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The sphingolipid and lysophosphatidate regulatory networks impact diverse mechanisms attributed to cancer
cells and the tumor immune microenvironment. Deciphering the complexity demands implementation of a ho-
listic approach combined with higher-resolution techniques. We implemented a multi-modular integrative ap-
proach consolidating the latest accomplishments in gene expression profiling, prognostic/predictive modeling,
next generation digital pathology, and systems biology for epithelial ovarian cancer. We assessed patient-
specific transcriptional profiles using the sphingolipid/lysophosphatidate/immune-associated signature. This re-
vealednovel sphingolipid/lysophosphatidate-immune gene-gene associations and distinguished tumor subtypes
with immune high/low context. These were characterized by robust differences in sphingolipid‐/
lysophosphatidate-related checkpoints and the drug response. The analysis alsonominates novel survivalmodels
for stratification of patients with CD68, LPAR3, SMPD1, PPAP2B, and SMPD2 emerging as the most prognostically
important genes. Alignment of proprietary data with curated transcriptomic data from public databases across
a variety of malignancies (over 600 categories; over 21,000 arrays) showed specificity for ovarian carcinoma.
Our systems approach identified novel sphingolipid-lysophosphatidate-immune checkpoints and networks un-
derlying tumor immune heterogeneity and disease outcomes. This holds great promise for delivering novel strat-
ifying and targeting strategies.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Deciphering the Complexity of Ovarian Cancer in a Patient-orientated
Manner

Serous ovarian cancer is one of the leading cancer types underlying
cancer-related deaths in women. It is mostly diagnosed at an advanced
stage and shows a relapse rate of about 70% [1,2]. The major clinical
challenge of high-grade serous ovarian cancer is an ultimate develop-
ment of progressive resistance to chemotherapy in the majority of
patients [3]. A further distinctive cornerstone is the high inter- and
intra-tumoral genetic, inflammatory, and immune heterogeneity
[4–10]. There is a lack of clear molecular criteria to stratify (group) the
patients for effective application of molecular-targeted agents, includ-
ing immunotherapeutic interventions. Advanced techniques such as
nanoString, CIBERSORT and Immunoscore are capable of stratifying
patients according to molecular- or immune-related criteria and subse-
quently predicting disease outcome [11–13]. These techniques have
provided unprecedented perspectives in decoding heterogeneity of
several tumor types. Unfortunately, there is no breakthrough in under-
standing of serous ovarian cancer. Thus, for this aggressive type of can-
cer, there is a particular need to continue searching for new pathways/
targets for therapeutic modulation and new effective strategies to strat-
ify patients to risk groups. We will provide a novel approach to this
challenge based on the understanding of the dysregulation of the
sphingolipid signaling system that occurs in cancer, its crosstalk with
the lysophosphatidate system, and the interrelation with the local
tumor immune microenvironment.

1.2. The Complexity of Sphingolipid System and the Sphingolipid-related
Checkpoints

The sphingolipid machinery consists of a complex interconnected
network of bioactive sphingolipid mediators, the enzymes responsible
for their syntheses, degradation or turnover, and the family of five
sphingosine 1-phosphate (S1P)-specific G-protein-coupled receptors
(S1PR1-5). The system is crucially involved in the regulation of diverse
biological processes. These involve the decision-making for cell prolifer-
ation versus differentiation, cell survival versus apoptosis, cell residence
versus migration, as well as of angiogenic response and immune
response/immunomodulation [14–18]. Aberrations/dysregulations of
the mechanisms underlying these processes are linked to several pa-
thologies. Summing-up the current knowledge on the (patho)biology
of the sphingolipid signaling machinery encouraged us to introduce
the concept of “sphingolipid-related checkpoints” – similarly to “cell
cycle checkpoints” and “immune checkpoints”. These checkpoints are
critical for therapeutic interventions [19].

1.3. The Sphingolipid/Lysophosphatidate-related Checkpoints as Bio-
markers and/or Targets in Cancer

Extensive research over the last two decades identifies a fundamen-
tal and multistep involvement of the sphingolipid machinery in a vari-
ety of aspects of neoplastic cell behavior that is critical for tumor
development and progression [16,20–22]. The below list of examples
emphasizes the ultimate impact of the sphingolipid system in cancer
pathobiology and gives the rationale to consider sphingolipid-related
checkpoints as attractive targets for therapeutic intervention. This fur-
thermore points out the necessity of taking into account the intercon-
nections between the sphingolipid and lysophosphatidate (also
known as lysophosphatidic acid, LPA) signaling systems for harnessing
the power of potential complementary targeting strategies. (I) SPHK1
– gene encoding a lipid kinase that phosphorylates sphingosine to S1P
– acts as an oncogene ([23] and as reviewed in [16,20]). SPHK1 is in-
volved in the development of drug resistance for cancer treatments
and acts as a chemotherapy sensor [24–27]. (II) S1P gradient and S1P/
S1P receptor axis represents an obligatory signal for trafficking of
immune cells [28]. Although the role of LPA is largely unexplored in
immune system, recent studies identified its role in transdifferentiation
of leukocytes within the monocyte/macrophage lineage [29]. (III) S1P
acts on endothelial cells as a strong pro-angiogenic factor and affects
tumor angiogenesis [14,30] as well as lymphangiogenesis [31,32]. (IV)
S1P and LPA, the related bioactive lipid, in part share the lipid enzymatic
machinery, and a cell simultaneously expresses multiple receptors for
S1P and LPA [33–35]. (V) The S1P outward-facing gradient (as well as
the LPA gradient) created by tumor and/or stroma cells provides the
strongest driving factor for cancer cell invasion [36,37]. (VI) S1P and
LPA participate in the pro-inflammatory cycle that promotes an inflam-
matory environment within tumor tissue [33,38–41]. This can contrib-
ute to cancer cell evasion of surveillance by the local immune system.
(VII) There is a cross-talk between the transactivation of S1PRs
and LPARs with critical cancer-attributed receptor tyrosine kinases,
including EGFR and PDGFR, and the estrogen receptor [42–46]. (VIII)
Ceramides are mediators of cellular stress and, in contrast to pro-
survival S1P, ceramides are important regulators of apoptosis (reviewed
in [47]). There aremultiple enzymes utilizing ceramide as a substrate or
producing ceramides, whichmeans that there are numerous agents that
can modulate ceramide levels within cancer cells including cytokines,
radiation, and chemotherapeutics. Thus, cellular S1P/ceramide rheostat
is a decisive checkpoint. (IX)We reported themultidimensional contri-
bution of the sphingolipidmachinery to themechanisms underlying the
pathological epithelial to mesenchymal transition (EMT) program dur-
ing metastasis [33]. (X) The sphingolipid system is druggable at multi-
ple checkpoints (reviewed in [20,48]). Furthermore, several drugs
targeting LPA signaling are in clinical trials [39].

1.4. Multi-modular Analysis Algorithm for Dissecting the On-site Interrela-
tions between the Sphingolipid and Immune System in Ovarian Cancer

Despite intense research and considerable progress, there are many
gaps in our understanding of the cancer type-specific checkpoints
within the sphingolipid machinery and their contribution to the
establishment of local immune response within the tumor immune
microenvironment. As we previously proposed, the complexity of the
sphingolipid signaling system multiplied by the heterogeneity of
tumor and the tumor immune microenvironment necessitates the im-
plementation of integrative, systems biology-based approaches for
analysis and for obtaining a comprehensive picture. We recently devel-
oped such an approach to uncover novel interrelations between the
sphingolipid machinery and the EMT program in lung cancer [33].
Here, we performed an integrative analysis to address the impact of
sphingolipid and LPA systems to the pathobiology of ovarian cancer in
conjunctionwith immune responses.We further refined theMuSiCO al-
gorithm (from Multigene Signature to the Patient-Orientated Clinical
Outcome), which we established recently [49,50], and achieved a com-
prehensive integration of a set of transcriptional profiles reflecting the
perturbations of particular biological system(s). The upgraded MuSiCO
algorithm is based on consolidation of the consecutive analytical mod-
ules, allowing us to enrich the gene expression data with meaning
and context to get more knowledge and insights: (i) multigene
signature-based expression profiling of specimens from a clinically
well-characterized cohort of patients with primary ovarian cancer and
in-depth analysis of transcriptional profiles; (ii) sophisticated statistical
modeling for survival prediction using both the profiling-derived
variables and clinical risk factors; the added value of the gene
signature-derived variables is estimated by comparison of the models
performances on the basis of a defined parameter set; (iii) digital imag-
ing of tissue sections to explore the cell type- and tissue anatomy-
attributed localization of profiling-derived nominated top candidate
molecules; (iv) alignment of signature-derived profiles with publically
available transcriptomic data sets covering pathological/cancer condi-
tions using the GENEVESTIGATOR platform to address the question of
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singularity or commonality, and (v) delineation of data-driven
sphingolipid‐/lysophosphatidate- and immune-associated gene net-
work(s) and pathways by applying bioinformatics tools. In comparison
with our previously applied strategy [49], the herein refined version of
MuSiCO newly includes the digital imaging-based module and the
GENEVESTIGATOR-driven analysis of signature specificity. Fig. 1 gives
an overview of the study design.

Our results and new algorithmprovide unique knowledge about the
complex expression patterns of sphingolipid-related genes aswell as re-
lationships between sphingolipid-, lysophasphatidate-, and immune-
Self-created sphingolipid/immune-
associated 38/8-gene signature 
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strategy bridges systems biology and systems medicine. It can be used
to deliver novel patient-orientated therapies for ovarian cancer patients.
This includes the attractive approach of combinatorial targeting of
sphingolipid and lysophosphatidate/LPA systems that offers the power
for improving the efficacy of existing therapies and possibly
immunotherapies.

2. Materials and Methods

2.1. Profile of Study Patients

Tumor samples of the first patient group were collected from pa-
tients with epithelial ovarian cancer (EOC), which were recruited in
the course of the European Commission's sixth framework program
project OVCAD from five European university hospitals (Ovarian Can-
cer: Diagnosis of a silent killer; grant agreement no. 018698) [51]. The
patient cohort included 173 patientswith primary EOC; the clinicopath-
ological characteristics were documented by experienced clinicians and
are summarized in Table 1. For this retrospective study the sample size
was determined by the size of the OVCAD patient cohort. The cohort
was partially overlapping with the patient group used by us in the pre-
vious study [49]. Patient inclusion criterion comprised the EOCwith ad-
vanced disease (International Federation of Obstetrics and Gynecology
(FIGO) II– IV); themajority of patients had advanced-stage ovarian can-
cer (FIGO III and IV, 95%), G3 tumors (72%), and tumors of serous histol-
ogy (88%). Histology (serous vs. non-serous), FIGO stage (II vs. III vs. IV),
and Grading (G1 and G2 vs. G3) were included as variables in the mul-
tivariablemodeling. All patients received standard platinum-based che-
motherapy, mostly in the adjuvant setting, including intraperitoneal
application, but also in the neoadjuvant setting [51]. For the latter,
Table 1
Clinicopathological characteristics of patient cohort (n = 173) used for gene expression
profiling.

Patients (%) 173 (100.0)

Age at diagnosis [years]
Median (range) 56

Progression-free survival [months]
Median (range) 16 (1–48)
Number of recurrencies (%) 99 (57.2)

Overall survival [months]
Median (range) 25 (1–49)
Number of deaths (%) 50 (28.9)

Histology (%)
Serous 153 (88.4)
Endometrioid 5 (2.9)
Mucinous 2 (1.2)
Mixed epithelial tumor 6 (3.5)
Undifferentiated carcinoma 7 (4.0)

FIGO (%)
II 8 (4.6)
III 139 (80.3)
IV 26 (15.0)

Histological Grading (%)
1 6 (3.5)
2 42 (24.3)
3 125 (72.3)

Peritoneal carcinomatosis
no 52 (30.1)
yes 121 (69.9)

Residual disease after initial surgery (%)
None 127 (73.4)
≤ 1 cm 30 (17.3)
N 1 cm 16 (9.2)

Type of chemotherapy (%, 26 missing [15.0%])
Adjuvant 120 (69.4)
Adjuvant Intraperitoneal 15 (8.7)
Neoadjuvant 12 (6.9)

Response to first-line chemotherapy (%, 1 missing [0.6%])
Responder 127 (73.4)
Non-Responder 45 (26.0)
samples were taken before neoadjuvant treatment option (during lapa-
roscopic staging operation or suboptimal cytoreduction). Thus, the en-
tire cohort is uniform in the sense that all tissue samples were taken
before chemotherapy. Patients with recurrence or progressive disease
until 6 months after the end of chemotherapy were defined as non-
responders. The median follow-up time was 31.0 months (95% CI,
28.0–34.0). There were 50 cases (28.9%) of death related to EOC re-
ported during the follow-up period, designated below as events. The
second independent group under investigation included 19 patients
with primary EOC; the sampleswere collected at theMedical University
of Vienna. The clinicopathological characteristics are summarized in
Table S3. In addition, a panel of paraffin-embedded specimens with
EOC was retrieved retrospectively from 67 patients who underwent
surgery at the Medical University of Vienna; the clinicopathological
characteristics of this group are summarized in Table S9. These speci-
mens were used to characterize the cell type- and tumor anatomy-
related expression patterns of the top candidate molecules identified
by gene expression profiling.

2.2. Ethical Approval and Consent to Participate

The study was approved in accordance to the requirements of the
ethical committees of the individual institutions participating in
OVCAD (EK207/2003, ML2524, HEK190504, EK366, EK260). Informed
consent for the scientific use of biological material was obtained from
all patients in accordance with the requirements of the ethics commit-
tees of the institutions involved; the herein participating OVCAD part-
ners include Department of Gynecology, Charité – Universitätsmedizin
Berlin (Berlin, Germany), Division of Gynecologic Oncology, University
Hospital Leuven, Leuven Cancer Institute, KU Leuven (Leuven,
Belgium), Department of Obstetrics andGynecology,Medical University
of Vienna (Vienna, Austria), and Department of Gynecology and Gyne-
cologic Oncology, University Medical Center Hamburg-Eppendorf
(Hamburg, Germany). The study with the second patient group (n =
19) andwith paraffin-embedded specimenswas approved by the Ethics
Committee of theMedical University of Vienna (EK-Nr. 1101/2013). The
informed consent was waived by the institutional review board due to
the retrospective nature of the study.

2.3. RNA Isolation from Tumor Tissues

Total RNA from tumor tissues of the first patient group (n = 173)
was isolated using the ABI 1600 nucleic acid prepstation (Applied
Biosystems) and RNA concentration, purity and integrity were deter-
mined on a Nanodrop ND-1000 (Kisker-Biotech, Steinfurt, Germany)
and by agarose gel electrophoresis as described previously [52]. Total
RNA from tumor tissues of the second patient group (n = 19) was iso-
lated usingNucleoSpin TriPrep kit (Macherey-Nagel) according toman-
ufacture procedure. RNA integrity was assessed using Experion system
(Bio-Rad); samples showed high RNA Quality Index (N 8.0).

2.4. Real-timePCR analysis

Total RNA (0.5 μg) was reverse transcribed using the High Capacity
cDNA RT kit (Applied Biosystems) according to the manufacturer's in-
structions. For accurate normalization of mRNA between ovarian cancer
tissue specimens, we selected ACTB, TOP1,UBC, and YWHAZ as appropri-
ate housekeeping genes (HKGs), as previously described in detail [49].
Primers for genes composing the sphingolipid/lysophosphatidate/
immune-associated multigene signature and for HKGs were designed
using Primer Express 3.0 software (Applied Biosystems) and validated
using a normal tissue panel (Takara, Clontech Laboratories Inc.) as de-
scribed [40,53]; primer sequences are summarized in Table S17. Real-
time PCR analysis was performed in the 384-well plate format using
POWER SYBR Green Master Mix (Applied Biosystems) on ABI 7900HT
instrument equipped with SDS 2.3 software (Applied Biosystems). The
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qPCR Human Reference Total RNA (Clontech Laboratories Inc.) was
assigned as calibrator sample. Expression levels of genes of interest
were normalized to the geometric mean of the four HKGs and shown
relative to the calibrator sample.

2.5. The Composition of the Sphingolipid/Lysophosphatidate/Immune-
associated 38/8-gene Signature

We created a sphingolipid/lysophosphatidate/immune-associated
multigene signature to assess a role of sphingolipid machinery and the
lysophosphatidate signaling axis in conjunction with the on-site
immune response in ovarian cancer tissue. The latter is represented by
immune subsets-related molecules and includes the B-cell, the T-cell
and the monocyte/macrophage lineage markers. An approach using a
self-created sphingolipid-associated multigene signature was recently
applied by us to characterize novel checkpoints in sphingolipidmachin-
ery attributed to pathological EMT process in lung cancer [33]. The
herein applied sphingolipid/lysophosphatidate/immune-associated
38/8-gene signature covers: (i) the interconnected gene network of
the sphingomyelin (SM)/salvage pathway including genes encoding
the S1P-modifying enzymes such as two families of phosphatases
SGPP1 and SGPP2, and PPAP2A/PPAP2C/PPAP2B (also known as LPP1/
LPP2/LPP3 and PLPP1/PLPP2/PLPP3, respectively); the S1P-degrading
SGPL1 and the S1P-producing sphingosine kinases SPHK1 and SPHK2;
the lysophospholipase D, ENPP2 (also known as autotaxin); genes
encoding the Cer-modifying enzymes including Cer-producing SMPD1,
SMPD2, SMPD3, and family of Cer synthases CERS1, CERS2, CERS3,
CERS4, CERS5, and CERS6; the ceramidases ASAH1 and NAAA (also
known as ASAHL); the C1P-producing ceramide kinase CERK; SM-
producing SGMS1 and SGMS2; transferases utilizing Cer UGT8 and
UGCG; (ii) the family of G-protein-coupled S1P receptors, S1PR1,
S1PR2, S1PR3, S1PR4, and S1PR5, and, given a cross-talk between S1P
and LPA in respect of somemetabolizing enzymes and downstream sig-
naling, the related family of LPA receptors, LPAR1, LPAR2, LPAR3, LPAR4,
LPAR5, and LPAR6; (iii) the MHC-like molecules CD1B and CD1D
known to present lipids as antigens [54]; and (iv) immune-related
markers of the B-cell lineage, MS4A1 (also known as CD20) and IGHG1
(IgGmature transcripts) and IGHM (IgMmature transcript); themono-
cyte/macrophage lineage, CD14, CD68 and CD163; the T-cell marker
CD3E; the general immune cell marker PTPRC (also known as CD45).
The signature did not cover genes encoding the enzymatic machinery
for de novo sphingolipid biosynthesis, ACER family, and genes encoding
the enzymes of complex glycosphingolipids biosynthesis. Gene symbol,
synonyms, gene name, NCBI accession number, and short functional
description of genes composing the signature are provided in Table S1.

2.6. Immunostaining on Paraffin-embedded Tissue Sections and Staining
Evaluation

To determine the localization and expression patterns of the top
candidate molecules within cancer tissue of patients with ovarian car-
cinoma, paraffin-embedded 4 μm-thick sections were stained and ac-
quired using protocols and microscopy-based technology, established
by us previously [55]. Sections underwent routine staining with hema-
toxylin and eosin (HE) to visualize the tumor anatomy. For CD45 and
CD68 the entire patient cohort was used (n = 67); representative
specimens were included to detect LPAR3 (n = 12) and SMPD1 (n
= 7); detailed characterization of the CD45-based and the CD68-
based immunological imprints attributed to ovarian cancer is a part
of a separate study (manuscript in preparation). We used tonsil tissue
sections for optimization of the staining protocol. Being the secondary
lymphoid tissue, the tonsil is composed of diverse populations of im-
mune cells (T cells, B cells, mast cells, macrophages, and dendritic
cells) and their subpopulations at various activation stages. The tissue
architecture, besides the tonsillar follicles with germinal centers, also
includes surrounding surface epithelium, high endothelial vessels,
crypts, and connective tissue. Such diverse cellular composition allows
typically to have both positive (target protein-expressing cells) and
negative cellular controls within the same tissue. The knowledge on
subcellular localization of the molecule of interest ensures an addi-
tional internal control. For purpose of verification, the expression pat-
tern of a candidate molecule can be easily extracted using the
GENEVESTIGATOR platform (https://genevestigator.com/gv/ and
Sections 2.8–2.11) and matched with the staining outcome. To detect
CD45, a common leukocyte antigen, rabbit clonal antibody, clone
E19-G (DB Biotech) was used; to detect CD68, mouse monoclonal an-
tibody, clone KP1 (Thermo Scientific), was used. LPAR3 and SMPD1
were detected with rabbit polyclonal antibodies (Proteintech). After
the first antibody, the DAKO EnVision+ System, Peroxidase/DAB
(DAKO) was applied. Tissue sections were counterstained with hema-
toxylin for nuclear visualization. The automated microscopy-based tis-
sue analysis system, TissueFAXS (TissueGnostics, Vienna, Austria), was
used for the acquisition of entire tissue specimens. For acquisition, the
20×/0.5 objective (EC Plan_NeoFluar, Zeiss) was used. HistoQuest soft-
ware (TissueGnostics, Vienna, Austria) was used for the export of the
representative images.

2.7. Statistical Analysis and Data Visualization

Expression profiling-derived values were log2 transformed to re-
duce the influence of disproportionally high expression values. Missing
valueswere imputed using chained Eqs. [56]. For both the clinicopatho-
logical variables and the gene profiling-based variables hazard ratios
(HR) and corresponding 95% confidence intervals (CI) were estimated
by univariate Cox regression analysis using the IBM SPSS statistical
package (version 24.0; SPSS Inc., an IBM company).

Model estimation. The R (R Foundation for Statistical Computing,
Vienna, Austria) package glmnet [57]was applied to develop prognostic
models using regularized multivariable Cox regression as previously
[49]. In brief, we applied two different types of penalties which correct
for a possible overfit by shrinking regression coefficients towards zero.
The optimal amount of shrinkagewas thereby estimated byminimizing
the partial deviance in a leave-one-out cross-validation procedure.
A ridge penalty (ridge) and the LASSO (L1-norm penalization) shrink-
age and selection operator were used, supplying a model including all
predictor variables or a model with only those deemed most important
to predict the outcome, respectively. Absolute values of standardized

regression coefficients (STDBETA or β̂
�
j ,) were used for comparing and

ranking the variables by their importance in prediction. Standardized

coefficients were then transformed into Ŝ
expðβ̂

�
jÞ

36 , the estimated
36months overall survival probability in a subjectwhose value of Xj dif-
fers from the mean of -Xj by 1 SD, and visually compared to the

36months overall survival rate Ŝ36 for a hypothetical subjectwith all co-
variate values at the sample means. Similarly, we fitted logistic regres-
sion models with ridge and lasso penalties to evaluate the predictive
potential of genes for treatment response.

Model validation. To validate the survival models, an outer leave-
one-out cross-validation loop waswrapped around themodel develop-
ment process and yielded cross-validated predictors for each patient.
We explicitly applied the leave-one-out strategy of cross-validation
instead of dividing the data set only once into a training and test set,
because the latter strategy would make the results dependent on the
particular random split. Global p-values for each model were calculated
in SPSS usingunivariate Cox proportional hazards analyseswith the cor-
responding cross-validated predictors of the model as single covariate.
Overall survival (OS) and progression-free survival (PFS) were shown
by Kaplan-Meier graphs, stratified by quartiles of the cross-validated
linear predictors; group differences were tested using log-rank test.
We also assessed the discriminative ability of themodel by determining
the concordance index (c-index) [58] and its proportion of explained
variation (PEV) [59], using the cross-validated predictors. For validation

https://genevestigator.com/gv/
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of predictive models with binary outcomes we used 40 times repeated
5-fold cross-validation. The statistical test for added value was adopted
from De Bin et al. [60]. As described in detail [49], our approach to per-
formance evaluation is robust against falsely attributing any relevance
to gene sets with no predictive value.

Correlation analysis was performed in SPSS using Pearson's correla-
tion for log2 transformed expression data sets. Corresponding p-values
were corrected by the Bonferroni-Holm method using the R package
fdrtool (http://strimmerlab.org/software/fdrtool/). The correlation
matrix-based bubble plot and heat mapwere created using the Spotfire
software. The clustering method with Euclidean distance measure and
average value as orderingweightwas applied for the heatmap. Cluster-
ing analysis and follow-up graphical representation was performed
using Cluster 3.0 and Java TreeView programs. Levene's test was used
to assess the equality of variances. Principal Component Analysis
(PCA) was performed using Qlucore Omics Explorer software. Group
differences were assessed by two-way analysis of variance (ANOVA)
and Tukey's post hoc test for groups that showed equal variances and
Welch's ANOVA and Games-Howell post hoc test for groups where var-
iances were not equal, Chi-square test for categorical variables;
Student's t-test for two-group comparisons of continuous variables
with equal variances, replaced by Welch t-test in case of unequal vari-
ances. Two-sided p-values b .05 were considered as statistically signifi-
cant. We followed the recommendations of the REMARK reporting
guidelines [61].

2.8. Expression Profile of Genes Composing the Sphingolipids/Immune-
associated 38/8-gene Signature in Ovarian Cancer Cell Lines

Weused GENEVESTIGATOR(https://genevestigator.com/gv/), aman-
ually curated database and analysis platform for publicly available
transcriptomic data sets [62], to extract the expression profiles of genes
composing the sphingolipid/lysophosphatidate/immune-associated
multigene signature. Data from GENEVESTIGATOR are collected from
multiple public repositories and extensively curated by experts to create
a harmonized and well described compendium for global analysis. All
studies assembled for any kind of analysis are referenced in the
GENEVESTIGATOR tools. For analysis, we selected data sets from the
Affymetrix Human Genome U133 Plus 2.0 Array platform attributed to
ovarian cancer cell lines applying the filter “Cell Lines_Pathological Cell
Lines_Neoplastic Cell Lines_Neoplastic Cell Lines of the Reproductive
System_Ovary”; this selection included149 arrays. The expression values
(log2 transformed)were exported fromGENEVESTIGATOR for statistical
analysis.

2.9. Exploration of the Expression Profiles of S1PR4 and CD1B across Various
Tissues Using GENEVESTIGATOR

Wefirst used theGenevisible tool, being apart of theGENEVESTIGATOR
platform (https://genevestigator.com/gv/), to assess the expression profile
of S1PR4 and CD1B across various tissues (n = 464) and identify the top
10 cell types/tissues showing the strongest expression. Second, using the
Anatomy tool in GENEVESTIGATOR, we assessed the specificity of marker
expression in hematopoietic/immune system cells versus other cell types
applying the filter “Anatomy_Cell Type”which included 10,490 expression
data sets; the outcome (top 50) was illustrated by a pie chart.

2.10. Identification of Diseased Conditions Showing Similarities to
Signature-based Profile Using Curated Public Microarray Data Sets; Speci-
ficity of Signature-derived Profile

For the in silico identification of conditions that show similarities in
gene expression pattern to the sphingolipid/lysophosphatidate/
immune-associated signature, we used the Signature Tool from the
GENEVESTIGATOR (https://genevestigator.com/gv/) search engine. For
analysis, we selected all curated data sets from the Affymetrix Human
Genome U133 Plus 2.0 Array platform covering distinct cancer types;
this included 680 different neoplasm categories, based on the ICD-10/
ICD-O-3 classification. The filtered category “Cancer_All” thus included
21,095 arrays; conditions with n b 15 were excluded. Selection of eligi-
ble Affymetrix probes for the genes composing the sphingolipid/
lysophosphatidate/immune-associated signature was done automati-
cally by GENEVESTIGATOR; for CD68 the probe 203507_at was selected
manually (as unique probe to CD68 according to GeneAnnot). The ex-
pression profile of the sphingolipid/lysophosphatidate/immune-
associated gene signature, calculated for each gene as log2 transformed
median of the expression values across the entire patient cohort (n =
173 for themain patient cohort; n=19 for the independent patient co-
hort), was aligned using Pearson's correlation against the log2 trans-
formed expression values of microarray data sets from the selected
category. The same type of analysis was performed for the low risk
and the high risk groups of the main patient cohort. The result shows
conditions that are similar to the entered profile; the relative similarity
index indicates the degree of their resemblance [33]. The ranking was
done on the basis of relative similarity and the top 10 most correlated
conditions were selected.

2.11. Analysis of Co-expressed Genes Using the PublishedMicroarray-based
Data Sets

We used the GENEVESTIGATOR search engine (https://
genevestigator.com/gv/) for the in silico identification of genes showing
co-expression with CD68 and SMPD1 across immune cells. For analysis,
we selected samples from theAffymetrix HumanGenomeU133Plus 2.0
Array platform from the anatomical category “Monocyte”, which in-
cludes 248 arrays and from the category “Macrophage”, which includes
541 arrays; for both conditions with n b 3 were excluded. The co-
expression analysis was performed on the “Samples” level in
GENEVESTIGATOR. The lists of the top 200 co-expressed probe sets for
each gene of interest were exported for the follow-up analysis
(Table S10 and Table S11); ranking was based on the Pearson correla-
tion coefficient. Comparison of the two lists was done using VENNY
2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.html). Comparison
was done on the basis of the corresponding gene names. Generally,
the total number of genes included into the analysis might be b 200 as
for some genes multiple probes identify the same gene. For non-
annotated probes instead of the gene name the probe name was used
for the follow-up comparative alignment.

2.12. Data-drivenSignature-associated Gene Network Reconstruction

The Ingenuity Pathway Analysis (IPA) tool (https://www.
qiagenbioinformatics.com/products/ingenuity-pathway-analysis/) was
used to reconstruct the gene network on the basis of the gene set
representing the overlap between genes co-expressed with CD68 and
SMPD1. Furthermore, the IPA tool was used to assign the genes com-
posing the sphingolipid/lysophosphatidate/immune-associated signa-
ture to common biological pathways and upstream regulating
molecules and for the data-driven gene network reconstruction. We
recently used a similar strategy that is described in detail [33,49].
The IPA Core analysis included the categories Canonical Pathways
and Upstream Regulators. The corresponding IPA-derived p-value de-
termined the probability that the association between the genes
from expression profiling data set and a Canonical Pathway or Up-
stream Regulator can be explained by chance alone. The top ranking
was based on the p-value. The following strategy was used to depict
Upstream Regulators to be used for network reconstruction: the IPA
Upstream Regulator module predicted 283 significant molecules. The
top 10 most significant were selected excluding those of the category
biological drug/chemical drug/chemical reagent. We additionally
added S1P and LPA as IPA knowledge-based non-gene regulators of
sphingolipid machinery.

http://strimmerlab.org/software/fdrtool/
https://genevestigator.com/gv/
https://genevestigator.com/gv/
https://genevestigator.com/gv/
https://genevestigator.com/gv/
https://genevestigator.com/gv/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
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2.13. Data and Code Availability

All data generated or analyzed during this study are included in this
published article and its supplementary data. Previously published
transcriptomic data sets analyzed during the study are available within
GENEVESTIGATOR. R code to reproduce modeling results is available
from the authors upon request.

3. Results

3.1. Assessment of the Patient-specific Transcriptional Profiles Using the
Sphingolipid/Lysophosphatidate/Immune-associated 38/8-gene Signature

The starting point of the integrative MuSiCO is the assembling of the
multigene signature and its application for real-timePCR-based gene ex-
pression profiling of clinically well-characterized patient material as
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patient cohort (Table S2). Color indicates the strength and direction of the relationship betwee
correlation; green, negative correlation. Dot size is proportional to the p-value of correlation upo
described previously in detail [33,49]. The sphingolipid/
lysophosphatidate/immune-associated 38/8-gene signature that we ap-
plied includes the families of S1P and LPA receptors, the interconnected
gene network of sphingolipid-metabolizing enzymes within the
sphingomyelin/salvage pathway and the LPA metabolizing enzymes,
genes encoding the MHC-like molecules involved in lipid presentation
and a set of immune-related genes. Detailed description of the signature
composition is given in theMaterials andMethods including gene symbol,
synonyms, gene name, NCBI accession number, and a short functional
description, which are provided in Table S1. We assessed the patient-
specific transcriptional profiles of tumor tissues from patients with pri-
mary epithelial ovarian cancer, EOC (n=173, clinicopathological charac-
teristics of patient cohort are given in Table 1), using this signature.

We utilized the signature-derived expression data sets to examine
gene-gene associations. We performed a correlation analysis of
profiling-derived variables across the entire patient cohort. Graphical
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representation of the correlation matrix (Table S2) by bubble plot illus-
trates both the correlation coefficients and the corresponding p-values
(Fig. 2). We foundmultiple strong correlations (r N 0.5; p b .001) within
the set of sphingolipid-associated genes, within the set of immune-
related genes, and between genes composing the two sets. Similarity
in expression patterns can indicate commonality in regulatory control
and/or biological functions.

We also used hierarchical clustering of the gene-gene correlation
matrix for further interpretation and visualization. Fig. 3 illustrates
the heat map of associated correlation coefficients. Clustering reveals
a separation into two major clusters, which are further subdivided
into sub-clusters. Among the most significant positive associations,
we found close associations among PPAP2C-SGPP2-SMPD3-SGMS1-
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cluster II. It is important to note that immune markers covering vari-
ous immune cell populations and, thus, characterizing the on-site im-
mune profile were positively correlated with each other and cluster
together. These findings signify immune cell interactions that take
place in the tumor microenvironment and point to sphingolipid/
lysophosphatidate-related factors/mechanisms that, among others,
could promote co-infiltration of immune cells of different lineages
and/or their survival.
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3.2. Clustering-based Patient Stratification and the Association with
Chemotherapy Response

We next examined whether we could stratify (subdivide) the
examined patient group into subgroups showing similarities in expres-
sion patterns on the basis of the 38/8-gene signature-derived expres-
sion profiles. We applied a hierarchical cluster analysis across all
expression profiles of genes composing the signature and across the en-
tire patient population. This algorithm arranged the data into a tree
structure providing information about the relationship among the spec-
imens and genes (Fig. 4A). Clustering revealed a clear separation of the
patient group into sub-cluster I (47 out of 173 specimens), herein
named as immune low. These are specimens that showed low expres-
sion of the immune-associated genes (CD163, CD14, CD68, IGHM,
IGHG1, PTPRC, MS4A1, and CD3E) and two sphingolipid-associated
genes (S1PR4 and CD1B). Sub-cluster II (56 out of 173 specimens),
herein named as immune high, consisted of specimenswith high expres-
sion levels of the genes listed above. Additional subgroups of patients
(70 out of 173 specimens) showed a mixed expression pattern (mixed).

The separation into 3 subgroups (immune low, mixed, and immune
high) or into 2 subgroups (immune low and immune high) was addi-
tionally shown by Principal Component Analysis (PCA) (Fig. 4B, a or
b, respectively). The immune low and immune high phenotypes were
further illustrated by immunostaining of the paraffin-embedded tissue
sections for CD45, a common leukocyte marker (Fig. 4C). Importantly,
the two sub-clusters, immune low and immune high, were character-
ized by an inverse expression with respect to the additional
sphingolipid/lysophosphatidate-associated genes with sub-cluster I
showing overall a high expression and sub-cluster II an overall low ex-
pression. Statistical analysis was used for sub-cluster comparison with
respect to the expression levels of each individual gene to verify the
clustering outcome (Fig. 5A). Collectively, these data revealed specific
expression patterns of sphingolipid/lysophosphatidate-associated
genes characterizing the immune low and the immune high subgroups
with CD1B, CD1D, CERK, CERS2/4/5/6, ENPP2, LPAR1/2/3/4/5, NAAA,
PPAP2A/C, S1PR1/4/5, SGSM1, SMPD1/2, and SPHK1 genes (n = 23)
showing a significant difference as summarized in Fig. 5B. Further-
more, all immune-related genes under investigation (n = 8) showed
highly significant differences.

Next, we explored whether there was a difference in clinicopatho-
logical parameters between patients found within the immune low ver-
sus immune high subgroups. We were intrigued to find an association
with response to first-line chemotherapy with significantly more re-
sponders found in the immune high subgroup (p= .010, Fig. 5C). No sta-
tistically significant differences were found in respect to other
clinicopathological parameters.

Given that two sphingolipid-associated genes, S1PR4 and CD1B, were
found within the immune cluster, we performed integrative analysis
using the GENEVESTIGATOR tool and assessed the expression pattern of
these markers across all cell types. Others have previously suggested
that S1PR4 is predominantly expressed by immune cells [63]. Our com-
prehensive analysis revealed that S1PR4 is almost exclusively expressed
by cells of the hematopoietic/immune cell linage (Fig. 6a) with a particu-
lar prevalence for various T-cell subsets as can be seen from the top 10
outcomes (Fig. 6b). Furthermore, our results show that the expression
of CD1B is predominantly attributed to immune cells/immunological tis-
sues (Fig. 6c, d). This is compatible with the major biological function of
the protein encoded by this gene, which is an antigen-presenting protein
that binds particular lipid antigens and mediates their presentation [54].

To assess whether a similar clustering pattern could be seen on
signature-derived expression data sets froman independent EOC cohort
(Table S3), we profiled 19 samples by real-time PCR assay using the 38/
8-gene sphingolipid/lysophosphatidate/immune-associated signature.
Hierarchical clustering revealed a similar separation of specimens into
immune low and immune high subgroups on the basis of immune-
related core genes (Fig. S1). The outcome emphasizes the
reproducibility of our finding and demonstrates that the herein applied
set of immune-related genes in conjunction with the sphingolipid/
lysophosphatidate-associated signature is able to map the fundamental
differences for immune-based subtypes of ovarian carcinoma and on
the basis of this to stratify patients.

3.3. Univariate Associations of the Individual Gene Expression-derived Var-
iables and the Clinicopathological Parameters with Overall Survival and
Progression-free Survival

Univariate Cox regression analysis of overall survival (OS) and
progression-free survival (PFS) was used to determine the clinical rele-
vance of the gene expression data sets (n=46 per patient). These were
obtained on the basis of the sphingolipid/lysophosphatidate/immune
-associated 38/8-gene signature and on clinicopathological parameters
(n=6) (Table S4). With respect to OS, three genes showed statistically
significant associations, namely LPAR3 (HR = 0.883, 95% CI: 0.804–
0.969, p = .009), SMPD2 (HR = 0.619, 95% CI: 0.433–0.884, p = .008),
and CD68 (HR = 0.824, 95% CI: 0.717–0.947, p = .006). All showed a
positive prognostic effect of more favorable survival with higher gene
expression. Among clinicopathological parameters, four variables
showed significant association with OS (Table S4). With respect to
PFS, the gene CD1B (HR = 0.936, 95% CI: 0.880–0.996, p = .037) and
four clinicopathological parameters showed significant association
(Table S4). Of note, the subsequent multivariable modeling using Cox
regression with ridge and LASSO penalties was not based on univariate
pre-selection of variables.

3.4. Multivariable Prognostic Models for OS and PFS

As the next step of the MuSiCo approach, we developed multivari-
able survivalmodels for evaluating patient prognosis and stratifying pa-
tients into risk groups.We previously applied this strategy to dissect the
role of the AID/APOBEC gene network in ovarian cancer and it was de-
scribed in detail [49].

Modeling results. Briefly, multivariable Cox regression was applied
to develop prognostic models using regularization with ridge and
LASSO penalties. Calculations were based on: (i) the clinicopathological
parameters, (ii) the gene profiling-derived sphingolipid-associated var-
iables, (iii) the gene profiling-derived immune-associated variables, and
(iv) all possible combinations; in a total of 7 models. The results for the
multivariable ridge and LASSO models are summarized in Table 2 and
Table S5, respectively. Both regularizationmethods showed similar pre-
dictive abilities. The outcome of the Cox regression with LASSO penal-
ties is summarized in Supplementary Data (Table S5, Table S6 and
Fig. S2). Herein, we describe the results of the Cox regression with the
ridge penalties. The modeling strategy allowed us to rank the contribu-
tion of the individual variables to the overall prognostic effect of
the model according to their standardized regression coefficients
(Table S7) or according to the absolute change in 36 month
survival probability (Fig. 7A). Within the Clinics + Sphingo + Immune
model, besides the clinicopathological variables, the sphingolid/
lysophosphatidate/immune-associated variables were found in the top
positions (Table S7). This includes CD68 (position 3), LPAR3 (position
5), SMPD1 (position 6), PPAP2B (position 9), and SMPD2 (position 10).
Of note, for a particular model the overall prognostic effect was based
on adding the independent prognostic effects of the individual vari-
ables. The effect was more pronounced for those variables which
showed an independent impact and thus are mutually supportive.
Thus, in case of a signature-based model, genes found at the top posi-
tions are likely to be attributed to diverse pathobiological pathways/
mechanisms.

Model validation. In leave-one-out cross-validation with respect to
OS, the clinicopathological variables-based model showed moderate
predictive accuracy (Clinics; PEV = 10.29%, c-index = 0.704, p b .001).
No statistically significant models could be built on the basis of either
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sphingolipid-associated variables (Sphingo) or immune-associated
variables (Immune). A weak but significant predictive accuracy was
observed for their combination (Sphingo + Immune; PEV = 2.44%,
c-index= 0.602, p= .036). The combination of clinicopathological var-
iables with sphingolipid-associated variables (Clinics+ Sphingo; PEV=
13.77%, c-index = 0.727, p b .001) and with immune-associated vari-
ables (Clinics + Immune; PEV = 14.65%, c-index = 0.725, p b .001)
showed a moderate/high predictive accuracy. The combined model of
clinicopathological variables, sphingolipid-associated variables, and
immune-associated variables had the highest predictive accuracy
(Clinics + Sphingo + Immune; PEV = 19.34%, c-index = 0.751, p b

.001). With respect to PFS, the inclusion of the sphingolid/immune-
associated signature-based variables did not significantly improve the
prognostic power of the clinicopathological variables for survival
(Table 2).

Next, patients were sub-divided according to their cross-validated
predictors for OS into low, intermediate, and high-risk groups. As
shown by Kaplan-Meier estimates (Fig. 7B) the combined model
(Clinics + Sphingo + Immune) gave a major improvement of patient
stratification and showed statistically significant differences between
the risk groups (log-rank test: p b .001).

With respect to treatment response, the inclusion of the
sphingolipid/lysophosphatidate/immune-associated signature-based
variables did not improve on the model with only clinicopathological
variables (Table S8).

3.5. Expression of Genes Composing the Sphingolipid/Lysophosphatidate/
Immune-associated Signature in 55 Ovarian Cancer Cell Lines

Given the complexity of ovarian cancer tissue in respect of cellular
composition, we assessed mRNA expression levels of sphingolipid/
lysophosphatidate/immune-associated genes across a wide range of
ovarian cancer cell lines (n = 55). This determined the expression
profile attributed to cancer cells only. The GENEVESTIGATOR platform
allowed us to extract the expression values from previously published
microarray data sets. The panel of ovarian cancer cell lines included,
among others, those cell lines that were evaluated by Domcke et al.
[64] on the basis of genomic profiling. These were sub-grouped by
their suitability as high-grade serous ovarian cancer models. With
the exception of six genes (LPAR4, CD163, IGHG1, IGHM, MS4A1, and
PTPRC), that showed low expression and/or expression at the micro-
array detection limit, the genes composing the sphingolipid/
lysophosphatidate/immune-associated signature were expressed in
various cell lines (Fig. 8 and Fig. S3). There were no statistically sig-
nificant differences in the expression levels of analyzed genes across
the sub-categories of ovarian cancer cell lines defined by Domcke
et al.

3.6. Expression Pattern of the Top Candidate Molecules in Ovarian Cancer
Tissues: the Pilot Study to Expand Gene Expression Data to Imaging and
to a System Approach

In this exploratory study, we aimed to determine the tumor
anatomy-attributed expression pattern of the top 3 candidatemolecules
– CD68, SMPD1, and LPAR3 –within complex ovarian cancer tissues.We
used a panel of paraffin-embedded specimens from an independent pa-
tient cohort (Table S9) for immunohistochemical staining. For CD68,
immune high as well as genes composing the immune-related sub-cluster are indicated. B A re
space and identify significantly differential variables between 3 subgroups (a, immune low,
were obtained on the basis of hierarchical clustering. ANOVA was used for multigroup comp
code: green, immune low; blue, mixed; red, immune high. C Immunohistochemical staining
characteristics of patient cohort are given in Table S9); Module III in Fig. 1. Images of four
infiltration of CD45-positive leukocytes and the immune high subgroup (c,d) with massive
staining; blue color, nuclear counterstaining with hematoxylin. Scale bar: 100 μm.
evaluation of the entire slides/tissue specimens for the on-site immune
response revealed strong inter-patient variability regarding spatial dis-
tribution of CD68-positive immune cells, their organization pattern, and
morphology. We found CD68-positive cells as well-spread intra-
tumoral macrophages (Fig. 9a) and those at the tumor – stroma border
(Fig. 9b), as small round monocytes in mucous tissue (Fig. 9c), as large
phagocytes organized into phagocytic islands (Fig. 9d-e), and asmacro-
phages accumulated within adipose tissue (Fig. 9f). In addition to cells
of the monocyte/macrophage lineage in a subgroup of patients, we de-
tected the presence of CD68-positive tumor cells (Fig. 9 j-l; to compare
to CD68-negative tumors, Fig. 9g-i). This observation agrees with previ-
ously published data [65], and the present results showing moderate
expression of CD68 in some ovarian cancer cell lines at the mRNA
level (Fig. S3).

An important additional finding describes the strong similarity in
expression pattern between SMPD1 and CD68 for cells of the mono-
cyte/macrophage lineage at the tumor site (Fig. 10A, a and c, b and
d). Furthermore, we found SMPD1 expression in tumor cells; the stain-
ing showed a polarized appearance towards the basolateral side of the
epithelial layer (Fig. 10A, e). To further investigate potential
crosstalk between CD68- and SMPD1-attributed molecular events in
monocytes/macrophages, we extracted the co-expressed genes
for each molecule from microarray studies exploring gene
expression using GENEVESTIGATOR and applying the filter
“Anatomy_Cell Type_Hematopoietic and Immune Cell_Leukocyte_
Myeloid Leukocyte_Monocyte/Macrophage”. We found 25 overlapping
genes (Fig. 10B) by comparing the lists of the top 200 co-expressed
probe sets (Table S10 and Table S11). We used the 25-gene set as
input to perform gene enrichment analysis by comparing with back-
ground collection of gene sets related to known biological processes,
conditions or pathways. By using the gene set enrichment tool from
GENEVESTIGATOR related to Gene Ontology categories, we found
cellular_component (GO: 0005575), intracellular_part (GO:
00044424), and molecular_function (GO: 0003674) among the top 3
most significant outcomes. These associations indicated that gene
products could be located in particular parts of a cell within a particu-
lar macromolecular complex and they could function together (Fig.
10C). Furthermore, we used the Ingenuity Pathway Analysis software
(IPA) to investigate the relationships among components of the 25-
gene set and reconstructed a gene network. Fig. 10D shows the limited
knowledge of the crosstalk between CD68- and SMPD1-attributed mo-
lecular events represented by a limited number of IPA-identified
associations.

With respect to the additional top candidate molecule, LPAR3, we
found heterogeneous expression by various cell types within complex
ovarian cancer tissue. There was strong expression in cancer cells,
but also in stroma cells including tumor-infiltrating leukocytes
(Fig. 11a–c). The staining patterns suggest heterogeneous expression
levels in tumor islands and a gradient in expression for the individual
tumor parts. As described above, strong heterogeneity in LPAR3 mRNA
expression levels was detected within a panel of 55 ovarian cancer cell
lines (Fig. S3).

We conclude that the three molecules with the highest impact to
the combined prognostic model show tumor anatomy- and patient-
specific characteristics in their expression patterns with potentially
complementary molecular events for CD68 and SMPD1 taking place in
cells of the monocyte/macrophage lineage.
sult is shown for PCA that was performed to visualize the data set in a three-dimensional
mixed, and immune high) and 2 subgroups (b, immune low and immune high) which
arison and t-test for two-group comparison; a p-value cutoff of 0.05 was applied. Color
of tissue sections obtained from patients with serous ovarian cancer (clinicopathological
representative specimens as shown for the immune low subgroup (a,b) with no/low
accumulation of CD45-positive leukocytes within the tumor tissue. Brown color, CD45
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Fig. 5. Comparative analysis of gene expression data sets in immune low versus immune high subgroups and the link to chemotherapy response. A Boxplots of mRNA expression levels for
immune low (n=47) and immunehigh (n=56) subgroups are shown for all genes composing the sphingolipid/lysophosphatidate/immune-associated signature. The boxplot represents
thedistribution of values; the line across the box represents themedian; the box stretches from the lower hinge (the 25th percentile) to theupper hinge (the 75th percentile). Thep-values
and the Bonferroni-Holm corrected p-values of two-sided t-test are indicated; ns, not significant. B Table summarizing the results of group comparison in (A). Only genes showing
significant difference are included; considering this study as exploratory the non-corrected p-values were used. Red color indicates a higher level of expression within a patient
subgroup. C Comparative assessment of contribution of responders and non-responders to the total quantity for the patient subgroups designated as immune low (n = 47) and
immune high (n = 56); p-value of two-sided Chi-squared test is shown.
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Fig. 5 (continued).
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3.7. Integrated Analysis of the Sphingolipid/Lysophosphatidate/Immune-
associated Expression Profile under Diverse Neoplastic Conditions Using
Curated Microarray Data Sets from Public Databases

To assess whether the defined sphingolipid/immune-associated
signature was specific for ovarian cancer or if it represented a general
cancer-attributed transcriptional profile, we examined the similarities
with expression profiles across previously published transcriptomic
data sets using the GENEVESTIGATOR platform. The comparison was
based on the measurement of a distance that quantifies the degree
of similarity between the defined signature profile and the transcrip-
tional profile for a condition. The signature profile was given by the
median value of expression levels, calculated across the patient cohort
(n = 173), for each gene of the sphingolipid/lysophosphatidate/
immune-associated 38/8-gene signature. A signature analysis using
the cancer subset of Affymetrix Human 133 Plus 2 microarrays (n
= 21,095 arrays) including over 600 different neoplasm categories
designated herein as “Cancer_All” revealed that among the top 10
correlated conditions, 9 are attributed to neoplasms of the ovary (6/
10), of the corpus uteri/endometrium (2/10), and of the peritoneum
(1/10). One study (ranked at position 10) was attributed to meningi-
oma, a neoplasm of the brain (Table 3). We next examined the spec-
ificity using the independent patient cohort (n = 19, Table S3) and
found within the top 10 most correlated conditions only studies at-
tributed to neoplasms of the ovary (8/10), of the corpus uteri/endo-
metrium (1/10), and the peritoneum (1/10) (Table S12). These
results collectively indicate a high specificity of the sphingolipid/
lysophosphatidate/immune-associated 38/8-gene signature for ovar-
ian cancer.

We applied the same approach to assess whether there was a differ-
ence in the sphingolipid/lysophosphatidate/immune-associated tran-
scriptional profile between the patients within the low and the high
risk groups stratified by Kaplan-Meier estimates (Fig. 7B) on the basis
of the combined model. For the low risk group (n = 43), 10/10 studies
within the top correlated conditions were attributed to neoplasms of
the ovary, endometrium, and peritoneum (Table S13). For the high
risk group (n = 43), similarity to neoplasms of other tissue origins
was also observed (Table S14).We conclude that there was a difference
in the expression profile across the signature genes, which was associ-
ated with differences in OS.
3.8. Dissection of the Data-driven Signature-associated Pathways
and Upstream regulators and Reconstruction of the Sphingolipid/
Lysophosphatidate/Immune-associated Gene Network

To extend the signature- and modeling-derived knowledge
and gain a higher-level overview, we applied a systems biology ap-
proach using IPA-based ‘core analysis’. We aligned the sphingolipid/
lysophosphatidate/immune-associated data sets with IPA's Canonical
Pathways and Upstream Regulators (complete lists of significant out-
comes are given in Table S15 and Table S16, respectively). The top 10
Canonical Pathways were assigned to Ceramide Signaling, Sphingosine-
1-phosphate Signaling, Sphingomyelin Metabolism, Sphingosine and
Sphingosine-1-phosphate Metabolism, RhoA Signaling, Gα12/13 Signaling,
Human Embryonic Stem Cell Pluripotency, eNOS Signaling, Primary Immu-
nodeficiency Signaling, and Lipid Antigen Presentation by CD1. Further-
more, we reconstructed the interaction network on the basis of the
signature genes and IPA-derived Upstream Regulators. Fig. 12 consoli-
dates the outcomes of the integrative IPA-based analysis, the multivar-
iable modeling, and the hierarchical cluster analysis of expression data
sets. We highlighted the top genes contributing to the combined sur-
vival model with the strongest prognostic impact as node genes and in-
dicated the groups of genes composing themain sub-clusters identified
by hierarchical clustering. Noteworthy is the finding that each node
gene is allocated in a separate sub-cluster, likely accentuating the inde-
pendent and thus complementary impact of each top gene to the overall
prognostic effect of the survival model.

4. Discussion

Our conclusions are based on novel insights gained during this
study which deepen our knowledge on the multifaceted roles of
the sphingolipid/lysophosphatidate system in the regulation of
pathobiological mechanisms of cancer and the local immune response.
We applied the sphingolipid/lysophosphatidate/immune-associated
multigene signature within the integrative MuSiCo algorithm and dem-
onstrated the applicability of the patient-specific, signature-derived
gene expression data sets for identification of novel sphingolipid/
lysophosphatidate/immune-related, disease-relevant aberrations and
checkpoints. The comprehensiveness of analysis was herein strength-
ened by inclusion of next generation digital pathology/digital imaging
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module and by application of the Signature Tool for assessment of spec-
ificity of a transcriptional pattern.

Although many efforts have been invested in the field of
sphingolipids and cancer, our approach is different in the following
major aspects. First, the sphingolipid-related molecules and mediators,
Table 2
Comparative analysis of multivariable models (ridge) for prognostication of OS and PFS. Cro
explained variation (PEV), concordance index (c-index) and p-value.

OS

PEV
%

c-index P

Clinics 10.29 0.704 b 0.
Sphingo 1.24 0.580 0.11
Immune 0.84 0.508 0.37
Sphingo + Immune 2.44 0.602 0.03
Clinics + Sphingo 13.77 0.727 b 0.
Clinics + Immune 14.65 0.725 b 0.
Clinics + Sphingo + Immune 19.34 0.751 b 0.

⁎ p-Value for added value of Sphingo or Immune or Sphingo + Immune on top of Clinics in
Statistically significant outcomes are shown in bold.
comprising the sphingolipid machinery, were considered as “system”
with all those principals and parameters, which are valid for systems in
general. The sphingolipid system is an open dynamic system that has
multilevel interactions and interdependences among the components.
Second, the sphingolipid- and other lysophosphatidate-related
ss-validated performance assessment of Cox regression models (ridge) by proportion of

PFS

PEV
%

c-index P

001 15.10 0.668 b 0.001
6 – – –
3 – – –
6 – – –
001; 0.004⁎ 13.91 0.652 b 0.001; 0.099⁎
001; 0.002⁎ 13.48 0.657 b 0.001; 0.726⁎
001; b 0.001⁎ 12.45 0.644 b 0.001; 0.188⁎

bivariable models with cross-validated predictors.
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Fig. 7.Multivariable prognostic models. A Impact of individual variables on survival prediction of the Clinics + Sphingo + Immune multivariable model (ridge) for OS if predictors are
changed by +1 SD. Survival probabilities are estimated at 36 months of follow-up time. Variables are ranked according to the absolute changes in prediction. The length of the lines is
proportional to the change in prediction in case the value of the indicated variable changes by +1 SD (left: negative effect; right: positive effect). B Kaplan-Meier estimates for patient
stratification based on the multivariable models (ridge) for OS. Kaplan-Meier curves for OS are shown giving patients' stratification into low risk (green), intermediate risk (red), and
high risk (black) groups with the 25th and the 75th percentiles serving as thresholds (lower than the 25th percentile indicates low risk); p-value of the log-rank test is indicated.
Kaplan-Meier estimates are not shown for models that were not statistically significant (Table 2).
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genes were jointly analyzed, reflecting an assumption about the ex-
change of information between the sphingolipid and lysophosphatidate
systems. Third, we did not limit the analysis to either sphingolipid/
lysophosphatidate system or local immune system but rather went a
step further and tested the on-site interconnections and interdepen-
dences between the two biological systems. Fourth, tumor samples
were profiled using a “focused” sphingolipid/lysophosphatidate/
immune gene set that does not include any tissue-specific cancer
genes. This ensures the wide applicability of the algorithm.

The data presented in this study indicate that the features of the pro-
gram established by the local sphingolipidmachinery give an important
impact to the organization of the ovarian cancer microenvironment by
way of shaping immune infiltrates. Our results revealed a clear division
of ovarian cancer patients into subgroups with no/low versus high
levels of immune-related markers. Remarkably, for the latter there is a
clear interconnection between various types of immune infiltrates. Spe-
cifically, the markers that represent the CD45-positive leukocytes or
various resident/infiltrating immune cell lineages as well as subsets
tend to cluster together. The subsets include B cells/CD20 and also B-
cell-related IgG and IgM mature transcripts, T cells/CD3E, and the
monocyte/macrophage lineage covered by CD14, CD68, and CD163.
The tumor specimens thereby have been stratified by clustering into im-
mune high and immune low subtypes, which have highly significant dif-
ferences in mRNA expression levels of the indicated immune markers.
This demonstrates that among primary serous ovarian tumors there
are those who are under continual on-site immune pressure and those
who are not. The first are characterized by: (i) a highmagnitude of infil-
trating T cells and B cells including the antigen-instructedmemory cells
and/or plasma cells, accompanied by the presence of high magnitudes
of monocytes and macrophages, and potentially also CD68-positive
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Fig. 8. Heat map representing the expression profiles of genes composing the sphingolipid/lysophosphatidate/immune-associated signature in a wide range of ovarian cancer cell lines.
Expression values (log2 transformed) for individual genes across 55 ovarian cancer cell lines were extracted using GENEVESTIGATOR. Expression values were subjected to
unsupervised hierarchical clustering using Euclidean distance measurement (average linkage clustering). Color code: red, high expression (max 17.25); green, low expression (min
7.13). Genes exhibiting expression at microarray detection limit are indicated by asterisks. Cell lines were grouped into five sub-categories according to Domcke S. et al. [64]: 1, likely
high-grade serous; 2, possibly high-grade serous; 3, unlikely high-grade serous; 4, hyper-mutated; 5, unclassified.
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dendritic cells; (ii) antigen presentation to T cells including enhanced
presentation of lipid antigens; and generally, by (iii) multilevel immune
editing of malignant cells.

There is, however, another sharp distinction between the two tumor
subtypes. This is attributed to the differential expression of the
sphingolipid-related genes within the sphingomyelin/salvage pathway
as well as S1PRs and LPARs (Fig. 13). The sphingolipid-related gene
signature of the immune low tumor subtype is preferentially attributed
to tumor, stroma, and other ovarian tissue-specific cells composing
the highly heterogeneous and complex ovarian tumor tissue. This
group, by its definition, minimizes the contribution of immune cells.
We showed that the immune low tumors were characterized by in-
creased levels of CERS2/4-6 encoding three different ceramide
synthases. These enzymes synthesize different ceramide species that
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Fig. 9. Localization patterns and morphology of CD68-positive cells of the monocyte/macrophage lineage at tumor site and the CD68 expression by tumor cells. Immunohistochemical
staining of tissue sections that were obtained from patients with serous ovarian cancer. CD68 belongs to the lysosomal/endosomal-associated membrane glycoprotein (LAMP) family
and primarily localizes to lysosomes and endosomes with a smaller fraction circulating to the cell surface. Representative images of various sub-populations of CD68-positive
leukocytes are shown: (a) elongated well-spread intra-tumoral macrophages, (b) macrophage accumulation at the tumor – stroma border, (c) accumulation of round shaped
monocytes in mucous tissue, (d,e) large phagocytes organized into phagocytic islands, (f) accumulation of macrophages in adipose tissue. Expression of CD68 by tumor cells:
representative images of ovarian cancer specimens (n = 6) showing (g-i) the absence or (j-l) presence of CD68 expression by tumor cells. Brown color, CD68 staining; blue color,
nuclear counterstaining with hematoxylin. Scale bar: 50 μm.
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differ in the lengths and extent of fatty acid saturation. As an illustration,
CERS2 utilizes long-chain C20- to C26-fatty acyl-CoAs, CERS4 uses C18-
and C20-fatty acyl-CoAs, CERS5 is specific for palmitate (C16:0), and
CERS6 is specific for myristate (C14:0) and palmitic acid [66–68]. The
significance of the biophysical, molecular, and biological characteristics
of the different ceramide species is a matter of intensive research. Cur-
rently available knowledge indicates clearly that ceramides can sub-
stantially influence pathophysiological processes in inflammation and
cancer in a chain length-dependent manner (reviewed in [69]). We
found increased levels of CERK, which encodes ceramide kinase to
yield C1P. There are also complex interrelations between ceramide
and sphingomyelin based on enhanced SGMS1 and SMPD2, respectively.
By adding the increased expression of PPAP2C (encoding the lipid phos-
phatase LPP2) the combined results indicate a shift from S1P and S1P/
S1PR axis to ceramide/C1P-driven biological outcomes as well as an at-
tenuation of LPA signaling in the immune low subgroup (Fig. 13). Fur-
thermore, the enhanced expression of LPAR2 and LPAR3, but none of
S1PRs,was characteristic for the immune low tumor subtype. It is impor-
tant to note that, according to our results, all of these genes are
expressed by a variety of ovarian cancer cell lines as demonstrated in
Fig. S3.
We were surprised to discover that the overall profile for immune
high tumorswas very different towhatwas seen in the immune low sub-
group (Fig. 13). In immune high tumors we found increased levels of
SMPD1 encoding acidic sphingomyelinase that converts sphingomyelin
to ceramide; NAAA encoding ceramidase that converts ceramide to
sphingosine; SPHK1, a kinase that synthesizes S1P; ENPP2 that encodes
autotaxin, which produces LPA in the extracellular space; and PPAP2A
encoding the lipid phosphatase LPP1, which, upon translocation to the
plasma membrane, preferentially dephosphorylates LPA [70]. When
the described aberrations are superimposed on the interconnected
lipid — enzyme network covering the sphingomyelin/salvage pathway,
we see a clear shift towards S1P and S1P/S1PR as well as LPA and LPA/
LPAR axes (Fig. 13). Regarding the receptors for lipid mediators, en-
hanced expression in immune high tumors was detected for S1PR1,
S1PR4, S1PR5, and for LPAR1 and LPAR5. We also identified CD1B and
CD1D encoding MHC-like lipid-presenting molecules [54] as
distinguishing molecules of this subgroup. Overall, the results identify
fundamental differences in cellular and molecular mechanisms attrib-
uted to the sphingolipid and lysophosphatidate/LPA machinery and
propose the specific checkpoints being characteristic of either immune
high or immune low tumor subtypes.
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Fig. 10. Similarity and overlap in expression patterns between SMPD1 and CD68. A Immunohistochemical staining of tissue sections obtained from patients with serous ovarian cancer;
Module III in Fig. 1. Consequent tissue sections were stained for SMPD1 and CD68. Representative images show the overlap in expression for intra-tumoral macrophages (a, SMPD1; c,
CD68) and phagocytes organized into phagocytic islands (b, SMPD1; d, CD68). Furthermore, (e) example of SMPD1 expression by the tumor cells is shown; staining was detected at
the basolateral side of the epithelial layer; insert: the high-power view. Brown color, SMPD1 or CD68 staining; blue color, nuclear counterstaining with hematoxylin. Scale bar: 50 μm.
B Venn diagram shows overlap between genes co-regulated with CD68 and SMPD1 in monocytes/macrophages. For both, CD68 and SMPD1, the top 200 co-regulated Affymetrix
probes sets were extracted via GEVESTIGATOR from microarray studies exploring gene expression in monocytes/macrophages (described in detail in Methods). Comparison was done
on the basis of the corresponding gene names (n = 183 for CD68; n = 200 for SMPD1). The overlap (color code: rose) between the two lists includes the following 25 genes: CLDN23,
ARMCX1, ATP9B, ATP6V1D, MTMR2, KCTD9, TTC7B, SLC25A13, VAT1, NTAN1, MITF, ENOSF1, NR1H3, UNC13B, CDK4, GSS, DHDDS, SLAMF8, NANP, PEBP1, FAM98A, FAIM, ESYT1, DBI,
PIGN. C Gene enrichment analysis for Gene Ontology (GO) using GENEVESTIGATOR gene set enrichment tool. The Venn diagram displays the input gene set (SMPD1_CD68_25
genes_overlap; color code: rose) and the top 3 gene sets from the background collection (color code: grey, violet, green). The respective GO terms and annotations are provided. The
numbers indicate how many genes are found in overlaps. (D) Gene network reconstruction using the Ingenuity Pathway Analysis Software (IPA) on the basis of the gene set
SMPD1_CD68_25 genes_overlap; Module V in Fig. 1. Insert: the IPA-based description of symbols and relationships.
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Previous reports suggested that altered LPA metabolism affects the
pathobiology of ovarian cancer. It is important to note that LPA is pres-
ent in elevated concentrations in plasma and ascites of ovarian cancer
patients and other malignant effusions and is considered as a potential
diagnostic marker for this disease ([71], reviewed in [72,73]). Although
the precise mechanisms linking LPA and proliferation of tumor cells
are not fully understood, a recent study has implicated the LPA/
LPAR2 signaling in promotion of glucose metabolism in cancer cells,
which in turn triggers ovarian cancer cell proliferation [74].
Interestingly, in our study LPAR2 was shown to be a marker of the im-
mune low tumor subtype. Another study showed that autotaxin, an
LPA-producing enzyme, is highly secreted from ovarian cancer stem
cells, and pharmacological inhibition of autotaxin decreases LPA-
driven pro-tumorigenic potential of cancer stem cells and drug resis-
tance [75]. In our study enhanced expression of ENPP2 encoding
autotaxin was detected in the immune high subgroup. Considering
that LPAR5 (and, to a lesser extent, LPAR6) in our study showed a pos-
itive association with leukocyte marker CD45, the ENPP2/LPA/LPAR5-6
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Fig. 11. Expression of LPAR3 in ovarian cancer specimens. Immunohistochemical staining of tissue sections obtained from patients with serous ovarian cancer. Representative images of
LPAR3 staining of three ovarian cancer specimens are shown (a-c). The tumor-infiltrating leukocytes are indicated by an arrow in (a) and visualized by anti-CD45 staining of consecutive
slide in (d). Brown color, LPAR3 or CD45 staining; blue color, nuclear counterstaining with hematoxylin. Scale bar: 50 μm.
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axis is likely involved in trafficking, survival and/or communication of
immune cell subpopulations. This is compatible with the effects of
ATX inhibition, which decreases the expression of multiple cytokines
and chemokines and thus the recruitment of leukocytes into the envi-
ronment of the tumor [76,77]. In another study, using mouse models,
increasing the expression of lipid phosphate phosphatase-1, which de-
grades extracellular LPA and decreases signaling downstream of
LPAR1/2 receptors, decreases the abilities of aggressive cancer cells to
produce tumors and metastases [78]. This is an interesting link to our
findings where we show a close association between PPAP2A and
LPAR1 (found outside the immune markers-based cluster) in the im-
mune high subgroup. This suggests an important role for the
autotaxin/LPA/LPAR1 axis in cancer cell reprogramming.

The clustering-based patient stratification strategy clearly differenti-
ates the immune low/high tumors and thereby could have clinical rele-
vance by defining patient subgroups that might be more susceptible
to the immune-based strategies. From a different perspective, the find-
ings furthermore demonstrate that there are very special properties of
tumor and/or tumormicroenvironment, which are characteristic for im-
mune high tumors. These properties support, attract, and keep on-site
immune cell infiltrates. Enhancing immune cell recruitment to immune
low tumors, e.g. by vaccines or modulation of S1P/S1PR and/or LPA/
LPARs axes, might be beneficial for patients with a follow-up possibility
to strengthen anti-tumoral immune responses. The limitation is the
current inability to classify and characterize in more detail those
patients, who do not clearly show either immune low or immune high
phenotypes.

We found that the sphingolipid/lysophosphatidate/immune-based
stratification into immune low and immune high subgroups is associated
with the therapy response for the cohort of patients that we examined
with significantly more responders found in immune high subgroup.
Despite this, we detected responders in both immune low and immune
high tumor subtypes. The mechanisms supporting the response to che-
motherapy, however, could be different because of the activities of dif-
ferent “chemosensors”. Although speculative, the CERS/ceramide and/
or SMPD/ceramide axes might contribute to apoptosis and chemother-
apy response in immune low patients. By contrast, in immune high
patients, the mechanisms are even more multifaceted and increased
immunogenic cell death and reprogramming of the immunosuppres-
sive microenvironment could be dominant.

We applied gene-clustering algorithms to evaluate functional
connectivity among sphingolipid- and immune-related genes and
found functional relationships characteristic for a particular cell type.
Important additive information regarding potential sphingolipid-
related mechanisms is based on identification of a close association be-
tween expression levels of S1PR4 and CD3E. This supports the hypothe-
sis of their co-expression and functional connectivity. Thus, among all
potential S1P/S1PR axes, the S1P/S1PR4 axis appears particularly rele-
vant for T-cell infiltrates in immune high ovarian tumors and supports
the role of S1P signaling in T-cell trafficking and/or survival. This discov-
ery acts as starting point to clarify the functionality of S1PR4 and the
contribution of S1P/S1PR4 axis to the pathobiology of ovarian cancer.
It is also important to note that S1PR4 is highly and specifically
expressed on immune cells. Our meta-analysis corroborates that
S1PR4 expression is restricted to leukocytes and that the T-cell subsets
are within the top 10 cell types showing the strongest expression.
S1PR4 is the least studied among all S1PRs. Its impact on T cells and gen-
erally on immune cell biology remains largely unknown. Thus far, the
impact of S1PR4 was shown for plasmacytoid dendritic cells in the con-
text of their differentiation and activation [79] and for neutrophils re-
cruitment [80]. Of note, S1PR4 small molecule agonists with selectivity
over the other S1PR family members are available [81,82]. The agonists
could be used in cellular (T-cell-based) functional assays to elucidate
the receptor functions.

Within the Module II of MuSiCO, we show the prognostic relevance
of the self-designed sphingolipid/lysophosphatidate/immune-
associated 38/8-gene signature for patientswith primary serous ovarian
carcinoma. From this, we propose a novel survivalmodel for patient risk
assessment as well as potential biomarkers/targeting strategies. At
model validation, we identified that the combined model (clinical and
profiling-derived variables) had the highest predictive accuracy with
respect to OS. This once again emphasizes the interconnection between
the sphingolipid and immune system in ovarian cancer. The applied
modeling algorithm serves as novel stratification strategy and it is char-
acterized by high performance in respect of prognostic accuracy and
discriminative ability [49]. By the integrated model validation stage



Table 3
The top 10 sphingolipid/lysophosphatidate/immune signature-linked neoplasms identified byGENEVESTIGATOR for themain patient cohort (n= 173). GENEVESTIGATOR nomenclature
is used for malignant disorders. The top 10 results are shown; the ranking is based on the corresponding GENEVESTIGATOR-based relative similarity (Rel. Similarity). Tissue type, study
number, and reference(s) annotating the corresponding studies are indicated.

Position Study Tissue type Rel. Similarity Study Number Reference

1 Papillary serous cystadenocarcinoma, borderline malignancy Ovary 1.409 GSE9899 [1]
2 Serous cystadenocarcinoma, NOS Ovary 1.408 GSE2109, part in [2, 3]

GSE12172, [4]
GSE20565, [5]
GSE19352, [6]
GSE36668, [7]
GSE63885, [8, 9]
GSE32062 [10]

3 Endometrioid carcinoma, metastatic Endometrium 1.387 GSE2109 part in [2, 3]
4 Papillary serous cystadenocarcinoma, metastatic Peritoneum 1.382 GSE2109, part in [2, 3]

GSE9899 [1]
5 Papillary serous cystadenocarcinoma, metastatic Ovary 1.367 GSE2109 part in [2, 3]
6 Endometrioid carcinoma Ovary 1.351 GSE2109, part in [2, 3]

GSE9899, [1]
GSE20565, [5]
GSE63885 [8, 9]

7 Serous cystadenocarcinoma, NOS, unstated behavior Ovary 1.350 GSE26193 [11]
8 Endometrioid carcinoma Endometrium 1.325 GSE2109 part in [2, 3]
9 Serous cystadenocarcinoma, NOS, metastatic Ovary 1.317 GSE2109, part in [2, 3]

GSE12172 [4]
10 Meningioma, NOS Meninges 1.312 GSE4780, [12]

GSE9438, [13]
GSE16584 [14]
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we can compare individual modelswithin one study aswell as between
independent studies and laboratories based on the defined parameter
set (PEV, c-index, and p-value) and not on a p-value alone. This valida-
tion approach is robust and guards against falsely identifying any
relevance of expression data sets derived from randomly selected
gene sets. It is intentionally based on the “leave-one-out strategy” of
cross-validation instead of an arbitrary single split of the data set in to
a training and test set. In the latter situation using a relatively small
number of events, much of the data needed to obtain more stable esti-
mates would be wasted, and the results would be sensitive to the spe-
cific split. Our strategy enables the ranking of variables/genes within
themodel by their impact to theprognostic effect. Among the covariates
within the survival model, CD68, LPAR3, SMPD1, PPAP2B, and SMPD2
emerged as the most important gene variables for prognosis of overall
survival. Dissection of the signature-associated pathways, upstream
regulators and reconstruction of the sphingolipid/lysophosphatidate/
immune-associated gene network emphasizes the complementary im-
pact of each top gene to the overall prognostic effect of the survival
model (Fig. 12).

Ovarian tumor tissue provides a heterogeneous environment com-
posed of a variety of cell types in addition to cancer cells. The transcrip-
tional level of a particular gene is the sum of expression levels from
various cell types composing the tissue. To dissect this complexity, we
implemented the usage of digital pathology. Within the exploratory
study, we analyzed the staining patterns attributed to the profiling-
derived top candidate markers within whole paraffin-embedded histo-
logical slides. This approach iswell characterized and it is routinely used
by clinical institutions for diagnostic estimations. The retrieved informa-
tion could provide additional knowledge for understanding the patho-
biology, keeping in mind the lack of information about the expression
patterns of the vast majority of lipid-modifying/related molecules
within diseased tissues. Herein, we focused and explored predomi-
nantly the observational findings highlighting similarities in expression
patterns for CD68 and SMPD1 (also known as acid sphingomyelinase,
ASMase, ASM) in macrophage/monocyte lineage cells within the ovar-
ian cancer tissue. In this respect, it is interesting to note that the similar-
ity in expression was observed for various subpopulations including
elongated intra-tumoral macrophages and round-shaped phagocytes
within the phagocytic islands. This in turn might suggest that CD68
and SMPD1 could have functional similarity in cells with different
(patho)physiological tasks. These two molecules were among the top
genes that contributed positively to the survival model. They are the
markers of immune high tumor subtype and both belong to the Lyso-
some Pathway by PathCards database. Whereas CD68 and SMPD1
were separated by hierarchical clustering of the-whole-tissue expres-
sion data sets, we found an overlap in co-expressed genes in cells of



Fig. 12. Sphingolipid/lysophosphatidate/immune-associated gene network. A reconstructed gene network was created using the IPA software on the basis of genes composing the
sphingolipid/lysophosphatidate/immune-associated signature and the top IPA-predicted Upstream Regulators. Grey solid lines display the IPA-identified direct associations between
molecules; grey dashed lines display the IPA-identified indirect associations between molecules. Additionally, statistically significant, herein defined biological associations assessed by
correlation analysis (correlation coefficient N 0.5, p b .001; Table S2) are displayed by red solid lines. Color code: grey fill, genes composing the multigene signature; red fill, genes with
strong prognostic effect (within the top 10 variables of the model Clinics + Sphingo + Immune for OS); blue fill, the top IPA-predicted Upstream Regulators (ASAH1, CERS2, CERS3,
CERS4, CERS5 were within the top IPA-predicted Upstream Regulators and are also part of the multigene signature). Grey circles indicate the groups of genes composing the main sub-
clusters (N 5 genes, Fig. 3) identified by hierarchical clustering. Insert: the IPA-based description of symbols and relationships.
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monocyte/macrophage lineage. CD68 belongs to the family of
lysosomal/endosomal-associated membrane proteins (LAMP) and is
also known as LAMP4. Although CD68 is a well-known routinely used
immunohistochemical marker of cells of monocyte/macrophage line-
age, the function of CD68 in immunity, inflammation, and tumor biology
is surprisingly poorly understood (reviewed in [83]). From its side,
SMPD1 could have the potential to modulate various responses in sev-
eral immune cell sub-populations; it is involved in multiple aspects of
macrophage biology to accomplish their diverse functions (reviewed
in [84]). SMPD1 facilitates the formation of endocytic vesicles through
ceramide generation [85]. It also modulates the structure of lipid rafts
and formation of ceramide-rich platforms within plasma membrane,
which, in turn, modulates the functionality of cellular receptors
[86–88]. A further linkage to macrophage functionality is based on
SMPD1-controled secretion of pro-inflammatory cytokines. These play
a role in both macrophage survival and apoptosis in response to micro-
bial agents, as well as in host defense through SPMD1-mediated
phagosome-lysosome fusion [89]. Also linked to immunological activi-
ties are secretory granules/secretory lysosomes, which contain perforin
and granzymes. Significantly, a single SMPD1 gene is responsible for
generation of both secretory and lysosomal forms of SMPD1 [90]. Our
results provide a rationale for testing the hypothesis that secretory
SMPD1 could be used as a potential biomarker in ovarian cancer
patients.

A prominent presence of immune infiltrates and/or an occurrence of
certain breakpoints in the cellular sphingolipid system are common fea-
tures of many cancer types. Is there a specificity regarding the
sphingolipid/lysophosphatidate/immune signature-associated mecha-
nisms identified herein? Strikingly, an alignment of the sphingolipid/
lysophosphatidate/immune-associated signature-based profile with
microarray data sets attributed to great variety of cancer types (over
600 neoplasm categories; over 21,000 arrays) revealed high specificity
for ovarian carcinoma. The approach that we described could provide
a novel strategy for estimating the signature specificity and assessing
the singularity or commonality of disease mechanisms. Interestingly,
there is a difference in specificity when low risk and high risk patient
subgroups are assessed separately. Presumably, a high risk group
might be associated with more aggressive pathological features, with
aberrations at multiple levels and “undifferentiated” tumor mass,
which lack the specific structure and functions of the original cell type.
With such loss of cell identity, the signature-associated profile becomes
more common within various tumor types, independent of their origin.
Given the novelty of our approach, the question regarding themost crit-
ical genes within the signature, which are necessary and sufficient to



Fig. 13. A partly hypothetical model describing the characteristic shifts of balance within the sphingomyelin/salvage pathway attributed to immune low and immune high tumor subtypes/
subgroups of patients. The scheme shows the interconnected network of the sphingolipid mediators and the corresponding sphingolipid-modifying enzymes; those genes that are
upregulated in either subgroup (Fig. 5) are highlighted in red. Furthermore shown is a schematic illustration of cellular interplay at the tumor site. The model consolidates cumulative
data from the correlation analysis and unsupervised hierarchical clustering for sphingolipid/lysophosphatidate/immune-associated genes, clustering-based patient stratification and
comparative analysis of gene expression data sets, expression profiles of genes composing the sphingolipid/lysophosphatidate/immune-associated signature in ovarian cancer cell
lines, and integrative analysis of the expression patterns across transcriptomic data sets. SPC, sphingosylphosphorylcholine; LPC, lysophosphatidylcholine.
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achieve the specificity is still ambitious and challenging. This needs to be
resolved in a separate study.

5. Conclusion

We implemented a systems biology approach to uncover the com-
plexity and dynamic interactions within the sphingolipid and LPA sig-
naling machinery as a biological system. This was shown to be
integrated with the components of immune system and clinical data
in the context of ovarian cancer. We next implemented the systems
biology-derived knowledge for understanding the personalized aspects
of ovarian cancer connected to disease progression, treatment re-
sponses, and disease phenotypes. Such knowledge provides better pa-
tient stratification, therapeutic target discovery, and potentially leads
to improvements in personalized medicine and clinical outcomes. This
systems biology-based concept, thereby, contributes to systems medi-
cine. It is universal in the sense that it can be applied to any biologically
relevant gene signature and any type of complexmultifactorial disorder.
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The results that we report on the integration of the sphingolipid/
lysophosphatidate axis and the on-site immune system can be used to
accelerate research in diverse disciplines and provide personalized
approaches to patient care.
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