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Abstract

Introduction

One major challenge in PET radiomics is its sensitivity to noise. Low signal-to-noise ratio

(SNR) affects not only the precision but also the accuracy of quantitative metrics extracted

from the images resulting in noise-induced bias. This phantom study aims to identify the

radiomic features that are robust to noise in terms of precision and accuracy and to explore

some methods that might help to correct noise-induced bias.

Methods

A phantom containing three 18F-FDG filled 3D printed inserts, reflecting heterogeneous

tracer uptake and realistic tumor shapes, was used in the study. The three different phantom

inserts were filled and scanned with three different tumor-to-background ratios, simulating a

total of nine different tumors. From the 40-minute list-mode data, ten frames each for 5 s, 10

s, 30 s, and 120 s frame duration were reconstructed to generate images with different noise

levels. Under these noise conditions, the precision and accuracy of the radiomic features

were analyzed using intraclass correlation coefficient (ICC) and similarity distance metric

(SDM) respectively. Based on the ICC and SDM values, the radiomic features were catego-

rized into four groups: poor, moderate, good, and excellent precision and accuracy. A “differ-

ence image” created by subtracting two statistically equivalent replicate images was used to

develop a model to correct the noise-induced bias. Several regression methods (e.g., linear,

exponential, sigmoid, and power-law) were tested. The best fitting model was chosen based

on Akaike information criteria.

Results

Several radiomic features derived from low SNR images have high repeatability, with 68%

of radiomic features having ICC� 0.9 for images with a frame duration of 5 s. However,

most features show a systematic bias that correlates with the increase in noise level. Out of

143 features with noise-induced bias, the SDM values were improved based on a regression
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model (53 features to excellent and 67 to good) indicating that the noise-induced bias of

these features can be, at least partially, corrected.

Conclusion

To have a predictive value, radiomic features should reflect tumor characteristics and be

minimally affected by noise. The present study has shown that it is possible to correct for

noise-induced bias, at least in a subset of the features, using a regression model based on

the local image noise estimates.

Introduction

In oncology, PET is routinely used for cancer diagnosis and staging based on the tumor-node-

metastasis (TNM) system and it is increasingly used to assess response to treatment using stan-

dard quantitative metrics such as standardized uptake values (SUVpeak, SUVmean, and SUVmax)

and metabolically active tumor volume (MATV) [1–4]. Recently, the focus has shifted to auto-

mated extraction of a large number of quantitative features from medical images, called radio-

mics, which could be used for personalized treatment [5–7].

PET radiomics provide a more comprehensive characterization of the tumor tracer uptake

than conventional SUV metrics. Tumor uptake heterogeneity, based on the radiotracer used,

may reflect the underlying biological processes. These tumor uptake heterogeneity characteris-

tics can be quantified by radiomics. Radiomics can therefore be used to facilitate personalized

medicine by supporting the identification of patient candidates for targeted therapy, providing

prognostic information to assess response to therapy, and predicting patient survival outcome

[8–10]. Several studies have demonstrated that 18F-FDG PET-derived radiomics might have a

better predictive value than conventional SUV metrics for a variety of cancer types [11–15].

Treating cancer patients with immunotherapy based on monoclonal antibodies (mAbs) has

been shown to have the potential to elicit an effective immune response against tumors, and
89Zr-Immuno-PET has demonstrated to be useful in predicting the efficacy of immunotherapy

in oncological studies [16]. 89Zr-Immuno-PET derived radiomics may have the potential to

support personalized immunotherapy by eliminating the limitations caused by tumor hetero-

geneity [17].

One major challenge in radiomics is its sensitivity to several factors such as image acquisi-

tion, reconstruction protocol parameters, segmentation methods, image pre-processing, and

noise [18–22]. The variability in many of these factors affecting SUV is also addressed in imag-

ing procedure guidelines and by PET/CT system accreditation programmes [23–25]. These

guidelines and accreditations aim to minimize the variability in PET reads between systems

and institutes, i.e., to improve reproducibility, in 18F-FDG PET. However, in 89Zr-Immuno-

PET, the low positron yield of 89Zr (22.6%) in combination with the low amounts of injected

radioactivity (~37 MBq), results in images with a poor signal-to-noise ratio (SNR). And, this

low SNR affects the precision (repeatability) and accuracy (bias) of the quantitative metrics

extracted from these images [26]. Here, precision is a measure of the statistical variability (for

example, standard deviation or coefficient of variation) in radiomics extracted from PET

images of the same phantom with identical scan duration. On the other hand, accuracy is a

measure of the systematic bias in radiomics due to noise; in other words, it measures the devia-

tion in radiomics extracted from noisy PET images compared to those from an almost noise-
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free image of the same phantom, where the different noise levels are simulated with changing

scan duration.

The current study focuses on the sensitivity of PET radiomics to noise and the effect of

noise on their precision and accuracy. This experimental phantom study aims to identify the

radiomic features (hereafter referred to as RF) that are (1) robust to noise in terms of precision

and accuracy and (2) to explore methods that can correct the noise-induced bias of low accu-

racy features (the term feature hereafter only refers to radiomic features) provived they have

high precision.

Materials and methods

3D printed phantom acquisitions

A NEMA IQ phantom containing three 18F-FDG filled 3D printed inserts was used in the

study [19], reflecting heterogeneous tracer uptake and realistic tumor shapes. The phantom

inserts were constructed using tumor samples from Non-Small-Cell-Lung-Cancer (NSCLC)

patients to obtain characteristics that reflect those seen in patients. Tumor insert 1 (tumor 1)

simulates a homogeneous uptake, tumor 2 reflects a tumor with a necrotic core, and tumor 3

represents a heterogeneous uptake by having only one of the two compartments filled with

radioactivity (Fig 1). The phantom was scanned with three different tumor-to-background

activity concentration ratios (TBR): 10:1, 5:1, and 2.5:1. The tumors were filled, respectively,

with activity concentrations of 14.43, 7.17, and 3.65 kBq/ml with a background activity con-

centration of 1.6, 1.61, and 1.22 kBq/ml, resulting in the intended TBR. Therefore, the three

different phantom inserts have been filled and scanned with three different TBR simulating a

total of nine different tumors.

A list-mode scan of 40 minutes was acquired for each phantom filling on the Siemens Bio-

graph mCT40 PET/CT system (Siemens Medical Solutions, USA). From the list-mode scans,

ten frames each for 5 s, 10 s, 30 s, and 120 s frame duration were reconstructed. The shorter

frame durations were used to generate images with different noise levels. The images based on

5 or 10 s frame duration simulate noise levels typically seen in 89Zr-Immuno-PET studies,

while the images with a frame duration of 120s have noise levels seen with clinical FDG stud-

ies. All images were reconstructed using the ordered subset expectation maximization

(OSEM) iterative reconstruction method (3 iterations, 21 subsets) with time-of-flight (TOF)

and resolution modeling (or point-spread-function, PSF). Two European Association of

Nuclear Medicine Research Ltd (EARL) compliant reconstruction protocols EARL1 [24]

(using a 6.5 mm full width at half maximum Gaussian filter) and EARL2 [25] (using a 5.0 mm

full width at half maximum Gaussian filter) were applied as well. The image matrix size for all

images was 256 x 256 x 111 with a voxel size of 3.1819 mm x 3.1819 mm x 2.0 mm. A low-dose

CT scan (80 kV, 99 mAs) was used for attenuation correction.

Segmentation

Volumes of interest (VOI) delineations were made using the in-house software tool ACCU-

RATE [27]. VOIs were manually defined on the low-dose CT images and projected onto the

corresponding reconstructed PET images.

Radiomic feature calculation

Overall, 480 features, belonging to 11 feature groups, were extracted from PET images using

the RaCaT tool [28] (version 1.19) as per the Imaging Biomarker Standardization Initiative

(IBSI) guidelines [29] (Table 1). The Python packages nibabel [30] (version 2.5.1) and pydicom
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[31] (version 1.3.0) were used to convert the PET DICOM images and segmented VOI files to

NIfTI format. All the features are listed in S1 Table. Since morphological features only depend

on the segmentation and not on the PET data, they were excluded from the analysis. Before

feature calculation, the images were converted from Bq/ml to SUV resulting in a background

SUV equal to 1. The following data extraction settings were used: discretization with a fixed

bin width (FBW) of 0.25 SUV [19], resampling to isotropic voxel size of 2 mm using tri-linear

interpolation of the images and VOIs [20], and an 8-connected and 26-connected neighbor-

hood for the analysis of the distribution of voxels in 2D and 3D respectively (with the neigh-

borhood consisting of voxels within Chebyshev distance of 1).

Fig 1. PET image showing phantom with 3D printed inserts reflecting heterogeneous tracer uptake.

https://doi.org/10.1371/journal.pone.0272643.g001

Table 1. Feature groups with the number of features per group.

Feature group Number of features

Local intensity 2

Statistics 18

Intensity histogram 24

Intensity volume histogram 6

Grey level co-occurrence (GLCM) 150

Grey level run length (GLRLM) 96

Grey level size zone (GLSZM) 48

Grey level distance zone (GLDZM) 48

Neighbourhood grey tone difference (NGTDM) 15

Neighbouring grey level dependence (NGLDM) 51

https://doi.org/10.1371/journal.pone.0272643.t001
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Analysis of radiomic features

All data analysis was performed using Python (version 3.7.6). In this section, the precision and

accuracy of the features were analyzed.

Analysis of precision

The precision or repeatability of the features was analyzed using the intraclass correlation coef-

ficient (ICC). A two-way mixed-effects model was used to evaluate the absolute agreement

between the features derived from the ten replicates. ICC was calculated using the R package:

irr [32] (version 0.84.1), with the rpy2 package [33] (version 2.9.4) as the Python interface to R.

Based on the ICC values, the features were categorized as having poor (ICC < 0.5), moder-

ate (0.5� ICC< 0.75), good (0.75� ICC < 0.9), or excellent (ICC� 0.9) precision.

To study the effect of noise on feature performance, the percentage of features belonging to each

of the four categories was calculated per feature group and in total for each of the scan durations.

Analysis of accuracy

A similarity distance metric (SDM) was used to calculate the distance between the features

derived from noisy short frame duration images and the long, nearly noise-free, 40-minute ref-

erence scan. Thus, SDM was used to quantify the noise-induced bias of the features. SDM

ranges from 0 to 1, and the higher the SDM the better the accuracy, or in other words the

closer the noisy scan feature to the reference scan feature.

SDM was calculated using the formula:

SDM ¼
1

m

Xm

1

s2
l

1

n

Xn

1

d2ðl; sÞ þ s2

l

where,

n is the number of tumor types (i.e., 9 tumors)

m is the number of repeated measurements (i.e., 10 frame repetitions per tumor type)

s2
l is the variance between the features of n tumor types in the reference scan (l)

d2ðl; sÞ is the squared Euclidean distance between the noisy (s) and reference scan (l) feature

values

This metric can be interpreted as the ratio of the variance between the (nine simulated)

tumor features in the reference scan to the total variance, where the total variance is the sum of

variance between the tumor features in the reference scan and the squared Euclidean distance

between the noisy and reference scan feature values. Thus, if a calculated feature is accurate for

high noise levels, the squared Euclidean distance between the noisy and reference scan features

is negligible when compared to the differences in feature values between the simulated tumors,

and this results in an SDM value close to 1.

Based on the SDM values, the features were categorized as having poor (SDM < 0.5), mod-

erate (0.5� SDM < 0.75), good (0.75� SDM < 0.9), or excellent (SDM� 0.9) accuracy, in

the order from large to negligible noise-induced bias.

To explore the effect of noise on feature accuracy, the percentage of features belonging to

each of the 4 categories was calculated per feature group and per frame duration.

Radiomic feature correctability

Identification of robust features. Based on their sensitivity to noise, the features were first classi-

fied into the following categories based on ICC and SDM:
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1. ICC< 0.9: Low repeatability features. These features were excluded from further analysis

due to the low reliability to use them in clinical practice as such.

2. ICC� 0.9 and SDM < 0.9: Potential features, i.e., features with excellent precision but dis-

playing noise-induced bias. These features are potentially useful when corrected for noise-

induced bias.

3. ICC� 0.9 and SDM� 0.9: Ideal features. These features have excellent precision and accu-

racy and can be applied regardless of the noise level of the images.

Evaluation of feature correctability. To evaluate the feasibility to correct the features for

noise-induced bias, the behavior of the features at different noise levels was studied and cate-

gorized (Fig 2):

1. Monotonic increase of SDM as a function of the noise level. The correlation between the

feature accuracy and the scan duration was analyzed using Spearman’s correlation. Only

the features with positive correlation (r = 1) were selected.

2. Positive rank correlation between the short and the long scan features. It was assumed that

a feature derived from a short scan should correlate with that of a long one to be considered

reliable. Since this relationship can be non-linear, the Spearman’s correlation test was used

to check if there was a positive correlation between high and low SNR scans. Only a positive

correlation was used since a negative correlation would mean that feature order is not

maintained between short and long scans. A rank correlation threshold of 0.7 (r� 0.7) was

used.

3. Monotonic trend direction of RF as a function of the noise level. With some types of

tumors, the features can show a positive bias corresponding with the scan duration, while

other tumors can have a negative bias. Features in which the direction of noise-induced

bias depends strongly on the underlying uptake distribution will be impossible to correct as

in clinical practice this would imply a unique correction (method) for each tumor. We,

therefore, restricted the feature correction to only those features that presented the same

direction of noise-induced bias across all simulated tumors. This was verified by checking if

the feature shows the same monotonic trend direction for all the tumors using Spearman’s

correlation test, i.e., either monotonically increasing (r� 0.7) or monotonically decreasing

(r� 0.7).

4. Coefficient of variation of the RF. Even if a feature has high ICC, the feature can still have

poor precision, i.e., a high coefficient of variation (COV) or standard deviation (SD).

Hence, the COV of features at higher noise levels was checked whether it was below 30%,

with the purpose to further eliminate imprecise features and restrict the number of features

to be corrected.

The features which pass all the aforementioned steps were considered for correction pur-

poses and are hereafter referred to as correctable features.

Radiomic feature correction

To have an estimate of the local noise, a “difference image” was created by subtracting two sta-

tistically equivalent replicate images (frame 1 and frame 2) for each short scan duration. The

intensity level in the difference image gives an indication of the local noise in the replicates.

Ideally, the difference image should have voxels with an intensity of 0 in the absence of noise.

In other words, the lower the intensity values in the difference image, the lower the noise-
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Fig 2. The tests performed to check feature correctability.

https://doi.org/10.1371/journal.pone.0272643.g002
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induced variability in the replicates. The local noise was then characterized by the use of this

difference image. Thus, the hypothesis was that the SD and COV of the voxel intensity values

in the tumor VOI of the difference image, hereafter referred to as SDdiff and COVdiff respec-

tively, could be used to characterize local noise. COVdiff was computed by dividing SDdiff by

the mean of the two replicates. Next, the local noise estimate SDdiff (for each frame duration)

was correlated with the tumor RF value bias, obtained by taking the difference between the ref-

erence scan and the noisy scan (RFdiff = RFlong—RFshort). Similarly, the local noise estimate

COVdiff (for each frame duration) was correlated with the tumor RF value ratio, obtained by

taking the ratio between the reference scan and the noisy scan (RFratio = RFlong / RFshort) to

take into account the percentage difference.

From each of the 10 replicates per scan duration, the median RF value was used and plotted

as a function of image noise (either expressed as SD or COV as explained above). Next, a

regression model was fitted using the variability of the feature values over the 10 replicates as a

weighting factor. The following regressions were tested for each of the correctable features:

1. Linear, only slope (intercept = 0)

2. Linear, only intercept (fixed slope = 1)

3. Linear, with slope and intercept

4. Exponential

a. Model 1: y ¼ ae� bx

b. Model 2: y ¼ eaðx� bÞ

5. Sum of two exponentials: y ¼ ae� bx þ ce� dx

6. Reciprocal: y ¼ 1

aþbx

7. Double exponential

a. Model 1: y ¼ ae� e� bðx� cÞ

b. Model 2: y ¼ e
a
b 1� ebxð Þð Þ

8. Sigmoid/logistic

a. Model 1: y ¼ a
1þbe� cx

b. Model 2: y ¼ að1þ ðb � 1Þe� cðx� dÞÞ
1

1� b

9. Power law

a. Model 1: y ¼ að1 � bxÞ

b. Model 2: y ¼ axb

10. Rational

a. Model 1: ax
bþx

b. Model 2: aþbx
1þcx

For linear regression models, the weighted least squares (WLS) method was used for esti-

mating the parameters (slope with or without intercept) with the statsmodels (version 0.11)

Python package [34], and for non-linear regression Levenberg–Marquardt algorithm with
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weighted input was used for curve-fitting with the curve_fit function from the scipy optimize

(version 1.4.1) Python package [35]. The function fsolve from the same package was used to

find the intercept for the linear model with a fixed slope of 1, since this functionality was not

available in the statsmodels package.

The Akaike information criteria (AIC) was used to determine the best model (i.e., lowest

AIC value). Then, the selected model was used to predict the ideal RF value, and the SDM was

recalculated to check if the bias was compensated, i.e., whether the SDM increased and if this

new SDM was reclassified as good or excellent.

Feature correction for different reconstructions. Modeling was done for EARL1 and EARL2

reconstructed scans and the corrected RF were calculated for each reconstruction. To explore

if the correction parameters were in agreement between the different reconstruction protocols,

the fit parameters from EARL1 were applied to the EARL2 data. Then, the resulting corrected

RF were compared to those resulting from using EARL2 fit parameters and the percentage

increase in SDM after feature correction was calculated.

Results

Analysis of precision

For EARL1 images, 95% of the features in the 120s scan duration had an excellent ICC, with

the percentage decreasing at shorter durations: 85% for 30 s, 76% for 10 s, and 68% for 5 s.

Similar results were obtained using the EARL2 reconstruction (S2 Table and Fig 3).

Analysis of accuracy

Shorter scan EARL1 reconstructed images showed significantly better accuracy when com-

pared to EARL2 reconstructed images. The percentage of features with excellent SDM was the

highest for the 120 s scans and decreased for the shorter scan duration images, with the lowest

for the 5 s scans. The percentages of 120 s scan features yielding an excellent similarity distance

from the 40-minute reference scan were 60.66%, and 45.49% for EARL1 and EARL2 recon-

structions respectively, and they reduced to 9.01% and 8.13% correspondingly for 5 s scans.

The number of features belonging to each SDM category is given in S3 Table. The percentage

of features in each SDM category per feature group is shown in Fig 4.

Radiomic feature correctability

Overall, 156 (34%) features in EARL1 and 158 features in EARL2 have been found to have low

repeatability (ICC< 0.9), while only 41 (9%) of the features in EARL1 and 35 features in EARL2

showed an ideal performance with excellent ICC (ICC� 0.9) and excellent SDM (SDM� 0.9).

The remaining 258 (57%) features in EARL1 and 262 features in EARL2 are found to have high

repeatability (ICC� 0.9) but poor accuracy (SDM< 0.9) in the presence of noise, and they were

therefore checked for correctability. The percentage of features grouped into these three categories

per feature group is shown in Fig 5. The percentage of features with excellent ICC and SDM per

feature group are shown in S1 and S2 Figs. An example for a feature in each of these categories,

showing the feature change with respect to the scan duration, is shown in S3 Fig.

The number of features passing each of the tests performed to check the feature correctabil-

ity, per reconstruction protocol is shown in S4 Fig.

Feature correction

After feature correction, the SDM improved for all the features when the most appropriate cor-

rection method was applied. The models reciprocal, double exponential (model 2), exponential
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Fig 3. Percentage of features in each ICC category (dark green: Excellent ICC, light green: Good ICC, orange:

Moderate ICC, red: Poor ICC) per feature group for different scan durations (from top to bottom: 120 s, 30 s, 10 s, 5 s)

for EARL1 (left) and EARL2 (right) reconstructed images.

https://doi.org/10.1371/journal.pone.0272643.g003
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Fig 4. Percentage of features in each SDM category (dark green: Excellent SDM, light green: Good SDM, orange:

Moderate SDM, red: Poor SDM) per feature group for different scan durations (from top to bottom: 120 s, 30 s, 10 s, 5

s) for EARL1 (left) and EARL2 (right) reconstructed images.

https://doi.org/10.1371/journal.pone.0272643.g004
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(model 2), and power (model 1) worked best for estimating RFratio using COVdiff and the mod-

els linear (with slope and intercept), double exponential (model 1), power (model 1 and 2)

logistic (model 1), rational (model 1) worked best for estimating RFdiff using SDdiff. The best

fits were chosen as per AIC and their frequency as the best choice for each of the variable pairs

are listed in the S4 Table.

The results of SDM improvement due to noise-induced bias reduction have been restricted

to the most noisy 5s scans. For the EARL1 reconstructed images, the SDM of 30 features

improved to excellent and 7 features to good by correcting the RFdiff using SDdiff while that of

13 features improved to excellent and 29 to good by correcting the RFratio using COVdiff. Fig 6

shows the SDM before and after correction using the two techniques for the different scan

durations. For 10 features, both the correction techniques resulted in an excellent SDM, and

either technique resulted in a good SDM for 31 features. In total, the SDM of 53 (i.e., 30+13

+10) features improved to excellent and 67 (i.e., 7+29+31) improved to good, out of 143 cor-

rectable features. Overall, the mean percentage increase in SDM after feature correction using

SDdiff was of 94.96. Using COVdiff on the other hand, resulted in a 111.51% increase in SDM

on average for all the features.

For the EARL2 reconstruction, a comparison of the results obtained by using the same fit

parameters in EARL1 reconstruction and by selecting the best fit for EARL2 reconstructed

data for correcting 126 features using regression is shown in Table 2. In the first case, the per-

centage increase when using SDdiff and COVdiff were 131 and 222 respectively and in the latter

case 196 and 237 correspondingly.

Discussion

Simulation of different noise levels, e.g., those seen in low photon count tracers, by varying the

scan duration has shown that even though the noise-induced variability between the replicates

remained low for several features, there is a systematic bias in the radiomic feature values of

images with low SNR. For a feature to have a predictive value and to be useful in the oncologi-

cal clinical studies, it is desired that the feature value depends on the tumor characteristics

only and not on noise. This implies that radiomics analysis can only be used in high count

studies where the image quality is high or after features are corrected for noise-induced vari-

ability and/or biases. In order to correct for noise-induced bias, we have evaluated the feasibil-

ity of using several regression models describing the relationship between the feature value

and the local noise estimate.

Fig 5. Percentage of features identified as unusable, ideal, and potential features per feature group for EARL1 (left)

and EARL2 (right) reconstructed images.

https://doi.org/10.1371/journal.pone.0272643.g005
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Fig 6. SDM of corrected features in EARL1 reconstructed images. From left to right: SDM before correction, SDM

after correction using SDdiff, and SDM after correction using COVdiff. From top to bottom: SDM for different scan

durations: 5 s, 10 s, 30 s, 120 s.

https://doi.org/10.1371/journal.pone.0272643.g006

Table 2. Comparison of EARL2 results obtained by using the same fit parameters in EARL1 reconstruction with those by selecting the best fit for EARL2 recon-

structed data using regression.

SDM improvement Correction technique Number of features showing improvement

Using fit parameters from EARL1 EARL2 model

Excellent SDdiff only 19 14

COVdiff only 8 6

both SDdiff and COVdiff 4 13

Good SDdiff only 1 8

COVdiff only 42 31

both SDdiff and COVdiff 18 36

https://doi.org/10.1371/journal.pone.0272643.t002
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In this study, a large number of features have shown reasonably high repeatability in images

with poor SNR for both EARL1 and EARL2 reconstructions. Features from EARL1 recon-

structed images have comparatively shown better repeatability most probably because of

increased smoothing with Gaussian filter, as Gaussian smoothing is known to reduce the

image intensity variations between voxels, making the image more homogenous. While this is

useful for image noise reduction, it is expected to also remove tumor heterogeneity details and,

consequently, some PET textural features may no longer have a meaningful predictive value.

Hence, there is always a trade-off between noise and image resolution. However, Pfaehler et. al

has shown that an increase in the Gaussian smoothing do not necessarily eliminate all impor-

tant heterogeneity information [19]. Also, several studies have come up with different noise

reduction techniques while still preserving spatial resolution [36, 37]. Therefore, image noise

reduction using different filtering techniques should be further explored to reduce the noise-

induced variability in the radiomic features derived from poor SNR images.

Even though several features were stable with high repeatability, they showed a systematic

noise dependent bias. Shorter EARL1 reconstructed images showed better accuracy when

compared to EARL2 reconstructed images. We have shown that it is possible to characterize

the trend of the feature bias with local image noise. Using both SDdiff and COVdiff from the dif-

ference image resulted in bias reduction, with COVdiff providing overall better results than

SDdiff, although the selection of either SDdiff or COVdiff is feature dependent in some cases. In

addition, we see that the feature bias trend with local image noise was similar between the two

EARL compliant protocols pointing to possible compatibility between the different versions of

the recommended reconstruction settings for harmonization. Moreover, in addition to the use

of the local noise information, we also evaluated the possibility of using the background noise

for feature bias trend characterization. However, the outcome of this approach is not reported

here, as it yielded poor results, probably because the PET textural features are highly sensitive

to intensity variation between neighboring voxels and background noise estimates may not

completely capture local intensity variations [38]. Our assumption is that a single combination

of two frames would provide a sufficient estimate of the local noise to correct for noise-

induced bias in features with high precision (high ICC and low COV) and low accuracy. While

it is possible to average over multiple combinations of two frames with the SD describing the

variability, in reality, it is practical to perform only two split reconstructions due to time limita-

tion and computational complexity. Furthermore, performing multiple splits on low count

PET studies, such as 89Zr-Immuno-PET, might result in high noise-induced variability

between the different splits making it unsuitable for noise-induced bias mitigation.

The possibility to characterize the trend of the feature bias with local image noise opens the

door to a wide range of situations where noise is a dominant factor. While this study was done

based on the noise conditions seen in 89Zr-Immuno-PET, the concept can be easily expanded

to other tracers with poor count statistics and even to high count tracers, such as 18F-FDG,

with the purpose to reduce either scan duration or the injected activity. Another possible appli-

cation could be to reduce the impact of feature bias due to noise based on the sensitivity of

PET detectors, thus eliminating PET/CT system bias which can be especially useful in multi-

center studies. Moreover, we have explored two different recommended reconstruction proto-

cols (EARL standards 1 and 2) yielding similar contrast recoveries for harmonization in

multicenter studies to check if our methodology will be applicable for different reconstruction

settings [39].

One possible limitation of this study was that we used only nine tumor inserts, all of them

with fairly high uptake (the lowest TBR was 2.5) and relatively big size. Yet, smaller lesions

may occur in clinical data. However, Hatt et. al has recommended to apply radiomics analyses

to lesions larger than 10 cm3 [40]. Moreover, Pfaehler et. al has shown that bigger spheres and
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higher activity uptakes yielded better repeatable features than smaller spheres and those with a

lower activity uptake [19]. In clinical settings, there could be tumors with a different uptake

pattern that was not represented in our study, smaller tumors, and tumors with very low

uptake (even lower than the surrounding tissues), all this affecting the repeatability of RF.

However, the exclusion of these confounding factors and availability of ground truth values is

exactly the advantage of a phantom study and we have shown the feasibility of identifying

robust and correctable features, in addition to noise-induced bias mitigating strategies. An

approximation of the ideal image was obtained by performing a long, almost noise-free acqui-

sition of 40 minutes which is 20 times longer than performed in clinic (2 min per bed posi-

tion). While this reference image is an approximated ground truth which may suffer from very

minimal noise, the noise level is low enough that it can be considered as ground truth. This

was verified by the very minimal COV in the background, which for example, ranged between

3.33% and 6.47% for the three different TBR in the EARL1 reconstructed images. Although

this is strictly not noise free, we do assume that the noise level is sufficiently low to approxi-

mate a noise-free scan. Moreover, the 3D printed tumor inserts helped in simulating realistic

conditions as opposed to spherical phantom inserts, and Pfaehler et al. have validated previ-

ously that radiomic features obtained with the 3D inserts are representative of true NSCLC

tumour lesions showing an excellent correspondence between phantom and clinical data fea-

ture values [19].

Another limitation is that we only used limited regression techniques for our hypothesis to

describe the noise-induced bias. More complex models might give better results, although

with a higher risk to overfit the data. Since substantial bias reduction for the correctable fea-

tures was achieved with simple methods, and this was not the main aim of the study, it was

decided to not include more complex approaches. Yet, it will be easy to extend the approach to

include them in future studies. For now, we were able to show that models using a noise-esti-

mate as input can be used to reduce the noise-induced bias under very poor signal conditions.

While in our study we only analyzed the impact of the noise on the repeatability and accu-

racy of the radiomic features, the noise present in the images also makes segmentation a diffi-

cult task, leading to wide inter-observer variability. These discrepancies in tumor

segmentation can also affect the repeatability and accuracy of the radiomic features derived

from low SNR images.

Conclusion

Several radiomic features derived from low SNR images have high repeatability, but many of

them show a substantial noise-induced bias. For a feature to have a predictive value, we want

the feature value to depend on the tumor characteristics only and not on noise. We have

shown that it is possible to correct the radiomic feature noise-induced bias with simple models

using the local image noise estimate as input. These models may allow the use of radiomics

analysis for low count studies, such as with 89Zr-labelled mAbs, or to develop a clinical radio-

mics model in patient studies obtained on different PET systems with substantial differences

in image quality e.g., because of differences in sensitivity.

Supporting information

S1 Fig. Percentage of features with excellent ICC per feature group in EARL1 and EARL2

reconstructed images for scan durations of 120s and 5s.

(TIF)
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S2 Fig. Percentage of features with excellent SDM per feature group in EARL1 and EARL2

reconstructed images for scan durations of 120s and 5s.

(TIF)

S3 Fig. Example for ideal feature, potential feature, and unusable feature (left to right) show-

ing the feature behaviour change with scan duration. Note how the ideal feature and potential

feature have smaller error bars unlike the unusable feature. Their feature values are also consis-

tent for all scan durations, or in other words the lines do not cross each other and stay parallel

to each other, while the opposite is true for the unusable feature. Also note how the ideal fea-

ture has the same value for all scan durations, or in other words the lines are straight. On the

other hand, there is systematic bias in the potential feature with scan duration, or in other

words there is a (linear/non-linear) relationship between the feature value and the scan dura-

tion.

(TIF)

S4 Fig. Number of features passing each of the tests performed to check the radiomic fea-

ture correctability, per reconstruction protocol.

(TIF)

S1 Table. List of radiomic features calculated as per IBSI guidelines. Note: The feature

Dependence count percentage belonging to the family NGLDM (2Davg, 2Dmrg, 3Dmrg) was

always 1 irrespective of the tumor. So, it is excluded in the analysis, which leaves 455 features.

(DOCX)

S2 Table. Number of features belonging to each ICC category.

(DOCX)

S3 Table. Number of features belonging to each SDM category.

(DOCX)

S4 Table. Best fits chosen as per AIC and their frequency for the dependent-independent

variable pairs: RFratio vs COVdiff and RFdiff vs SDdiff, in EARL1 and EARL2 reconstructed

data.

(DOCX)
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