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Despite the improvement in treatment options, chronic lymphocytic leukemia (CLL) remains an incurable disease and patients
show a heterogeneous clinical course requiring therapy for many of them. In the current work, we have built a 20-gene expression
(GE)-based risk score predictive for patients overall survival and improving risk classification using microarray gene expression
data. GE-based risk score allowed identifying a high-risk group associated with a significant shorter overall survival (OS) and time
to treatment (TTT) (𝑃 ≤ .01), comprising 19.6% and 13.6% of the patients in two independent cohorts. GE-based risk score, and
NRIP1 and TCF7 gene expression remained independent prognostic factors using multivariate Cox analyses and combination of
GE-based risk score together with NRIP1 and TCF7 gene expression enabled the identification of three clinically distinct groups of
CLL patients. Therefore, this GE-based risk score represents a powerful tool for risk stratification and outcome prediction of CLL
patients and could thus be used to guide clinical and therapeutic decisions prospectively.

1. Introduction

Chronic lymphocytic leukemia (CLL), the most common
leukemia in the western countries, is characterized by the
clonal proliferation and accumulation of neoplastic B lym-
phocytes in the blood, bone marrow, lymph nodes, and
spleen. CLL shows a heterogeneous clinical course, with
many patients having an indolent disease while others suf-
fering from rapid disease progression and are in need of
early treatment [1]. Clinical staging systems based on physical
examination and routine laboratory tests are the first basis for
assessing different prognostic subgroups in patients with CLL
[1]. However, these staging systems have a limited capacity to
predict clinical outcome at an early stage of the disease and
do not predict the likelihood of response to treatment in an
individual with advanced disease [2].

Several biomarkers have been identified out as prognos-
tic factors in CLL. These include somatic hypermutations
in the rearranged variable regions of the immunoglobulin
heavy chain (IgVH) genes, which involve around 30–40%
of patients. Patients with unmutated IgVH genes had a
significantly shorter median overall survival (OS) than those
with mutated ones [3]. IgVH mutation status, along with
deletions at 11q22-q23 (11q-) and/or 17p13 (17p-), has been
identified as independent prognostic factors in CLL patients
[4, 5].

Meanwhile, with the advent of microarray technology
and gene expression profiling (GEP) analyses, additional
markers have been investigated for their potential prognostic
impact in CLL. Of these, LPL (Lipoprotein lipase) [6],
ZAP70 (zeta-associated protein 70) [7], CLLU1 (Chronic
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lymphocytic leukemia up-regulated 1) [8], and TCL1A (T-
cell leukemia/lymphoma 1A) [9] have been demonstrated to
be predictive for clinical outcome. Expression of microRNAs
(e.g., miR-29c and miR-223) could be also of prognostic
significance inCLL [10].Thesemarkers combinedwith others
were used to develop multigene expression-based prognostic
scores. In 2006, Zucchetto et al. constructed a scoring system
based on six surface expression molecules [11]. In a study
by Rodŕıguez et al. [12], a predictor model based on the
expression of seven genes allowed the characterization of
three groups of patients with distinct OS and treatment-free
survival (TFS), both in two independent cohorts of patients.
In 2010, Kienle et al. identified a four-gene combination,
based on ZAP70, TCF7 (Transcription factor 7), DMD (Dys-
trophin), and ATM (Ataxia telangiectasia mutated) expres-
sion, as a predictor of IgVH mutation status in 88% of
cases [13]. Stamatopoulos et al. developed a qPCR score,
based on the expression of three markers (ZAP70, LPL and
miR-29c), that was able to significantly predict OS and TFS
by dividing patients into three groups [14]. More recently,
Herold et al. developed an eight-gene expression-based risk
score which showed additional prognostic value for OS and
TFS comparedwith the established geneticmarkers andBinet
staging [15].

We report here the design of a GE-based risk score,
involving 20 genes, whose value is strongly prognostic in 2
independent cohorts of CLL patients.

2. Methods

2.1. Patients. Gene expression microarray data from three
independent cohorts of patients diagnosed with CLL were
used. Publicly available gene expression data from 2 cohorts
with newly diagnosed CLL patients were used to construct
GE-based risk score [15]. The first cohort, used as the
training cohort, comprised 107 patients, and the second
one as the validation cohort comprised 44 patients [15].
Peripheral blood or bone marrow samples were analyzed by
Affymetrix oligonucleotide microarrays [15]. A third cohort
of 130 newly diagnosed patients, with available Affymetrix
gene expression data, was used as validation cohort for time
to treatment analyses [16]. Clinical characteristics of patients
and number and schedules of treatments were previously
published [15, 16]. Interphase FISHdata of the training cohort
were previously published [17]. Affymetrix gene expression
data are publicly available via the online Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE22762, GSE39671, and GSE25571. The data
were normalized using the robust multichip average (RMA)
method [15, 16].

2.2. Gene Expression Profiling and Statistical Analyses. The
statistical significance of differences in overall survival
between groups of patients was calculated by the log-rank
test. Multivariate analysis was performed using the Cox
proportional hazards model. Survival curves were plotted
using the Kaplan-Meier method. All these analyses have been
done with R.2.10.1 and bioconductor version 2.5.

2.3. Selection of Prognostic Genes on the Training Set. Probe
sets were selected for prognostic significance using Maxstat
R function (R.2.10.1 and bioconductor version 2.5) and Ben-
jamini Hochberg multiple testing correction [18], yielding
22 significant probe sets in the two independent cohorts of
patients with CLL (Table 1).

2.4. Validation in the Independent Cohort of Patients. TheGE-
based risk score of CLL patients was individually calculated
and patients were grouped according to the prognostic
models and cutoffs from the training cohort. The prognostic
value of this scoring was evaluated using log-rank statistics
and Cox models.

2.5. Gene Set Enrichment Analysis (GSEA). We compared
the gene expression levels from high GE-risk score versus
low risk score CLL patients and picked up the genes which
had significant different expressions for gene set enrichment
analysis (GSEA). Gene set enrichment analysis was carried
out by computing overlaps with canonical pathways and gene
ontology gene sets obtained from the broad institute [19].

3. Results

3.1. GE-Based Risk Score in CLL. Using Maxstat R function
and Benjamini-Hochberg multiple testing correction [18],
22 probe sets were found to have prognostic value for OS
(adjusted 𝑃 value < 0.05) in two independent cohorts of
patients with previously-untreated CLL (GSE22762, 𝑛 = 107
and 𝑛 = 44 [15]) (Table 1). These 22 probe sets were probed
for 20 unique genes and were used to build a GE-based risk
score as reported [20]. Figures 1(a) and 1(b) show expression
of the 22 prognostic probe sets and GE-based risk score
from patients’ tumor samples of the training cohort (ranked
according to increasing GE-based risk score). When used as
a continuous variable, GE-based risk score had a prognostic
value in the two cohorts of patients with CLL (P ≤ 10–4,
data not shown). Patients of the training cohort (𝑛 = 107)
were ranked according to increased prognostic score and, for
a given score value X, the difference in survival of patients
with a GE-based risk score ≤X or >X was computed. A
maximum difference in overall survival (OS) was obtained
with X = −32.3, splitting patients into a high-risk group
(19.6% of patients, GE-based risk score > −32.3) with a 13.4
months median OS and a low-risk group (80.4% of patients,
GE-based risk score ≤ −32.3) with not reached median
survival (Figure 2(a)). The prognostic value of GE-based risk
score was validated in an independent CLL patient’s cohort
(𝑛 = 44) (Figure 2(b)). Interestingly, a high GE-based risk
score is associated with a shorter median time to treatment
requirement in two independent cohorts of CLL patients, that
is, 2.1 months and 25.2 months for patients with GE score
> −32.5 versus 47,7 and 78 months for patients with GE score
≤ −32.5 (𝑃 = 7.9𝐸 − 9 and 𝑃 = 0.01, resp.) (Figures 3(a) and
3(b)). In order to investigate the prognostic value of the GE-
based risk score in regards to time of first treatment in CLL
patients with good prognostic, the analysis was completed
in patients without Del17p, without Del11q, and without
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Table 1: List of the 22 probe sets associated with a prognostic value in CLL patients.

Probe set Gene symbol Gene name Hazard Ratio
218559 s at MAFB v-maf musculoaponeurotic fibrosarcoma oncogene homolog B 0.0471
203413 at NELL2 NEL-like 2 0.0481
212761 at TCF7L2 transcription factor 7-like 2 0.0497
206157 at PTX3 pentraxin 3, long 0.0537
219947 at CLEC4A C-type lectin domain family 4, member A 0.0566
209871 s at APBA2 amyloid beta precursor protein-binding, family A, member 2 0.0568
204526 s at TBC1D8 TBC1 domain family, member 8 0.063
218793 s at SCML1 sex comb on midleg-like 1 0.0636
225924 at FNIP2 folliculin interacting protein 2 0.0638
207075 at NLRP3 NLR family, pyrin domain containing 3 0.0663
221698 s at CLEC7A C-type lectin domain family 7, member A 0.0667
226876 at FAM101B family with sequence similarity 101, member B 0.0691
212239 at PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (alpha) 0.0731

203397 s at GALNT3 UDP-N-acetyl-alpha-D-galactosamine:polypeptide
N-acetylgalactosaminyltransferase 3 0.0739

216037 x at TCF7L2 transcription factor 7-like 2 0.0781
226279 at PRSS23 protease, serine, 23 0.0833
229699 at LOC100129550 hypothetical LOC100129550 0.0841
244598 at LCP2 lymphocyte cytosolic protein 2 0.0907
209183 s at C10orf10 chromosome 10 open reading frame 10 14.5055

203720 s at ERCC1 excision repair cross-complementing rodent repair deficiency,
complementation group 1 15.0143

203719 at ERCC1 excision repair cross-complementing rodent repair deficiency,
complementation group 1 15.6883

221725 at WASF2 WAS protein family, member 2 16.2394
Hazard ratios (HR) are indicated for each gene used to design GE-based risk score in CLL patients. Probe sets are sorted by increasing HR.

trisomy 12 known to be associated with a poor prognosis [21].
High GE-based risk score is associated with a shorter time
to treatment requirement in patients with cytogenetically
defined good prognostic (4.7 months for patients with GE
score > −32.5 versus 65.4 for patients with GE score ≤ −32.5,
𝑃 = 1𝐸 − 5) (Figure 3(c)).

Cox analysis was used to determine whether GE-based
risk score provides additional prognostic information com-
pared to previously-identified gene expression-based prog-
nostic markers such as ADAM29 (a disintegrin and metal-
loprotease domain 29), AKAP12 (a kinase (PRKA) anchor
protein 12), DMD, LPL, NRIP1 (Nuclear receptor-interacting
protein 1), SET10 (Septin 10), SPG20 (Spastic paraplegia
20), TCF7, TCL1A, TPM1 (Tropomyosin 1), ZAP70 gene
expression, the Herold’s GEP-based prognostic score (PS8),
and Del17p (Table 2) [22–27]. None of these genes were
included in the current 20 prognostic genes. Using univariate
analyses, GE-based risk score, ADAM29, AKAP12, DMD,
LPL,NRIP1, SET10, SPG20,TCF7,TCL1A,TPM1,ZAP70 gene
expression, PS8, and Del17p were prognostic (𝑃 < 0.05,
Table 2(a)).When compared two by two, GE-based risk score
tested with NRIP1, SPG20, TCF7, and TPM1 expression, PS8
or Del17p remained significant (𝑃 < 0.01, Table 2(b)). When
all parameters were tested together, only GE-based risk score,

NRIP1, and TCF7 gene expression kept prognostic value
(Table 2(c)).

Karyotype investigations revealed the association of CLL
with del13q14, trisomy 12, del11q22-q23, and del17p13 [1].
Del13q14 is the most frequent alteration that occurs in 50%–
60% of cases [1]; trisomy 12 and de11q22-q23 occur in
approximately 15% of CLL cases [1] and del17p13 occurs in
5%–10% of untreated CLL patients [28]. Using a cohort of
109 patients with previously untreated CLL (GSE25571) [17],
we investigated the association between the GE-based risk
score and chromosomal abnormalities. GE-based risk score is
significantly higher in patients with del17p13 (Supplementary
Figure S1; Supplementary Material is available online at
http://dx.doi.org/10.1155/2014/423174).

3.2. Combining Prognostic Information of GE-Based Risk Score
and NRIP1 and TCF7 Expression, into a Single Staging. Since
GE-based risk score and NRIP1 and TCF7 expression dis-
played independent prognostic information, the prognostic
information of the GE-based risk score was combined with
those of TCF7 and NRIP1 gene expression into a single
staging. Kaplan-Meier analysis with the 5 patient groups of
the training cohort was performed (Figure 4(a)). When 2
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Figure 1: GE-based risk score in CLL patients. (a) Clustergram of
genes ordered from best to worst prognosis. The level of the probe
set signal is displayed from low (deep blue) to high (deep red)
expression. (b) CLL patients (𝑛 = 107) were ordered by increasing
GE-based risk score.

consecutive groups showed no prognostic difference, they
were merged resulting in a single staging splitting patients
into a Group I comprising 72.9% of patients with low GE-
based risk score/high TCF7 or NRIP1 expression and low
GE-based risk score/high TCF7 and NRIP1 expression, a
Group II comprising 11.2% of patients with lowGE-based risk
score/low TCF7/low NRIP1 expression and high GE-based
risk score/high TCF7 and-or high NRIP1 expression, and a
Group III comprising 15.9% of patients with high GE-based
risk score/low TCF7/low NRIP1 expression (Figure 4(b)).
Group I patients had a not reached median OS, patients
of groups II and III had, respectively, a median OS of 46.2
months and 10 months (Figure 4(b)).

3.3. Tumor Cells Gene Signature in GE-Based High-Risk
Group. Gene set enrichment analysis was performed com-
paring gene expression profiles of CLL patients with high and
low GE-based risk score (𝑛 = 21 and 𝑛 = 86, respectively, in
the training cohort). Genes downregulated in CLL patients
with mutated IgVH chain compared to unmutated (gene
set: FAELT B CLL WITH VH REARRANGEMENTS DN,
𝑃 = 0.001, Supplementary Figure S2 and Table S1) and
genes upregulated in CLL patients expressing high levels
of lipoprotein lipase (LPL) compared to patients express-
ing low level of LPL (gene set: BILBAN B CLL LPL UP,
𝑃 = 0.001, Supplementary Figure S2 and Table S2)
were enriched in GE-based high risk group. Conversely,
genes involved in chemokine signaling pathway (gene
set: PID CXCR4 PATHWAY, 𝑃 = 0.004, and gene set:
KEGG CHEMOKINE SIGNALING PATHWAY, 𝑃 = 0.04,

Supplementary Figure S3 and Supplementary Tables S3 and
S4) were enriched in GE-based low-risk group.

4. Discussion

Following the introduction of microarray methodology in
haematological malignancies research, many studies investi-
gated the prediction of reliable prognostic patient subtypes
on the basis of their specific gene expression signatures [20,
29, 30]. CLL, although initially reported as an indolentmalig-
nancy, is characterized by a highly heterogeneous clinical
course, withmany patients eventually progressing and requir-
ing therapy [31]. Several large-scale gene expression-based
profiling analyses in this malignancy have led to the identi-
fication of prognostic factors [11, 13, 22] and development of
prognostic signatures for patients’ risk stratification [12, 15].
We report here a new GE-based risk score in CLL specimens
based on the expression levels of 20 genes documented by
22 probe sets, splitting patients of two independent cohorts
into 2 risk categories. None of the 20 genes constituting the
GE-based risk score overlap with the previously published
prognostic gene signatures for patients’ risk stratification [12,
15]. Interestingly, when compared usingmultivariate analysis,
only the current GE-based risk score and NRIP1 and TCF7
expression, kept prognostic value. NRIP1 gene, known as
RIP140, is a nuclear receptor coregulator with important
role in energy homeostasis and a potential involvement in
breast cancer [23, 32]. Several reports indicate that NRIP1
could either inhibit target gene transcription or act as a
transcriptional activator. NRIP1 has been recently described
as a novel cell-cycle regulated gene whose expression is
directly controlled by E2F transcription factors and increases
through their binding to the promoter region [33]. Few
studies have analyzed the deregulation of this gene expression
in haematological diseases: NRIP1 has been found to be
significantly upregulated in acute myeloid leukemia with
complex karyotypes and abnormal chromosome 21 [34]. In
CLL, NRIP1 was shown to be differentially expressed with
regard to IgVH mutational status [22, 35].

TCF7 is a member of a family of HMG box containing
factors that are known to associate with 𝛽-catenin in the
nucleus to mediateWnt signaling [36].The canonicalWnt/𝛽-
catenin signaling pathway has been shown to play a role
in the control of the proliferation, survival, and differen-
tiation of hematopoietic cells [37]. Recent gene expression
analyses showed that several members of the Wnt family are
overexpressed in CLL cells when compared to their normal
counterparts from healthy donors, and this uncontrolled
Wnt signaling may contribute to the defect in apoptosis
that characterizes this malignancy [38]. The involvement
of this pathway in the pathogenesis of several carcinomas,
such as colorectal cancer and melanoma, has been also
reported [39, 40]. However, there is a significant body of
evidence showing that Wnt proteins can function as growth
factors for progenitor cells of the B-cell lineage. Indeed, by
analyzing the B-cell compartment using LEF1-deficient mice,
Reya and colleagues showed a marked reduction of B220+
cells in the fetal liver and perinatal bone marrow caused by
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Figure 2: Prognostic value of GE-based risk score in CLL patients. (a) Patients of the training cohort (𝑛 = 107) were ranked according
to increasing GE-based risk score and a maximum difference in OS was obtained with a score = −32.3, splitting patients into a high risk
(19,6%) and a low risk (80,4%) groups. (b) The prognostic value of GE-based risk score was assayed on an independent cohort of 44 patients
(validation cohort). The parameters to compute GE-based risk score of patients in the validation cohort and the proportions delineating the
2 prognostic groups were those defined with the training cohort.

both increased apoptosis and decreased proliferation [24].
In the same way, an abnormal B-cell development has been
observed in mice knocked out for the Wnt receptor Frizzled
9 [25]. In the present study, low expression of TCF7 with high
GEP risk score have been correlated with a poor survival.
Mice deficient in the TCF7 gene develop intestinal and
mammary adenomas, suggesting a role for TCF7 as a tumor
suppressor [26]. Furthermore, TCF7 has been also reported
to be expressed in hematopoietic stem cells and that its loss

diminishes hematopoietic stem/progenitor cell function [27].
These data suggest that the role ofWnt in B-cell malignancies
is controversial, as it may have potential oncogenic, as well
as tumor suppressor functions. Moreover, Kienle et al. tested
the ability of TCF7 gene to predict the genetic risk in CLL
patients, defined by IgHV status, V3-21 usage, 11q-, and 17p-.
TCF7 expression provided a high rate of correct assignment
of patients at genetic risk [13]. The prognostic impact of
our GE-based score associated with NRIP1 and TCF7 genes
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Figure 3: High GE-based risk score is associated with a shorter time to the first treatment in CLL patients.The prognostic value of GE-based
risk score was tested in two independent cohorts of CLL patients. A high GE-based risk score is associated with a shorter time to the first
treatment in the two independent cohorts ((a) 𝑛 = 70, 𝑃 = 7.9𝐸 − 9 and (b) 𝑛 = 130, 𝑃 = 0.01) and in patients with cytogenetically defined
good prognostic ((c) 𝑛 = 52, 𝑃 = 1𝐸 − 5).

expression should be tested in the context of IgVHmutational
status, ZAP70 protein expression andTP53mutational status.

Among the 20 genes we identified, overexpression of
ERCC1 correlated with a very poor prognosis (HR = 15.0143
and 15.6883 for 203720 s at and 203719 s at probes, resp.,
Table 1). Since many years, it has been shown that treatment

of CLL patients with alkylating agents is associated with
low rates of complete remission and no improvement in OS
[41]. The ability of CLL cells to efficiently repair alkylator-
induced DNA damage through DNA repair genes might
explain this lack of response. Indeed, ERCC1 forms with
Xpf/ERCC4 an endonuclease complex that is involved in
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Figure 4: Combination of the prognostic information ofGE-based risk score andNRIP1 andTCF7 gene expression. (a)Kaplan-Meier analyses
were performed to combine the prognostic information of GE-based risk score and NRIP1 and TCF7 gene expression. Patients were scored
from 1 to 5 according to GE-based risk score in 𝑇𝐶𝐹7high or Low and 𝑁𝑅𝐼𝑃1high or low groups. (b) After merging consecutive groups with no
prognostic difference, 3 patient groupswith different overall survival (OS)were obtained: I, II, and III (patients of the training cohort, 𝑛 = 107).

nucleotide excision repair (NER) and in repair of drug-
induced crosslinks between two complementary strands of
DNA, known as interstrand crosslinking (ICL) [42]. For
instance, there is evidence that increased expression of
ERCC1 in CLL lymphocytes explains the development of
resistance to DNA crosslinking agents, for example, nitrogen
mustards [43]. In addition, Clingen et al. demonstrated that
sensitivity to SJG-136, a highly efficient ICL agent that reacts
with guanine bases in a 5󸀠-GATC-3󸀠 sequence in the DNA
minor groove, was dependent to some extent on ERCC1
expression in CHO cells [44]. Fludarabine could enhance the
DNA ICL capacity of SJG-136 in primary human CLL cells
and thereby offer a rationale for its clinical use in combination
with SJG-136 [45]. Furthermore, F11782, a novel dual catalytic
inhibitor of topoisomerases I and II, known to be a potent
inhibitor of NER could be of therapeutic interest in the GE-
based high risk group of CLL patients [46]. More recently,
it was demonstrated that a function of PARP in NER DNA
repair and clinical grade PARP inhibitors in association with
chemotherapy could reverse the resistance of CLL cells to
DNA crosslinking agents [47].

Interestingly, GSEA analysis highlighted a significant
enrichment of genes downregulated in CLL patients with
mutated IgVH chain and genes upregulated in CLL patients
expressing high levels of lipoprotein lipase in tumor cells

of patients within high risk GE-based score group (Supple-
mentary Figure S2 and Supplementary Tables S1 and S2), in
particular already known bad prognosis factors LPL, DMD,
AKAP12, and SEPT10 (Supplementary Table S2) [31]. Inter-
estingly, enrichment for IRF4 gene expression was identified
in the GE-based high risk group. The t(1,6)(p35.3,p25.2),
exclusively found in unmutated CLL, is associated with the
involvement of IRF4 (Interferon regulatory factor 4) gene.
This translocation is observed with high-risk chromosomal
aberrations including deletions of 11q and 17p and appears
to be associated with an aggressive clinical course [48]. In
CLL tumors with low GE-based risk score, GSEA analysis
highlighted an enrichment of genes encoding for chemokine
signaling pathways (Supplementary Figure S3 and Tables
S3 and S4). Of interest, we identified an enrichment of
genes involved in the CXCR4 signaling pathway or in the
interactions between the CLL tumor cells and their microen-
vironment (CCL3, CCL4, and CD49d) (Supplementary Table
S3). CLL cells express high levels of functional CXCR4
and signaling through this receptor reduces spontaneous
and drug-induced apoptosis and also facilitates CLL cell
migration beneath stromal cells [49, 50]. More recently, it
was demonstrated that the tyrosine kinase inhibitor Dasa-
tinib inhibits CXCR4 signaling in CLL cells and impairs
their migration in response to chemokine stimulation [51].
Dasatinib may constitute a potential therapeutic approach in
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Table 2: Cox univariate and multivariate analysis of OS in CLL
patient’s training cohort (𝑛 = 107).

(a)

Prognostic variable
Overall survival
(𝑛 = 107)

HR 𝑃 value
GEP risk score 45.39 <0.0001

ADAM29 0.40 0.04
AKAP12 2.60 0.02
DMD 3.39 0.004
LPL 4.19 0.001
NRIP1 0.12 <0.0001
SEPT10 2.95 0.01
SPG20 0.28 0.006
TCF7 0.35 <0.0001
TCL1A 4.14 0.001
TPM1 2.50 0.02
ZAP70 3.28 0.02
PS8 10.40 <0.0001

Del(17p) 10.13 <0.0001

(b)

Prognostic variables
compared two by two

Overall survival
(𝑛 = 107)

HR 𝑃 value
GEP risk score 55.30 <0.0001
ADAM29 1.63 NS
GEP risk score 46.71 <0.0001
AKAP12 0.93 NS
GEP risk score 51.78 <0.0001
DMD 0.75 NS
GEP risk score 40.52 <0.0001
LPL 1.49 NS
GEP risk score 8.29 <0.0001
NRIP1 0.035 0.003
GEP risk score 50.95 <0.0001
SEPT10 0.76 NS
GEP risk score 53.31 <0.0001
SPG20 0.20 0.001
GEP risk score 28.34 <0.0001
TCF7 0.067 0.001
GEP risk score 40.39 <0.0001
TCL1A 2.33 NS
GEP risk score 69.60 <0.0001
TPM1 4.77 0.001
GEP risk score 44.60 <0.0001
ZAP70 1.04 NS
GEP risk score 10.35 <0.0001
PS8 4.73 0.001

(b) Continued.

Prognostic variables
compared two by two

Overall survival
(𝑛 = 107)

HR 𝑃 value
GEP risk score 38.95 <0.0001
Del(17p) 3.14 0.02

(c)

All prognostic variables
Overall survival
(𝑛 = 107)

HR 𝑃 value
GEP risk score 26.23 0.002

ADAM29 1.04 NS
AKAP12 6.89 NS
DMD 0.58 NS
LPL 0.54 NS
NRIP1 0.017 0.01
SEPT10 0.58 NS
SPG20 0.76 NS
TCF7 0.022 0.01
TCL1A 0.29 NS
TPM1 2.83 NS
ZAP70 1.53 NS
PS8 0.63 NS

Del(17p) 1.94 NS
The prognostic factors were tested as single variable (a) or multivariables
(b, c) using Cox-model. 𝑃 values and the hazard ratios (HR) are shown. NS:
not significant at a 5% threshold.

these subgroups of CLL patients. Activated CLL cells secrete
CCL3 and CCL4 for the recruitment of immune cells (T cells
and monocytes) for cognate interactions. CD49d integrin
(VLA-4), expressed on CLL cells, cooperates with chemokine
receptors in establishing cell-to-cell adhesion with stromal
cells [52]. These data suggested that tumor CLL cells of the
GE-based low risk subgroup are more dependent on the
interactions with their microenvironment to support their
survival and proliferation.

5. Conclusion

Given the heterogeneity of CLL patients, the current GE-
based risk score combined with NRIP1 and TCF7 expression
could help in identifying high-risk patients who may benefit
from intensive therapeutic strategies and new-targeted treat-
ments.
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