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Abstract
Aggressive behavior is widespread in the animal kingdom, but the degree of molecular con-

servation between distantly related species is still unclear. Recent reports suggest that at

least some of the molecular mechanisms underlying this complex behavior in flies show

remarkable similarities with such mechanisms in mice and even humans. Surprisingly,

some aspects of neuronal control of aggression also show remarkable similarity between

these distantly related species. We will review these recent findings, address the evolution-

ary implications, and discuss the potential impact for our understanding of human diseases

characterized by excessive aggression.

Introduction
Aggression is a complex social behavior present in most, perhaps even all, animal species.
Being aggressive benefits animals to compete for valuable resources but is energetically costly
and carries the risk of injury, loss of resources, and even death [1–4]. In humans, symptoms of
excessive aggressive behavior can be a complicating factor in the treatment of neurological syn-
dromes and diseases [5–8]. Despite the fact that aggression is vital for organismal fitness and is
important in human society and disease, much remains to be discovered about the underlying
molecular and neuronal mechanisms that drive this behavior. Decades of research in many
model systems have identified several signaling molecules implicated in aggressive behavior,
including classical neurotransmitters and neuropeptides, and much has been learned about the
brain regions involved in aggression (for review, see [9–11]). However, the degree to which
mechanisms in distantly related species are conserved remains largely unexplored.

In this review, we will focus exclusively on recent findings on transcriptional regulation and
neuropeptide signaling [12,13] in aggressive behavior in Drosophila melanogaster, which sug-
gest an unexpected degree of conservation with mammals. We will speculate on the evolution-
ary implications of these findings in the vinegar fly as well as their potential implications for
human health and disease. For a more in-depth review of the different mechanisms that have
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been described in different species, several recent reviews provide excellent background that
both complement and contrast with the viewpoint that we will discuss here [9–11,14–18].

Conserved Transcriptional Control of Aggressive Behavior?
Conserved transcriptional modules that consist of conserved transcription factors, their co-
activators or repressors, DNA binding sites, and targets (Fig 1A) regulate related complex bio-
logical programs in organisms throughout the evolutionary tree. The field of developmental
biology is replete with examples of conserved transcriptional regulatory mechanisms, although
there is also enormous flexibility in the evolutionary deployment of these signaling modules
[19–26]. Fewer examples exist in the control of behavior, but the classical example is the con-
served transcriptional double feedback loop that regulates circadian rhythm across a broad
range of species [27–29]. Konopka isolated several mutations in one of the key transcription
factors in this feedback loop in the now-classic screen for altered eclosion rhythm in Drosophila
[30,31]. This single experiment transformed the field of circadian biology [32], but the idea
that a mutation in a single gene could significantly impact “complex” behavior was not without
skeptics [33].

Does a conserved transcriptional module that controls aggression in all animals exist?
Twenty years ago, a transcriptional repressor orthologous to Drosophila Tailless (Tll) was iden-
tified in the mouse and shown to be expressed in the developing brain [34]. The mouse knock-
out of tailless (tlx, now called Nr2e1) displayed abnormal brain development and behavior,
including extreme aggression [35,36]. An independently isolated Nr2e1 null mutant was called
fierce because of its extreme pathological aggression [37]. The fiercemutant was fully rescued
with a genomic clone that covered the human NR2E1 gene, demonstrating conservation of
gene function and regulation between mouse and human [38]. How Nr2e1 regulates aggres-
sion, however, has remained unsolved.

Because Tll is a Drosophila ortholog of Nr2e1 with conserved co-repressors [39–42], binding
sites [34], and targets [43], we explored whether Tll might also affect aggression in Drosophila.
We found that knock-down of tll affects aggression, similarly to its effect in mice. Interestingly,
we showed Tll functions through the neurosecretory cells of the adult pars intercerebralis (PI)
[13], a brain region similar to the mammalian hypothalamus [44], which is known for its criti-
cal role in aggression [18,45–48].

In mice, Nr2e1 is expressed in numerous regions throughout the brain, and Nr2e1- /- mice
have brain abnormalities including reduced brain size, smaller olfactory bulbs, incomplete
extension of the cortex, and reduced cortical layers II and III [35,36,49]. It is not clear whether
these morphological brain abnormalities cause the behavioral phenotypes, or whether the
developmental and behavioral abnormalities can be uncoupled, as is the case in the fly. A con-
ditional mutant was generated using a CamKIIα- Cre line expressing Cre recombinase in the
hippocampus, cortex, amygdala, striatum, thalamus, and hypothalamus [50]. Morphologically,
these conditional null mutants (CamKIIα-Cre; Nr2e1Flox/Flox) have structural brain abnor-
malities similar to mice derived from a germline mutation in Nr2e1, and although they have
normal contextual, associative, and spatial learning, they are hyperaggressive, suggesting that a
role of Nr2e1 in the regulation of aggressive behavior can be mapped to CamKIIα positive neu-
rons [51]. Whether the effect of Nr2e1 on aggression involves the hypothalamus specifically
and whether its effect is developmental or adult specific is currently not known.

Additional evidence for the role of Tll as part of a conserved transcriptional module control-
ling aggression in Drosophila comes from Atrophin, a conserved co-repressor of Tll in flies and
mice [40]. Although Atrophin is pan-neuronally expressed, knock-down in the PI alone mim-
icked Tll knock-down in these cells. Moreover, Tll and Atro genetically and physically interact

PLOSGenetics | DOI:10.1371/journal.pgen.1005416 August 27, 2015 2 / 14



in the PI, suggesting that they function together to control aggression through these neurose-
cretory cells [13].

In mice, two Atrophin paralogs exist, Atrophin 1 (Atn1) and Atrophin 2 (Atn2), each hav-
ing features in common with the fly ortholog [40]. Drosophila Atrophin (also known as
Grunge, Gug) shares the most sequence similarity with Atn2 (also known as Rere), which is the
longer of the two mammalian Atrophins, but also harbors a polyQ stretch unique to Atn1 [40].
Intriguingly, a polyQ expansion of human ATN1 causes dentatorubral pallidoluysian atrophy
(DRPLA) [52,53], a neurodegenerative disease similar to Huntington disease. Patients with this

Fig 1. Evolutionary conservation of molecular and neuronal aggressionmechanisms. A.
Transcriptional control module, consisting of conserved transcription factors, co-factors, DNA binding sites,
and activated or repressed target genes, regulating development and/or behavior. B. Comparative diagram of
the structural relationship of the Drosophila PI and mammalian hypothalamus. C. Simplified evolutionary tree
showing the putative conserved transcriptional control mechanism that regulates the release of
neuropeptides from the neurosecretory cells in the brain in the regulation of aggression. We postulate that
this control module was already present in the bilaterian ancestor (more than 600 million years ago [MYA])
and operates today in extant protostome and deuterostome species (Illustrations courtesy of Josh Rivera).
Abbreviations: PI, pars intercerebralis; NSC, neurosecretory cells; SEZ, subesophageal zone;CC, corpora
cardiaca; CA, corpora allata.

doi:10.1371/journal.pgen.1005416.g001
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devastating progressive neurodegenerative disorder also have psychiatric symptoms, including
abnormal aggressive behavior [54]. In some cases, abnormal behavior precedes the onset of
neurodegenerative symptoms [55]. While this could be explained by abnormal neuronal func-
tion preceding the actual degeneration of the neurons, it is also possible that the mechanisms
that cause neurodegeneration may be uncoupled from the behavioral effects. Interestingly,
polyQ expanded Atn1 binds more strongly to Atn2 [56], raising the possibility that the mecha-
nism underlying abnormal aggression in DRPLA patients may depend on diminished ATN2
function and may be part of a putative transcriptional module controlling the function of the
hypothalamus, similar to what we found in Drosophila. This hypothesis is consistent with the
fact that some of the phenotypes associated with polyQ expanded repeats are due to gain-of-
function effects, while others are caused by loss-of-function effects [57].

What is the neuronal mechanism of this transcription factor complex in the control of
aggression? Given that Tll and Atro function in the PI of the adult fly, the neurosecretory func-
tion of this brain region is a logical candidate. Blocking neuropeptide processing or release
fully suppressed the aggression phenotype induced by knock-down of tll [13], showing that
neuropeptide signaling is required to mediate the transcriptional regulation of Tll in its control
of aggression through the PI.

Conserved Neuropeptide Signaling in the Control of Aggressive
Behavior
Neuropeptides are typically involved in the regulation of a specific subset of neurons, as
opposed to globally across the entire brain [58]. They play important roles in the control of a
range of physiological processes [59] as well as innate behaviors [60]. Several neuropeptides
have been implicated in mammalian aggression [61,62], and vasopressin may be the most nota-
ble of these [63].

In Drosophila, direct evidence for a specific neuropeptide affecting aggression was lacking
until recently. Asahina et al. found this evidence by exploring the role of neuropeptides in
aggression in a somewhat unusual manner [12]. They cloned parts of the promoters of 18 of
the 40 or so known neuropeptide encoding genes in Drosophila and used them to transgeni-
cally activate the neurons defined by these promoter fragments via a thermosensitive ion chan-
nel, TrpA1 [64]. This is one of the many tools developed in flies to manipulate neuronal
activity [65], in this case, in a temperature-sensitive manner. They found that the promoter
fragment of Tachykinin, a Drosophila ortholog of Substance P, caused a strong aggression
response when combined with TrpA1 [12]. Loss of the Tachykinin neuropeptide partially sup-
pressed this response, while its overexpression enhanced it, showing directly that Tachykinin
plays a pivotal, albeit not exclusive, role in this response. Interestingly, loss of one of two
known Drosophila Tachykinin receptor-encoding genes suppressed the response more strongly
than loss of the peptide gene itself, indicating that this neuropeptide circuit is indeed important
for aggression in flies but may receive other inputs as well. In addition, they found that a few of
these Tachykinin-producing neurons are unique to Drosophilamales, and that activating just
this very small number of male-specific peptidergic neurons was necessary and sufficient to
elicit the strong behavioral response. As is the case in many species, male flies show dramati-
cally more aggression than females, and these male-specific Tachykinin neurons appear to be
critical to this sex difference in aggressive behavior in flies. Although sex determination shows
remarkable evolutionary plasticity, even in relatively related species [66,67], it is nevertheless
intriguing that Drosophila Tachykinin plays a role in aggression because it is related to mam-
malian Substance P, which has also been implicated in aggression in mammals [68–70] but is
probably better known for its role in pain transmission [59]. Even in humans, the levels of
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Substance P are correlated with aggression levels in certain patient groups [71]. While the evi-
dence in humans for a role of substance P in aggression is limited, together, these results do
suggest that another molecular pathway regulating aggression in flies shows conservation with
mechanisms in mammals.

The peptidergic neurons defined by the Tachykinin promoter are distinct from the neurose-
cretory cells in the PI that are controlled by the action of the Tll/Atro transcriptional repressor
complex [12,13]. Activation of the PI neurons also showed a significant increase in aggression,
and this response was also completely suppressed by blocking neuropeptide processing, show-
ing that activation of these neurons affects their peptidergic function [13]. Multiple neuropep-
tides are expressed in this complex group of neurons, and it is not clear at present what the
culprit neuropeptide is for the aggression response caused by genetic electrical activation of the
PI neurons or knock-down of tll or Atro. However, given that Tachykinin is expressed in a sep-
arate set of neurons, it suggests that different neuropeptides are involved in the regulation of
aggression in flies (and perhaps converging onto the same output system). This complexity
also mimics the complex neuropeptidergic control of aggression in mammals [63,69,72]. Such
complex neuromodulatory control is also observed in other behaviors in flies and mice, includ-
ing sleep, feeding, reproduction, and learning and memory [73–78].

Small Subsets of Neurons with Big Impact on Aggression:
Conserved Neuronal Control of Aggression
As is clear from the data presented above, the very few male-specific Tachykinin-producing
neurons and the small number of neurosecretory cells in the PI have a big impact on aggressive
behavior in flies [12,13]. Intriguingly, the PI is thought to be very similar to the mammalian
hypothalamus [44,79], a structure that is also important in aggression in many different mam-
mals, including humans [18]. The interesting parallelism between the neuroendocrine systems
of the pars intercerebralis–corpora cardiaca (and allata) in insects and hypothalamo-pituitary
axis in mammals was noted long ago [80]. More recently, it has been argued that the funda-
mental elements of a primordial neuroendocrine system must have been present in the last
common ancestor of flies and mammals, the first bilaterally symmetrical animals, or so-called
bilaterian ancestor. This argument is based on structural, developmental, and functional simi-
larities between the PI and the mammalian hypothalamus (reviewed in [44]). Other brain
structures in insects have been found to show remarkable similarities with structures in the
mammalian brain [81–83]. Structural, developmental, and functional similarities in central
complex and basal ganglia have been suggested to reflect true homology rather than conver-
gence [82].

Structurally, both the PI and hypothalamus contain neurosecretory cells that innervate
endocrine centers important in the regulation of growth, metabolism, and reproduction and
fertility of the animal (Fig 1B) [84,85]. While the mammalian pituitary combines a posterior
neural portion with an anterior glandular portion, these “neuroglandular” parts are separated
in insects in the corpora cardiaca and allata, although these structures are tightly connected in
the ring gland of the fly [44,60]. Developmentally, the key signaling molecules that specify the
precursor structures that will form the adult neuroendocrine systems in flies and mice are also
remarkably conserved [44]. Functionally, the neurosecretory cells of the PI and hypothalamus
produce a range of neuropeptides and regulate metabolism, growth, water homeostasis, sleep,
and feeding behavior [86–94]. We have now shown that the PI also affects aggressive behavior
in flies [13]. Moreover, in crickets, increased levels of the immediate early marker c-Fos have
been detected after crickets engaged in aggressive encounters and after electrical stimulation of
the antennae [95].
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The evidence for the role of the mammalian hypothalamus in aggression is abundant and
has been documented in many species. Studies in small mammals show that activation of spe-
cific regions of the hypothalamus is sufficient to initiate aggressive behavior [18,96–98]. In cats
and rats, regions of the brain in and around the hypothalamus that control offensive and defen-
sive aggression are known as the hypothalamic attack area [18,48,97]. In non-human primates,
electrical stimulation and lesion studies have shown that the hypothalamus plays a role in
aggressive vocalizations and physical aggressiveness [99,100]. In humans, abnormal hypotha-
lamic oscillations have been linked to pathologic aggressive behavior [101]. Surgical interven-
tions for hyperaggressiveness have targeted the hypothalamus and successfully reduced
aggression in a subset of treated individuals [102–104]. Deep brain stimulation of the posterior
hypothalamus has been used to treat hyperaggressive behavior [105,106]. Intraoperative elec-
trical stimulation of a small region in the hypothalamus caused severe transient aggression in
previously non-aggressive patients [107]. And a subset of patients with hypothalamic hamarto-
mas display excessive aggressive behavior [108] that is resolved with removal of the tumor
[109,110]. These data demonstrate that disruptions in hypothalamic function greatly alter
aggressive behavior.

Evolutionary Implications: Is the Molecular and Neuronal Control of
Aggression Deeply Conserved?
The evidence presented above for conserved molecular components that play a role in the con-
trol of aggression in flies and mice suggests a deep molecular root for these control mecha-
nisms. The fact that the major neurosecretory regions of the adult brain in flies and mammals
are also important in the control of aggression would at first seem quite remarkable, but given
the already firm functional connection between the pars intercerebralis and the hypothalamus,
it should not be that surprising. In Drosophila, we connected some of the pieces of the complex
puzzle of the regulation of aggression and showed that Tll is critical for the transcriptional con-
trol of aggression by regulating neuropeptide release from these neurosecretory centers of the
adult fly brain [13]. We propose that Nr2e1 may play the same role in the control of mamma-
lian aggression by regulating hypothalamic release of specific neuropeptides. We speculate that
these molecular and neuronal control mechanisms evolved in both protostomes and deuter-
stomes because the fundamental elements were already present in their last common precursor,
the eubilaterian ancestor (Fig 1C). If this were indeed the case, we would expect to find in a
very large part of the animal kingdom this unified mechanism of transcriptional control of
neuropeptide release from neurosecretory cells in the control of aggression (Fig 1C).

What is the evidence that all these fundamental elements were already present in the last
common ancestor of protostomes and deuterostomes? As has been alluded to above and
detailed elsewhere [44], neurosecretory cells were already present in these early ancestors, but
what about behavior? The urbilaterian and the later eubilaterian ancestors are thought to have
been a flatworm-like animal [111–113]. While flatworms occupy a range of phyla [112], there
is strong evidence that worm species do indeed show aggressive behavior [114,115]. The
marine flatworm, Pseudoceros bifurcus, shows a remarkable mating behavior that has been
described as “penis fencing” [114] that can last for several hours. When two of these hermaph-
rodites meet in shallow marine waters they will literally stab each other with their array of
penises to inseminate the opponent. The inseminated animal then bears the cost of wound
healing and fertilization [114]. Additional evidence that worms fight, despite their simple anat-
omy and lack of weaponry, was recently shown in the roundworm, Steinernema longicaudum
(although they belong to the Ecdysozoa-like flies). Under certain conditions, males of this nem-
atode species kill each other by what looks like strangulation [115]. Clearly, worm species are
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capable of fierce forms of aggression. The urbilaterian ancestor can be believed to have been a
fighter.

What is known about the role for their Tailless ortholog? Both roundworms and flatworms
have a Tll/Nr2e1 ortholog. In C. elegans the Tll ortholog is called Nhr67 and plays a number of
developmental roles including gustatory neuron specification [116], although nothing is known
about its role in behavior. The sequenced genome of the freshwater planaria, Schmidtea mediter-
ranea, clearly shows a Tll and Atro ortholog [117]. Knock-down of its tll/Nr2e1 ortholog caused
morphological and behavioral defects—shrinking of the brain region and slower movement
[118]. Neuropeptide signaling also has deep molecular roots [119]. The idea that a universal
transcriptional control module regulates neuropeptide release from adult neurosecretory cells in
the control of aggression in all animals is at least plausible and certainly testable. The shared role
in aggression of Substance P and a Drosophila ortholog, Tachykinin, further support conserva-
tion of molecular mechanisms between members of these distantly related phyla.

Do Any of These Mechanisms Apply to Humans and Human
Disease?
As mentioned before, there is a large body of evidence for a role of the hypothalamus in human
aggression. Some neuropeptides have also been implicated in human aggression, including
Substance P [71]. Human NR2E1 has been associated with bipolar disease, schizophrenia, and
psychopathy, diseases known for their association with abnormal aggression, but the evidence
for NR2E1 directly affecting aggression in humans is certainly limited. Abnormal aggression
has been more strongly connected to DRPLA, the previously mentioned neurodegenerative
disease caused by a polyQ expanded repeat in ATN1 [52,53], an ortholog of Drosophila Atro-
phin [40]. A mouse model for this disease recapitulates both neurodegenerative phenotypes
and excessive aggression [120,121] but, as mentioned above, the mechanism is not currently
known.

To take a closer look at the connection between human disease and aggression, we compiled
a list of all known Mendelian disorders with excessive aggressive behavior as part of their clini-
cal picture. This search in Online Mendelian Inheritance in Man (OMIM) [122] produces a list
of approximately 90 diseases and their causal genes. Although many of these diseases are devel-
opmental disorders characterized by mental retardation, intellectual disability alone is not
likely to account for the increased aggression symptoms since there are more than 400 genes
that cause intellectual disability [123] and relatively few are associated with increased aggres-
sion and some are associated with pleasant behavior [124–126]. Almost half of the proteins
encoded by these disease genes are connected into a single network based on STRING analysis
(Fig 2 and S1 Table) [127]. Not all of the interactions represent direct protein—protein interac-
tions, but many of them do. The small number of disease genes associated with aggression and
the highly connected nature of their network suggests specific and finite mechanisms. This
observation stands in stark contrast with the suggestion that one-third of the genome may play
a significant role in aggressive behavior [16]. One simple explanation for this discrepancy may
be the low specificity of their assay used to assess aggression in flies. Although we still know
very little about the regulation of aggression in humans and although it is no doubt more com-
plex than in mice, let alone flies, investigating the role of this protein network in the control of
the peptidergic function of the hypothalamus would be a good place to start.

Conclusion
Aggression is pervasive throughout the animal kingdom and is both a beneficial and costly
behavior. Recent evidence suggests that both molecular and neuronal mechanisms underlying
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aggressive behavior may be conserved throughout evolutionary history. The orphan nuclear
receptor Nr2e1 and its associated co-repressors affect aggressive behavior in both flies and
mice, and evidence in flies shows that its effect on aggressive behavior depends on the neurose-
cretory function of a very small number of neurons in the adult brain. In humans, NR2E1 is
part of a large protein interactome of disease genes with a clinical picture marked by aggres-
sion, suggesting that this transcriptional module may be part of a larger network of proteins

Fig 2. Human aggression disease interactome. String analysis of a subset of proteins encoded by disease genes that are characterized by excessive
aggression as part of their clinical picture. Roughly 40% of the approximately 90 genes in this category in OMIM form a single network (p = 4.7–10, S1 Table),
suggesting that there are mechanistic connections between these components.

doi:10.1371/journal.pgen.1005416.g002
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that also regulate aggression in humans. Further examination of the role of this conserved tran-
scriptional module should be carried out to better understand its role in aggression in animal
models, as well as to pursue a putative explanation for some of the heterogeneity observed in
human populations and disease.

Supporting Information
S1 Table. Diseases associated with excessive aggression and their causative genes shown in
the network in Fig 2.
(DOCX)
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