructed using the response to
correct rejections for CW and CCW motion during the
baseline task (two patterns in total). Because both the
speedup (target) and its detection were absent during
correct rejections, the associated neural response should
have reflected feature processing, without the contribu-
tion from neural activities related to target detection. Cor-
relations of attention and baseline patterns with matching
features (e.g., attention CW and baseline CW) were cal-
culated. The resulting correlation coefficients were aver-
aged across features and statistical inferences were
conducted on Fisher-transformed values. For each ROI,
we conducted planned t tests between the feature selec-
tivity on correct and incorrect trials.

Multivariate analysis: multivoxel pattern classification For
a separate measure of attentional priority, we trained a
linear support vector machine (SVM; LIBSVM implemen-
tation; Chang and Lin, 2011) to discriminate between CW
and CCW motion in the baseline task and then tested its
ability to decode the motion directions when they were
attended in the attention task, contingent on behavioral
accuracy.

For this analysis, voxels were ranked by their r? value in
the baseline task and the top 55 voxels in each ROI were
used. Therefore, classification was based on the same
number of voxels in each area. We note that our results
were qualitatively identical when 35-145 voxels were
used. We obtained single-trial BOLD responses (in-
stances) for each voxel by averaging the time series be-
tween the time of peak response, as defined by a
subject’s response profile, to the shortest possible trial
duration (8.8 s; 5th time point). Due to the variable time-
to-peak across subjects, the average window contained
between one and three time points. Each instance was
treated as a point in 55-dimensional space and was used
to populate multivoxel responses (classes), contingent on
trial type. CW and CCW Baseline classes were composed
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of BOLD response to correct rejection trials in the base-
line task. CW and CCW Attention classes were composed
of CW and CCW-cued trials in the attention task; separate
classes were generated for correct and incorrect trials.
Baseline classes were z-scored and used to train the
SVM. Attention classes were z-scored using the mean
and standard deviation of the training set, and used to test
the SVM’s accuracy in predicting the attended feature.
Correct and incorrect trials were tested separately. Clas-
sification accuracy for each ROl was assessed as the
average across hemispheres. Planned t tests were con-
ducted in each ROI to compare classification accuracy
between correct and incorrect trials.

For ROIs that exhibited a difference in classification
accuracy between correct and incorrect trials, we con-
ducted a permutation analysis to assess whether classi-
fication accuracy was significantly above or below chance
level. For each subject, SVMs were trained with Baseline
classes and tested with random samples from Attention
classes. Specifically, trial labels for all four Attention classes
(accuracy crossed with motion direction) were shuffled
and split into two classes of equal size. Then, classifica-
tion accuracy was assessed for the shuffled data. At the
individual subject level, this process was repeated 10,000
times to create a null distribution of classification accu-
racy for the ROI. Null distributions were averaged across
hemispheres. To construct the group-level null distribu-
tion, a single value was randomly selected from each
subject’s null distribution and the average value across
subjects was calculated; this process was repeated
10,000 times to derive a null distribution for the ROI.
Group-average classification accuracies below the 2.5th
or above the 97.5th percentile were considered signifi-
cantly below or above chance, respectively.

Note that the training and test data were based on
different tasks in separate scanning runs and hence, en-
tirely independent. Therefore, no leave-one-run-out
cross-validation was necessary. On average, the training
data contained 26 CW trials and 25 CCW trials. The test
data contained 48 CW and 46 CCW correct trials, and 23
CW and 25 CCW incorrect trials.

Voxel exclusion criterion Voxels with responses larger
than 5% signal change were excluded from all analyses
as they presumably reflected noise. At the group level,
this criterion removed 4.1% of voxels across ROls. We
note that the exact exclusion criterion did not qualitatively
impact our results.

Visualization of group data

All analyses were performed on individual subject data
with predefined ROIs and all quantitative results reported
were based on averages across individual subject results.
We also performed group averaging of the individual
maps to provide a visualization of the overall pattern of
brain activity during the attention and baseline tasks.
Each subject’s two hemispherical surfaces were first im-
ported into Caret and affine-transformed into the 711-2B
space of the Washington University at St. Louis (Buckner
et al., 2004). The surface was then inflated to a sphere and
six landmarks were drawn, which were used for spherical
registration to the landmarks in the Population-Average,
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Landmark- and Surface-based (PALS) atlas (Van Essen,
2005). Individual maps were transformed to the PALS
atlas space and thresholded at a r? value of 0.12 in
combination with a cluster constraint of 50 voxels. PALS-
transformed maps were averaged across subjects and
used solely for visualization purposes.

TMS experiments
Subjects

In total, 27 subjects participated in the TMS experi-
ments, with 12 participating in each experiment. Out of
the total, one participated in all four experiments (author
M.G.), four participated in three experiments (L/R parietal
and MT+), eight participated in two experiments (L/R
parietal: 3; R parietal and MT+: 3; one author, M.J.); L
parietal and MT+: 1; MT+ and sham: 1), and 13 partici-
pated in one experiment (L parietal: two subjects; MT+: 1:
sham: 10). All subjects were neurologically intact, had
normal or corrected-to-normal vision, and were recruited
from the Michigan State University community (under-
graduate and graduate students). They gave written in-
formed consent under the study protocol approved by the
Institutional Review Board at Michigan State University
and were remunerated at a rate of $15 per hour.

Repetitive TMS (rTMS): task and procedure

Each TMS experiment comprised of three sessions that
were completed on separate days: one thresholding/
practice session and two TMS sessions. A brain area was
targeted unilaterally in each experiment.

We used the baseline and attention tasks from the fMRI
experiment with the following modifications: (1) the stair-
case was specified to maintain a hit rate of 80%; (2) each
run contained 100 ftrials; (3) to equate the duration of a
block with that of the stimulation protocol (600 s), the dot
fields were displayed for 3.7 s and the ITls were changed
to 1.35 s on 40% of trials, 1.8 s on 30% of trials, 2.25 s on
20% of trials, and 2.7 s on 10% of trials; (4) 70% of trials
in the attention task were valid; (5) present and absent
responses were always mapped to the index and middle
finger, respectively; and (6) the central cross was always
gray.

The thresholding/practice session occurred on a differ-
ent day before the TMS session. During thresholding,
subjects performed three to six runs of each task until
performance was titrated to the expected level. The cor-
responding speedup magnitude served as the subject’s
threshold and was used during TMS sessions. Ultimately,
two thresholds were obtained for each subject, one for
the baseline task and one for the attention task.

Each subject performed both tasks (attention and base-
line) across the two TMS sessions (i.e., one task per
session). During each session, subjects performed two
runs of a task, one before the TMS protocol (prestimula-
tion; see TMS protocol) and another immediately after
(poststimulation). Task order was counterbalanced across
subjects. Task performance was evaluated as the differ-
ence between the hit rate and false alarm rate. For sub-
jects that participated in two or more experiments, only
one full thresholding session was conducted. During fur-
ther TMS experiments, their thresholds were simply
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updated by performing 50-100 thresholding trials imme-
diately before their prestimulation run.

Sham TMS: task and procedure

The sham TMS experiment comprised of two sessions
that were completed on separate days. In each session,
subjects first performed 50-100 staircase trials to titrate
performance to the expected level. The corresponding
speedup magnitude served as their threshold and was
used in subsequent blocks. Subjects then performed two
blocks of the attention or baseline task separated by 10
min of sham TMS (see TMS protocol); task order was
counterbalanced across subjects. We opted to combine
the thresholding and stimulation sessions into a single
session to exacerbate any potential fatigue effects.

TMS protocol

Three ROIls were targeted unilaterally for stimulation,
left and right IPS1, and right MT+, in three separate
experiments. IPS1 was topographically defined in individ-
ual subjects using the retinotopic mapping procedure
while MT+ was defined using the MT+ localizer. In a
given experiment, a ROl was overlaid on the correspond-
ing T1-weighted anatomic MR image for each subject,
and its centroid (visually determined) served as the target
site. We used frameless stereotaxy (Brainsight 2, Rogue
Research) in conjunction with a Polaris infrared position-
ing system (Northern Digital, Waterloo, Canada) to pre-
cisely place the coil over the target site; the coil was
positioned with its handle ~45° from the midsagittal axis.
During sham TMS, the coil was centered on the mid-
sagittal plane but its face was rotated 90° away from the
subject’s head; thus, no cortical area received any direct
stimulation.

Ten minutes of 1-Hz rTMS (600 pulses) was delivered to
the target site using a Magstim Rapid?® stimulator and a
Magstim double 70 mm air film coil (The Magstim Com-
pany). Stimulation was delivered at a fixed intensity of
70% of maximum stimulator output. This stimulation in-
tensity was chosen because several studies have found
attentional effects when stimulating the parietal cortex at
similar intensities (Hilgetag et al., 2001; Thut et al., 2005;
Morris et al., 2007; Schenkluhn et al., 2008; Szczepanski
and Kastner, 2013). We did not use motor threshold to
determine stimulation intensity because it is not neces-
sarily a reliable index of excitability in nonmotor cortical
areas (Stewart et al., 2001; Robertson et al., 2003). For
this reason, and to limit the length of the experiment and
the total number of TMS pulses subjects received, motor
threshold was not assessed.

Results

Behavior in the scanner: attention task

Subjects performed a speed detection task during
which they were cued to selectively attend to one of two
overlapping dot fields, one rotating CW and another ro-
tating CCW (Fig. 1A). On each trial, a speedup (target)
occurred in either the cued direction (valid, 80% of trials)
or in the uncued direction (invalid, 20% of trials) and
subjects were instructed to report whether or not they
perceived the speedup in the cued direction. The magni-
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Figure 2. Behavioral results in the scanner. Error bars indicate =
within-subject SEM following the method of Cousineau (2005).

tude of the speedup was controlled by an adaptive stair-
case that maintained the hit rate at 65%. This 4:1 validity
ratio and intermediate performance level allowed a suffi-
cient number of incorrect (miss) trials to be collected while
ensuring that performance would benefit from valid cues.
On average, we obtained 95 correct and 48 incorrect trials
for each subject.

Consistent with our expectation, subjects successfully
used the cue. The speed increment was detected near the
expected hit rate (~65%) and the false alarm rate was low
(<15%). Additionally, the difference between hit and false
alarm rates (i.e., hit-false alarm) revealed no difference in
the ability to attend to either direction (¢4, = 0.65, p =
0.532"; Fig. 2). All statistics are summarized in Table 1.

Behavior in the scanner: baseline task

In the same scanning session, subjects performed an-
other speed detection task during which they were pre-
sented with a single dot field (Fig. 1B). On each ftrial, the
dot field rotated either CW or CCW and a speedup oc-
curred in 70% of trials. On the remaining 30% of trials, no
speedup occurred. The magnitude of the speedup was
controlled by an adaptive staircase that maintained the hit
rate at 50%. This experimental design kept subjects en-
gaged in the task and allowed us to obtain a sufficient
number of correct rejection trials (when no speedup was
presented and subjects correctly reported its absence) for
subsequent analyses. On average, we obtained 51 cor-
rect rejection trials for each subject.

Behavioral performance indicated that subjects were
successful at detecting the speedup in both directions.
The hit rate was near the expected performance level and
the false alarm rate was low (<5%). The difference in
performance during CW and CCW motion was marginally
significant (t4, = 2.18, p = 0.0523), suggesting that it
was easier to detect a CW target (Fig. 2). This difference
was unexpected. However, we note that any performance
difference in the baseline task should not affect our fMRI
analyses because only correct rejection trials (i.e., trials
without a target) were used.
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Table 1. Statistics table
Line Data/dependent variable Type of test Statistic Confidence
Results: behavior in scanner
al Hit - false alarm Paired t test (CW vs CCW) t = 0.65; DoF = 11; p = 0.53; Cl = -0.10/0.057
a2 Paired t test (CW vs CCW) t = 2.18; DoF = 11; p = 0.052; Cl = -0.11/0.0004
Results: fMRI
c1l BOLD response amplitude = Two-way ANOVA (accuracy X F = 5.51; DoF = (1,11) p = 0.039; general »> = 0.014
by condition direction)
c2 Two-way ANOVA (accuracy X F = 8.30; DoF = (1,11) p = 0.015; general n> = 0.018
direction)
p

d1 Correlation coefficients Paired t test
by accuracy condition

(correct, incorrect)

d2 Paired t test
d3 Paired t test
d4 Paired t test
d5 Paired t test
dé Paired t test

el Classification accuracies Paired t test
by accuracy condition

(correct, incorrect)

t = 3.21; DoF = 11; = 0.008; Cl = 0.031/0.17

t = 3.30; DoF = 11; p = 0.007; Cl = 0.036/0.18

t = 3.71; DoF = 11; p = 0.004; Cl = 0.061/0.24

t = 2.62; DoF = 11; p = 0.024; Cl = 0.024/0.27

t = 2.60; DoF = 11; p = 0.025; Cl = 0.016/0.19

t = 2.20; DoF = 11; p = 0.049; Cl = 0.0002/0.20
t = 2.34; DoF = 11; p = 0.039; Cl = 0.0028/0.093

e2 Permutation test (correct vs null) p=10"°
e3 Permutation test (incorrect vs null) p=10"%
Results: TMS

1 Hit — false alarm Paired t test (pre- vs poststimulation) t = 3.18; DoF = 11; p = 0.009; Cl = 0.025/0.14

f2 Paired t test (pre- vs poststimulation) t = 0.12; DoF = 11; p = 0.91; Cl = -0.069/0.076

3 Paired t test (pre- vs poststimulation) t = 3.36; DoF = 11; p = 0.006; Cl = 0.034/0.16

4 Paired t test (pre- vs poststimulation) t = 0.57; DoF = 11; p = 0.58; Cl = -0.044/0.075

5 Two-way ANOVA (task X stimulation F = 9.40; DoF = (1,11) p = 0.011; general »> = 0.018
period)

6 Two-way ANOVA (task X stimulation F = 5.28; DoF = (1,11) p = 0.042; general n?> = 0.010
period)

f7 Paired t test (pre- vs poststimulation) t = 2.82; DoF = 11; p = 0.017; Cl = 0.021/0.17

8 Paired t test (pre- vs poststimulation) t = 2.26; DoF = 11; p = 0.045; Cl = 0.0016/0.11

f9 Two-way ANOVA (task X stimulation F = 11.62; DoF = (1,11) p = 0.006; general > = 0.13
period)

f10 Two-way ANOVA (task X stimulation F = 0.90; DoF = (1,11) p = 0.36; general »> = 0.009
period)

f11 Paired t test (pre- vs poststimulation) t = 1.60; DoF = 11; p = 0.14; Cl = -0.14/0.021

f12 Paired t test (pre- vs poststimulation) t = 0.34; DoF = 11; p = 0.74; Cl = -0.073/0.053

Attention and baseline tasks modulate BOLD
response in occipital and frontoparietal areas

To identify cortical areas that were modulated by the
tasks, we performed a subject-based deconvolution analy-
sis. Voxel-wise deconvolved responses were computed for
each condition and the amount of variance in the time
course accounted for by the deconvolution model () rep-
resented the extent of task modulation. Group-averaged r*
maps were visualized in the PALS atlas space using spher-
ical registration (for details, see Materials and Methods).

At the group-level, a network of frontoparietal areas, as
well as occipital visual areas, showed significant modula-
tion by the both the attention (Fig. 3A) and baseline (data
not shown) tasks. This overall pattern of activation was
similar to findings from many previous studies of atten-
tional control (Kastner and Ungerleider, 2000; Corbetta
and Shulman, 2002). Active areas in the occipital and
parietal cortices overlapped with areas defined via retino-
topy. Additionally, we defined two frontal ROIs (FEF and
IFJ) in each subject using their » map of the attention
task. FEF was defined near the junction of the precentral
and superior frontal sulcus and IFJ was defined near the
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junction of the precentral and inferior frontal sulcus. These
two regions appeared contiguous on the group-averaged
map, but they formed distinct clusters in individual sub-
ject maps. In each subject, we obtained 11 ROls: V1, V2,
V3, V3A/B, V4, MT+, V7/IPSO0, IPS1, IPS2, FEF, and IFJ.
No laterality was observed in the results for each area,
therefore we averaged the data from corresponding areas
across the two hemispheres.

BOLD amplitude does not vary with task
performance

We observed robust task-related BOLD responses in all
of our ROIs and, for illustrative purposes, we plotted the
response of V1 and IPS1 (Fig. 3B). The BOLD response to
all conditions in the attention task (accuracy crossed with
cued direction, CW and CCW) peaked between 4.4 and
8.8 s after trial onset (time points 3-5) and was very similar
between conditions. To quantify this observation, we
computed the average response amplitude for each con-
dition and conducted a two-way repeated-measures
ANOVA (two accuracy conditions X two attended direc-
tions). The analysis revealed a main effect of direction in
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Figure 3. Univariate results. A, Group r> map of the attention task shown on an inflated Caret atlas surface. The approximate locations
of retinotopically-defined (V1-7, MT+, IPS1, and IPS2) and task-defined (FEF and IFJ) areas are indicated by lines. B, Mean BOLD
response in the attention task from two ROls (V1 and IPS1). The error bar on the first time point is the average * within-subject SEM

across all time points.

IPS2, response amplitude was larger for CW than CCW
attention (F(; 44y = 5.51,p = 0.039°"), and an interaction in
V1, when correct, response amplitude was larger for CCW
than CW attention; when incorrect, the pattern was re-
versed (F 41y = 8.30, p = 0.015%9), Importantly, the main
effect of accuracy was nonsignificant in all ROls (all p >
0.2), therefore, overall BOLD amplitude did not vary with
performance. This result is thus inconsistent with an in-
terpretation that performance variation in the attention
task was caused by fluctuations of general behavioral
state (e.g., fatigue or vigilance), as such effects are known
to be reflected in overall BOLD amplitude variations (Boly
et al., 2007; Esterman et al., 2013).

Average neural patterns for prioritized features in
occipital and frontoparietal areas vary with task
performance

To examine a possible relationship between attentional
priority and task performance, we used a correlation anal-
ysis to compare the spatial pattern of neural activity when
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subjects were correct versus incorrect in the attention
task (Fig. 4). Voxel-wise BOLD responses were used to
obtain spatial patterns of neural activity for attended and
isolated features (CW and CCW motion). Separate Atten-
tion patterns were constructed for CW and CCW-cued
trials in the attention task, and baseline patterns were
constructed with voxel responses during correct rejection
trials in the baseline task. The response to correct rejec-
tions was used because there was neither a physical nor
perceived target during these trials, which made them
suitable for isolating feature-specific neural responses,
uncontaminated by target-related responses. We used
the correlation between baseline and attention patterns to
index the quality of attentional priority, with low (high)
correlations reflecting weak (strong) feature selection.
We conducted planned comparisons between the qual-
ity of attentional priority on correct and incorrect trials
within each ROI (Fig. 5). Because all visual areas showed
similar results and because we are primarily interested in
frontoparietal areas’ role in attentional control, we aggre-
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Figure 4. Schematic of the correlation analysis. Each matrix represents the spatial pattern of response amplitudes from voxels within
a ROI (@amplitude is color coded according to the scale bar at the bottom). The middle column of matrices (shaded area labeled
“baseline”) illustrates the baseline neural response pattern to each direction (CW and CCW) during the baseline task. The other two
columns illustrate the neural response pattern to an attended motion direction during correct and incorrect trials during the attention
task. The black double-sided arrows between matrices represent the correlations that were calculated (Pearson’s r) and the bounded
lines represent the averaging of correlation coefficients across directions to obtain an overall index of attentional priority quality for

correct and incorrect trials.

gated data from extrastriate visual areas (abbreviated to
ExS in figures) by averaging the correlation coefficients
across V2, V3, V3A/B, and V4. We kept MT+ separate as
there is a strong a priori link between MT+ activity and
motion processing. We found that Baseline and Attention
patterns were more correlated for correct than incorrect
trials in V1 (t44) = 3.21, p = 0.008"), extrastriate regions
(tqqy=3.30,p = 0.007%), MT+ (tqy=38.71,p = 0.004%),
V7/IPSO (tyq, = 2.62, p = 0.024%), IPS1 (tg1) = 2.60,p =
0.025%), and IFJ (t4, = 2.20, p = 0.049%). These results
demonstrate that the spatial pattern of neural activity
within these cortical areas encodes a more veridical rep-
resentation of the attended feature during correct trials.
The observed neural-behavioral correlates in posterior
parietal and inferior frontal areas support their role in
encoding attentional priority for features, whereas the
analogous effects in visual areas likely reflect attentional
modulation due to feedback. In the following, we sought
converging evidence with a classification approach that
provided another measure of pattern similarity.

Feature coding in posterior parietal cortex (PPC)
tracks trial-by-trial fluctuations in task performance

The correlation analysis above used the average neural
response across trials; yet, attentional control likely fluc-
tuates across individual trials, leading to different behav-
ioral outcomes. Therefore, a trial-by-trial assessment
would reveal cortical areas that consistently encode the
attended feature and facilitate task performance.

A classification approach was used to assess feature
representation on individual trials. A linear classifier was
trained with correct rejection trials from the baseline task
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Figure 5. Average neural patterns for prioritized features in
occipital and frontoparietal areas vary with task performance.
Group-average Fisher-transformed correlation coefficients (av-
eraged across motion directions) are shown, which reflect the
similarity of neural patterns of activity between the attention and
baseline tasks for correct and incorrect trials. The ExS label
represents extrastriate visual areas. Error bars are * within-
subject SEM following the method of Cousineau (2005). Aster-
isks indicate the significance level in paired t tests (+xp < 0.01,
#p < 0.05).
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Figure 6. Feature coding in PPC tracks trial-by-trial fluctua-
tions in task performance. Group-average classification accu-
racies are shown and plotting conventions are the same as
Figure 5.

to discriminate between CW and CCW motion. Then, the
classifier was tested on how well it decoded the attended
direction in individual correct and incorrect trials of the
attention task. For each ROI, classification accuracy for
correct and incorrect trials were compared (Fig. 6), reveal-
ing that the attended direction was better discriminated
for correct than incorrect trials in IPS1 (t44) = 2.34, p =
0.039°"). Moreover, by constructing a null-distribution that
characterized chance-level classification performance,
we found that the attended feature was discriminated
above chance for correct trials (o = 1073 and below
chance for incorrect trials (p = 10™%). These results indi-
cate that IPS1 consistently encodes a more veridical rep-
resentation of the attended feature during correct than
incorrect trials. The below-chance classification for incor-
rect trials is somewhat unexpected; this could suggest
that errors were partly due to subjects attending to the
uncued feature on those trials, which would lead to op-
posite neural response patterns for the training and test
datasets. Overall, both our correlation and classification
approaches provide converging evidence of IPS1’s role in
the maintenance of attentional priority.

PPC is necessary for feature-based attention
Because our multivariate analyses indicated that neural
activity patterns in IPS1 correlate with feature selection
and task performance, we sought to assess whether it is
causally involved in feature-based attention. Subjects
performed the attention and baseline tasks while neuro-
navigated rTMS was used to disrupt neural processing
unilaterally in left or right IPS1. Stimulation was centered
on each retinotopically-defined ROI, but given the rela-
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tively small size of these cortical areas compared to the
estimated spatial extent of TMS stimulation (Walsh and
Pascual-Leone, 2003), we refer to the area stimulated as
the PPC.

We reasoned that because feature-based selection was
necessary in the attention task, but not the baseline task,
disruption of areas primarily representing attentional pri-
ority would impair performance in the attention task and
leave performance in the baseline task largely unchanged.
With this rationale, we conducted two separate experi-
ments in which rTMS was applied unilaterally to left or
right PPC. Before TMS sessions, speedup magnitude
thresholds for the attention and baseline tasks were ob-
tained for each subject such that hit rates were equated.
Then, on a separate day, subjects performed two blocks
of either task, separated by 1-Hz rTMS. After stimulation
of left PPC (Fig. 7A), performance was significantly im-
paired in the attention task (ty4) = 3.18, p = 0.009™) but
not the baseline task (t44) = 0.12, p = 0.91%). Similarly,
stimulation of right PPC (Fig. 7B) impaired performance in
the attention task (t;y, = 3.36, p = 0.006™) but not the
baseline task (ty1, = 0.57, p = 0.58"). Consistent with
these planned comparisons, a two-way repeated mea-
sures ANOVA (two tasks X two stimulation periods) re-
vealed a significant interaction effect for left (F(; 14y = 9.40,
p = 0.011%) and right (F; 11, = 5.28, p = 0.042') parietal
stimulation sites. Thus, these results support a causal role
of PPC in the maintenance of attentional priority that
mediates feature selection.

Neurodisruption of MT+ does not selectively impair
feature-based attention

Because our fMRI correlation analysis also revealed
performance correlates in visual areas, we conducted a
third TMS experiment where we stimulated right MT+ to
further dissociate visual areas from control areas of atten-
tion (Fig. 7C). Given its critical role in visual motion pro-
cessing (Newsome and Paré, 1988), we reasoned that
neurodisruption of MT+ should lead to equivalent decre-
ments in performance for the attention and baseline tasks
because both rely on basic motion processing. Consistent
with this prediction, rTMS impaired performance in the
attention (¢, = 2.82, p = 0.01 77) and baseline task (tary =
2.26, p = 0.045%®). This was verified by a two-way re-
peated measures ANOVA that revealed a main effect of
stimulation period (F;1;, = 11.62, p = 0.006") and no
interaction effect (F; 11, = 0.90, p = 0.36™°).

General behavioral state does not explain
performance decrements due to rTMS

A potential explanation for the performance decre-
ments observed in the above TMS experiments might
relate to variations in general behavioral state (e.g., fatigue
or vigilance). In particular, impaired performance post
stimulation could have arisen simply because subjects
were fatigued after completing their first block of trials,
and this fatigue might be particularly severe for the atten-
tion task. To assess this possibility, we performed a fourth
experiment in which no cortical area was directly stimu-
lated. Instead, the coil face was oriented 90° away from
the scalp (sham TMS). In addition, we exacerbated po-
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Figure 7. Results of the TMS experiments. Each panel presents the results for stimulation centered on (A) left IPS1, (B) right IPS1,
(C) right MT+, and (D) sham TMS. Plotting conventions are the same as Figure 5.

tential fatigue effects by combining thresholding and TMS
sessions into a single session. Thus, subjects first com-
pleted one to two blocks of staircase trials, and then
immediately performed the pre- and post-stimulation
blocks, separated by sham TMS. We reasoned that if
fatigue contributed to our TMS effects, then performance
would be impaired in the post-block even without brain
stimulation. Our results reject this hypothesis (Fig. 7D):
performance was unchanged between pre- and post-
blocks in the attention task (¢4, = 1.60, p = 0.14™") and
baseline task (t;y, = 0.34, p = 0.74™?). Thus, fatigue
cannot account for the observed effects of PPC and MT+
stimulation.

Overall, we found that applying rTMS to PPC produced
a selective deficit in the attention task, demonstrating its
specific role in attentional selection. This was in contrast
to MT+ stimulation that produced a deficit in both tasks,
demonstrating its general role in motion processing. Thus,
our results provide converging evidence that PPC, and
IPS1 in particular, is causally involved in the maintenance
of attentional priority.
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Discussion

In this study, we examined how neural activity in dorsal
frontoparietal areas is related to behavioral performance
in a feature-based attention task. We found that attending
to a feature (motion direction) produced spatial patterns
of neural activity in frontal, parietal, and visual areas that
better resembled those of an isolated feature (evoked by
a single motion direction) during correct than during in-
correct trials. On a trial-by-trial basis, this pattern con-
gruency effect was uniquely found in IPS1, as revealed
by pattern classification analyses. Additionally, we
found that rTMS centered on IPS1 led to a performance
impairment in the attention but not the baseline task,
whereas rTMS to MT+ led to equivalent impairments in
both tasks. Finally, sham TMS did not change perfor-
mance in either task, ruling out the influence of general
behavioral state on task performance. These results
reveal that frontoparietal areas maintain attentional pri-
ority that facilitates the selection of visual features, and
in particular, PPC, including IPS1 plays a causal role in
such selection.
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Previous studies have provided indirect evidence that
frontoparietal neural activity is related to the control of
feature-based attention (Serences and Boynton, 2007; Liu
et al., 2011; Ester et al., 2016). However, whether these
neural signals mediate task performance and how such
signals represent the attended feature are unclear. Here,
we addressed both issues by examining the relationship
between patterned neural activity and task performance,
as well as the consequence of neural perturbation on task
performance.

The baseline task provided a measure of the neural
pattern evoked by each motion direction without selective
attention. To the extent that subjects successfully at-
tended to the cued direction in the attention task, the
observed neural pattern should resemble the baseline
pattern for that direction and facilitate performance in a
difficult threshold-level detection task. Indeed, we found
such an effect in visual areas including V1 and frontopa-
rietal areas (V7/IPS0, IPS1, and IFJ). In these areas, the
correlation between the attention pattern and the baseline
pattern was greater for correct than incorrect trials, sug-
gesting that feature-based attention operates by biasing
the population activity toward that evoked by the feature
alone. These results are consistent with the finding that
neuronal tuning in V4 is shifted to the attended feature
(David et al., 2008) as well as with the finding that atten-
tion shifts fMRI voxel’s semantic category representations
during visual search in natural movies (Gukur et al., 2013).
Our results are complementary to these previous findings
and go beyond them by demonstrating that attention-
induced shifts in neural population activity are functionally
significant in that they correlate with task performance.

We also used a pattern classification approach to as-
sess the relationship between neural activity patterns and
task performance. Because the classification approach
uses single-trial data, this allows us to examine how
trial-by-trial variations in neural activity contribute to at-
tentional selection. This analysis showed that the pattern
difference between the two features, the information ex-
tracted by the classifier, was more aligned between the
baseline and the attention tasks on correct trials. This
result suggests that to the extent that the brain could rely
on the same discriminative information between the two
features when they were presented alone, successful at-
tentional selection can be achieved when they were pre-
sented together in competition. We note that we only
found this result in IPS1, while the correlation analysis
found neural correlates of behavioral accuracy in multiple
cortical areas. The difference in results could be due, in
part, to the use of mean patterns across trials in the
correlation analysis that reflect an overall effect of atten-
tion, and the use of single-trial BOLD responses in the
classification analysis, which are sensitive to trial-level
fluctuations. Although, in principle, such fluctuations
should manifest both at the source and the destination of
attentional modulation, it is plausible that neural conduc-
tion would introduce additional noise at the destination
relative to the source. If so, it would be easier to detect a
performance-based effect at the source region than the
destination region. Thus, our classification results indi-
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rectly support the notion that IPS1 contains the source of
attentional control that modulates visual areas during
feature-based selection. In addition, single-trial neural
patterns used in the classification analysis are likely to be
quite noisy, which could make it difficult to achieve reli-
able pattern separation. Indeed, the overall classification
accuracy in our results was rather low, presumably limited
by the noisy estimate of the trial-level responses and the
limited size of the training dataset. Although the effect in
classification accuracy was somewhat weak, it provided
additional evidence that IPS1 is an important cortical area
in shaping attentional selection, and guided our selection
of PPC as a stimulation target during TMS.

To obtain converging evidence, we used rTMS to dis-
rupt local neural processing in PPC to test its causal role
in feature-based attention. We reasoned that if PPC is
causally involved in attentional selection, neurodisruption
should produce behavioral deficits in the attention task
and not the baseline task. Importantly, performance in
both tasks was titrated to be at equivalent levels with
adaptive staircase methods. Therefore, general task diffi-
culty cannot explain any differential effect produced by
neurodisruption. Our results support this prediction: dis-
rupting PPC produced a behavioral deficit in the attention
task but not in the baseline task. We dissociated this
selective top-down attentional impairment from bottom-up
motion processing by stimulating MT+, a region with
strong a priori links to bottom-up processing of visual
motion. Because each task relies on basic motion pro-
cessing, we reasoned that neurodisruption should pro-
duce equivalent behavioral deficits in both tasks.
Consistent with this prediction, disrupting MT+ yielded
equivalent behavioral deficits in both tasks. Finally, we
dissociated the effects of neurodisruption from variations
in general behavioral state (e.g., fatigue or vigilance) with
sham TMS and protracted experimental sessions. We
reasoned that if variations in task performance are due to
fatigue, behavioral deficits should be observed in both
tasks even without neurodisruption. Our results reject this
hypothesis as performance was unchanged with sham TMS.
Overall, these findings demonstrate that neural activity in
PPC, and in particular, IPS1, is causally and specifically
involved in the control of feature-based attention.

Our TMS results apparently contradict those of a pre-
vious study that found that stimulation of anterior, but not
posterior, IPS impaired performance in a feature-cued
visual search task (Schenkluhn et al., 2008). However,
there are some critical differences between the TMS pro-
tocol used in the two studies. They used an online proto-
col to deliver brief TMS pulses right after the cue, which
was presumed to only affect neural activity during the cue
period. In contrast, the effects of our offline protocol have
been shown to persist during the test block (Hilgetag
et al., 2001; Thut et al., 2005; Zanto et al., 2011). There-
fore, it is possible that anterior IPS plays a role in cue
processing (e.g., setting the task goal), whereas posterior
IPS plays a critical role in actively maintaining the selec-
tion of a goal-relevant feature during stimulus presenta-
tion. Future studies could determine the time course of
relevance for these areas by using TMS to disrupt anterior
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and posterior IPS at different times during cue and stim-
ulus presentation.

Our converging fMRI and TMS results highlight the role
of the PPC in controlling feature-based attention by dem-
onstrating a strong behavioral correlate between parietal
activity and task performance and its causal role in guid-
ing behavior. Considering the strong support of this area
in the control of spatial attention (Bisley and Goldberg,
2010; Buschman and Kastner, 2015), the overall results
suggest that parietal areas contain domain-general atten-
tional control signals for both spatial and nonspatial at-
tention. Our fMRI correlation results also revealed a neural
correlate of task performance in IFJ. IFJ has been sug-
gested to be a shared node between the dorsal and
ventral attentional control network (Corbetta et al., 2008)
and recent studies have demonstrated its role in object-
based attention and working memory (Zanto et al., 2011;
Baldauf and Desimone, 2014), which are closely related to
feature-based attention. The overall results suggest that
IFJ and PPC represent attentional priority of features by
maintaining population neural activity similar to that
evoked by those features alone. These neural signals
could serve as attentional templates, which have been
proposed to control the deployment of feature-based
attention in theoretical models (Wolfe, 1994; Desimone
and Duncan, 1995). We note, however, that the overall
magnitude of correlation in IFJ is low and it also did not
exhibit performance-related effects in the classification
analysis. Therefore, its role in feature-based selection
might be weaker than object-based selection or working
memory. In addition, other areas in the frontoparietal
network did not exhibit any fMRI correlate of perfor-
mance. In particular, fMRI pattern similarity in IPS2 and
FEF did not vary with task performance although previous
studies have shown that neural signals in these areas can
be used to decode the attended feature (Liu et al., 2011;
Liu and Hou, 2013; Ester et al., 2016). It is conceivable
that other types of control signals, the ones that do not
necessarily resemble those that process the original fea-
tures, also participate in attentional selection. For exam-
ple, these areas in the network could encode more
abstract, perhaps categorical, information that guides at-
tentional selection. The precise role of individual cortical
areas in coordinating attentional selection awaits further
investigation.

More broadly, our results are also informative regarding
the general role of PPC in visual processing. Traditionally,
parietal cortex has been associated with visuospatial and
visuomotor processing (Mishkin and Ungerleider, 1982;
Andersen and Buneo, 2002). However, more recent work
has demonstrated neural selectivity to many nonspatial
properties in this cortical area, such as simple features
(Sereno and Maunsell, 1998; Toth and Assad, 2002), ar-
bitrary categories (Freedman and Assad, 2006; Fitzgerald
et al., 2011), and even abstract identity information (Jeong
and Xu, 2016). Our results are thus consistent with this
emerging view of nonspatial representation in parietal
cortex and further suggest that such nonspatial represen-
tations can facilitate the selection of behaviorally relevant
visual features.
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