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Accurately forecasting solar plants production is critical for balancing supply and demand and 
for scheduling distribution networks operation in the context of inclusive smart cities and energy 
communities. However, the problem becomes more demanding, when there is insufficient amount of 
data to adequately train forecasting models, due to plants being recently installed or because of lack 
of smart-meters. Transfer learning (TL) offers the capability of transferring knowledge from the source 
domain to different target domains to resolve related problems. This study uses the stacked Long 
Short-Term Memory (LSTM) model with three TL strategies to provide accurate solar plant production 
forecasts. TL is exploited both for weight initialization of the LSTM model and for feature extraction, 
using different freezing approaches. The presented TL strategies are compared to the conventional 
non-TL model, as well as to the smart persistence model, at forecasting the hourly production of 6 
solar plants. Results indicate that TL models significantly outperform the conventional one, achieving 
12.6% accuracy improvement in terms of RMSE and 16.3% in terms of forecast skill index with 1 year 
of training data. The gap between the two approaches becomes even bigger when fewer training 
data are available (especially in the case of a 3-month training set), breaking new ground in power 
production forecasting of newly installed solar plants and rendering TL a reliable tool in the hands of 
self-producers towards the ultimate goal of energy balancing and demand response management 
from an early stage.

Urbanization effects are obvious during the last decades, as more and more people move to cities, resulting in 
more than 90% of anthropogenic carbon emissions being generated in urban environments1. This new reality 
has highlighted the need for a gradual transition to smart cities, where operational efficiency is improved with 
the use of emerging information and communication technology (ICT) applications2,3. At the same time, the 
impact of the digitalization era is more evident than ever, improving quality of life through digital automation 
of complex processes4,5. This transformation could not leave the energy sector unaffected, as the convergence of 
electrical power and data offers opportunities for new services6, with the aim of reducing costs and reshaping 
business models7. In the context of an ever-evolving urban environment, it is important to promote the concept 
of energy communities; i.e., the organization of collective energy actions around open, democratic participation 
and governance8.

A major point of interest for energy communities is effectively forecasting electricity production of Renew-
able Energy Sources (RES), as it is vital for balancing electricity supply and demand, and consequently, for 
scheduling and analyzing distribution networks and ensuring community autarky9. More specifically, rooftop 
photovoltaic systems are one of the most promising energy generation sources for prosumers in big cities, as 
more and more PV panels are installed10. Studies have shown that rooftop PVs can cover almost completely the 
domestic electricity demand for prosumers, indicating that self-sufficient cities are expected to be protagonists 
of the energy transition era11. However, efficient prosumption schemes are based on accurate solar production 
forecasting models. The problem becomes more demanding when lack of data is taken into account, which is a 
common phenomenon in the case of newly installed photovoltaic systems, where it takes a long time to collect 
a sufficient sample of data. This paper aspires to present a Transfer Learning (TL) approach for PV production 
forecasting in the case of lack of data, where predictive Deep Learning (DL) models are trained in PV plants with 
data adequacy, and transfer knowledge to PV plants with a small sample of available data.
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Several approaches have been proposed for the problem of energy production forecasting in PV plants. The 
simplest approach is the naive persistence method, which assumes that the generated power will remain the 
same as the previous observation. A more complex variation of this approach is the smart persistence method, 
which additionally assumes that the clear-sky index12,13 of power output is the same in the future as in now. 
These approaches are usually used as reference models against other more complex methods. Apart from per-
sistence methods, many data-driven methods have been proposed including time series forecasting models, 
spatio-temporal statistics, and machine learning (ML) techniques. According to Bacher et al.14, there are two 
dominant approaches for solar power forecasting: The first approach requires that solar power is normalized 
with a clear sky model in order to formulate a more stationary time series facilitating forecasting with classical 
linear time series methods. The second approach includes utilization of neural networks (NNs) with different 
types of input to predict the solar power directly. Traditional statistical approaches and time series models have 
been utilized to a great extent for short-term and long-term predictions. Indicative examples in this category are 
the Autoregressive Moving Average (ARMA) model proposed by Huang et al.15, a series of statistical regression 
methods presented by Zamo et al.16 and exponential smoothing for solar irradiance forecasting developed by 
Dong et al.17. Except from statistical models, the problem of PV-based power forecasting has been successfully 
tackled by exploiting ML methods. Studies based on Support Vector Machine (SVM) models18, the k-nearest 
neighbors algorithm19 and tree based models, such as Random Forest20 (RF) and Decision Trees21, are indicative 
examples of how efficient ML methods can be for this problem. However, the aforementioned approaches have 
been outperformed by DL models which have emerged in the last decade22. The increased processing power 
afforded by graphical processing units (GPUs) has resulted in the rise of DL, offering the opportunity to solve a 
wide range of problems with good accuracy23. More specifically, Feedforward Neural Networks24 (FFNN), Recur-
rent Neural Network (RNN) models, as well as their most recent variation called Long Short-Term Memory25 
(LSTM) models, have gained ground over traditional statistical and ML methods regarding the PV production 
forecasting problem. In addition, a widely adopted category of methods are the so-called hybrid methods, which 
are essentially a combination of ML or DL models, either in the form of ensembles26 or using more elaborate 
methods such as boosting, bagging or meta-learning27. In this paper, a stacked LSTM architecture, i.e., an LSTM 
model comprised of multiple LSTM layers, is selected for two reasons. Firstly, LSTM can represent the dynamic 
performance of systems, being capable of efficiently handling sequential data with temporal relationships. Such 
temporal, non-linear, relationships exist between weather variables and the PV power output, constituting LSTM 
as an appropriate model for this forecasting problem. Secondly, being a weight-based model, unlike other statisti-
cal methods, it is suitable for the application of TL approaches.

However, DL models are data consuming, in general, requiring a sufficient amount of data in order to achieve 
high accuracy predictions. Even more interestingly, DL models are more data dependent than traditional time 
series forecasting techniques and ML models, which is compensated by their increased predictive capability. In 
this context, it is generally acknowledged that DL models trained with too little data suffer from under-fitting and 
that they result in poor approximation and, consequently, in high variance estimation of the model’s performance. 
The cause of this problem is known as data scarcity. More specifically, data scarcity can be defined as the situation 
where there is a limited amount of training data. In general, there are two different forms of data scarcity when 
dealing with PV power output data. First and foremost, data scarcity is a common phenomenon in the case of 
newly installed photovoltaic systems, where it takes a long time to collect a sufficient sample of power output 
data in order to train the models. Secondly, data scarcity may be attributed to missing values (or data gaps) due 
to malfunctioning smart-meters. In either case, the result is a lack of data to train a DL forecasting model from 
scratch. In the case of PV production forecasting a sufficient amount of training data is one calendar year, in 
order to enable the model to learn seasonal patterns. In order to tackle this problem, we exploit a model which 
is trained for one location and we apply it to another location where there is too little historical data.

Humans have the innate ability of exploiting information collected from one task in order to resolve similar 
tasks. The same applies in the field of DL28. Traditional DL approaches rely on learning new concepts from 
scratch, using data from a specific topic in order to train the model. However, the exploitation of data from 
similar applications can facilitate the learning process. TL has been proven to be very efficient for dealing with 
problems with insufficient or missing data. Data scarcity often occurs due to data being inaccessible, high cost 
of data collection mechanisms and Internet of Things (IoT) devices, or lack of appropriate data storage schemes. 
However, the impact of the digitisation era is more apparent than ever, as data availability and data quality have 
significantly improved. Thus, big data repositories enable the exploitation of existing datasets in order to address 
similar problems, rendering TL the most suitable approach29. Focusing on the energy sector, TL emerges as the 
most popular technique for problems with insufficient or poor-quality data. A typical example is the Hephaestus 
method for cross-building energy forecasting, considering seasonality and trend factors30. Similar studies have 
been developed for short-term building energy predictions31 and energy consumption forecasting with poor-
quality data32. However, few studies have addressed the problem of PV production forecasting with TL33, allowing 
room for further research in this area.

In this paper, we explore three different TL strategies and we evaluate the impact of TL in providing accurate 
PV production forecasts, comparing the efficiency of traditional and TL models with respect to data availabil-
ity. Results indicate that TL models significantly outperform the conventional one, achieving 24.8% accuracy 
improvement with 1 year of training data. The gap between the methods is even bigger when fewer training data 
are available (3-month training set), breaking new ground in power production forecasting of newly installed 
solar plants and rendering TL a reliable tool in the hands of self-producers towards the ultimate goal of energy 
balancing and demand response management from an early stage.

The rest of the paper is organized as follows. The second section (Methods) introduces the experimental 
data and processing, the TL models and proposed architectures. The results of this study are presented in the 
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third section (Results), describing the baseline model performance, the validation process of the proposed TL 
strategies, and the data availability impact. Finally, the fourth section (Discussion) summarizes the conclusion.

Methods
Experimental data and processing.  Hourly PV production and weather data (temperature, humidity 
and solar irradiance) from 7 PV plants are exploited. PV production data are collected directly from the solar 
plant systems of a Portuguese energy community, while weather data are extracted from a local meteorological 
station34 and the Copernicus Atmosphere Data Store35. One PV plant, namely PV1 , is used as the base model and 
the other PV plants are used for the development of the TL models. Specific information for the examined PV 
plants are presented in Table 1.

The PV plants are located in 4 cities in Portugal (4 PVs are located in Lisbon; 1 is located in Setubal, Faro and 
Braga, respectively) and the available data vary from 14 to 30 months depending on the PV plant. The selected 
PV plants also differ in terms of nominal and peak capacities. The base PV has a nominal capacity of 23.52 KW, 
while the target domain PVs’ capacity varies from 30 KW to 271.53 KW, which is over 10 times the capacity of 
the base PV. The rationale behind the selection of the specific PV plants is to assess model performance on PV 
plants that are located both in the same city ( PV2 , PV4 and PV7 ) and in different cities to the base PV ( PV3 , PV5 
and PV6 ), in order to report potential differences in the TL models’ forecasting accuracy. The locations of the 
inspected PV plants are depicted in Fig. 1.

The selected features of the stacked LSTM model are temperature, humidity, solar irradiance, PV production, 
one-hot encoding representation of the month of the year and sine/cosine transformation of the hour of day. The 
following processing routine is conducted for each dataset: Firstly, data are normalized to [0, 1] range. Secondly, 
data are transformed to “5 inputs - 1 output” format to be processed by the stacked LSTM model. Thirdly, the 
datasets are split into train sets and test sets. The base model is trained on the whole dataset of the source domain. 
The TL models are trained on 12 months of data (the training set consists of 8760 hourly rows) and the remain-
ing data are used for testing. It is obvious that the testing period differs for each target PV based on the total 
number of available data; PV7 has the longest testing period, consisting of 13172 hourly rows, while PV3 has the 
shortest testing period, consisting of 910 hourly rows. Finally, the same processing routine is implemented for 

Table 1.   Information of the PV plants that were used for the experimental application of the study.

PV Location Latitude Longitude Nominal(kW) Peak(kW) Avail. Data (rows) From date To date

PV1(base PV) Lisbon 38.728 − 9.138 23.52 20.00 21956 01/08/2018 31/01/2021

PV2 Lisbon 38.833 − 9.191 46.00 40.00 21908 31/12/2018 01/01/2021

PV3 Setubal 38.577 − 8.872 271.53 216.00 9670 02/02/2020 10/03/2021

PV4 Lisbon 38.725 − 9.120 30.00 27.00 20588 01/08/2018 31/01/2021

PV5 Faro 37.031 − 7.893 60.48 50.00 15044 08/09/2019 30/04/2021

PV6 Braga 41.493 − 8.496 119.88 108.00 18045 10/01/2019 31/01/2021

PV7 Lisbon 38.701 − 9.236 55.65 50.00 21932 01/08/2019 31/01/2021

Figure 1.   A map depicting the locations of the inspected PV plants. The 7 PV plants are located in four 
different Portuguese cities (Lisbon, Setubal, Faro, Braga) allowing for assessment of model performance 
regardless of the city. The image on the right offers a focus on the city of Lisbon where 4 PV plants are located 
(map created with https://​www.​mapcu​stomi​zer.​com/, OpenStreetMap contributors).

https://www.mapcustomizer.com/
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all PVs with training data of 3, 6 and 9 months keeping the test set the same, in order to investigate the impact 
of TL with low data availability.

Finally, the experimental application is implemented on Python programming language, interacting with 
open-source libraries, including NumPy and Pandas, as well as the DL application program interface (API) 
TensorFlow (source code is available in GitHub: Sourc​e Code). ADAM is the selected optimizer based on exist-
ing literature, while the learning rate is set to 0.001. The developed stacked LSTM model is composed of three 
fully connected intermediate layers (first layer includes 24 neurons, second layer includes 48 neurons and third 
layer includes 96 neurons) followed by the output layer. The number of epochs is set to 100 and the batch size is 
set to 128 by the trial-and-error method.

Transfer learning.  TL is a technique that focuses on exploiting knowledge gained while solving one prob-
lem in order to solve a different problem with similar characteristics. The general concept of TL is transferring 
the expertise of a model from the source domain to the target domain, relaxing the hypothesis that the data 
of these two problems must be independent and identically distributed36. TL provides numerous advantages, 
namely reduced training time37, improved NN performance and, more importantly, the opportunity to achieve 
high accuracy with limited amount of data38. The general framework of the TL process is presented in Fig. 2.

According to the formal definition of TL proposed by Pan and Yang39: “Given a source domain DS and learn-
ing task TS , a target domain DT and learning task TT , where DS  = DT , or TS  = TT , TL aims to help improve 
the learning of the target predictive function fT (·) in DT using the knowledge in DS and TS ”. This definition 
is better understood by defining the concepts of domain and task. A domain D consists of: a feature space X 
and a marginal probability distribution P(X) , where X = {x1, ..., xn} ∈ X . The feature space can be defined as 
a collection of features related to specific properties of the data which are given as input to the model. Given a 
specific domain, D = {X , P(X)} , a task consists of two components: a label space Y and an objective predictive 
function f : X → Y . The objective predictive function aims to predict the label f (x) of each new instance x.

Finally, according to Lu et al.40 there are three main categories of TL methods. Inductive TL assumes that the 
learning task in the target domain is different from the learning task in the source domain. Unsupervised TL, 
also assumes that the learning task in the target domain is different from the learning task in the source domain, 
but focuses only on unsupervised problems such as clustering and density estimation. Finally, transductive TL 
assumes that the learning tasks are the same in both domains, while the source and target domains are differ-
ent, but related. The proposed TL approach for the problem of PV production forecasting belongs to the field of 
transductive TL, because the source and target tasks are the same (hourly PV prediction), while the source and 
target domains are different in terms of location, nominal capacity and weather conditions.

The long short‑term memory model.  One of the most suitable models for the application of TL in the 
PV production forecasting problem is the LSTM model41. This is mainly due to the fact that the functionality of 
the LSTM depends on weight updating between the neurons of the deep learning model, allowing the creation 
of pre-trained models. Thus, it facilitates pre-training the model on the baseline PV in order to utilise the saved 
weights of the pre-trained model and apply TL on the target PV. The same applies for other NNs, but LSTM 
networks have shown the best performance, and the interest in PV power prediction using variations of LSTM 
networks has been continuously increasing over the past few years42.

The LSTM is a RNN architecture with the innate ability of capturing long term dependencies in sequence 
prediction problems43. The purpose of the LSTM development has been the vanishing gradient problem, which 
can be described as the exponential increase (or decrease) of the backpropagated error signal as a function of 
the distance from the final layer, resulting in models which are unstable and incapable of efficient learning44. The 
LSTM uses an additive gradient structure which incorporates direct access to a forget gate enabling the network 
to stimulate desired behaviour from the error gradient45.

The selection of LSTM over traditional ML algorithms and feedforward NNs is based on its suitability for 
holding long term memory, which is essential when facing problems with sequential data with temporal relation-
ship. LSTM is able to represent the dynamic performance of systems, thus being one of the most widely models 
for dealing with time series problems, such as PV production forecasting46. LSTMs provide a significant advan-
tage over other methods, as they are able to detect linear relationships between nonlinear data. Such relationships 

Figure 2.   The transfer learning process.

https://github.com/ElissaiosSarmas/Transfer-learning-strategies-for-solar-power-forecasting-under-data-scarcity
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may appear in the PV production forecasting problem, between power output and meteorological data. In this 
respect, the LSTM can benefit from features and detect relationships and patterns that other models would not 
be able to find. Furthermore, LSTM has been exploited for several energy-related time series problems, includ-
ing residential energy consumption predictions47,48, and natural gas demand forecasting49. The architecture of 
the LSTM cell is illustrated in Fig. 3.

The presentation of the LSTM architecture follows the works of Graves50 and Olah51. The standard LSTM 
cell includes four NN layers, differing from common RNN architectures which include a single layer. Each line 
in Fig. 3 represents a vector to which several pointwise operation and NN layers are performed. The LSTM cell 
receives three inputs and produces two outputs. The inputs, passed in vector form, are the following: the current 
input xt , the previous hidden state ht−1 and the previous cell state ct−1 . The outputs of LSTM are the cell state and 
the hidden state. On the one hand, the cell state (depicted by the horizontal line at the top) encapsulates the long 
term memory capability of processing information of more distant events. On the other hand, the hidden state 
transfers information from immediately previous events and it is overwritten at every step. The core functionali-
ties of the LSTM cell are implemented through its three gates: the forget gate, the input gate and the output gate. 

1.	 The forget gate is the first block represented in the LSTM architecture. The forget gate determines which 
part of the information must be retained or discarded. The inputs of this gate are the previous hidden state 
ht−1 and the the current input xt . These inputs are passed through the sigmoid function σg which results in 
output values between 0, which denotes that no information passes through, and 1, which denotes that all 
information passes through. The forget gate’s activation vector ft is given by the following equation. 

2.	 The input gate serves as an input to update the cell status. The input gate’s functionality is performed in two 
parts. Firstly, the previous hidden state and the current input are passed into the second sigmoid function 
σg . Secondly, the same inputs are passed into the hyperbolic tangent function σc in order to regulate the 
network. Finally, the cell state vector ct is the result of the element-wise product of the cell input activation 
vector c̃t and the update gate’s activation vector it . The input gate’s activation functions are given by the fol-
lowing equations. 

3.	 Finally, the output gate determines the next hidden state ht . The hidden state includes information on previ-
ous inputs and it is utilized for prediction. The previous hidden state ht−1 and the current input xt are passed 
into the third sigmoid function σg . Then, the modified cell state is passed to the hyperbolic tangent function 
σh . These outputs are multiplied element-wise allowing the network to determine which information the 
hidden state should carry. 

The parameters W ∈ R
h×d , U ∈ R

h×h and b ∈ R
h represent weight matrices and bias vector parameters respec-

tively, which are learned during the training process.

(1)ft = σg (Wf xt + Uf ht−1 + bf )

(2)c̃t = σc(Wcxt + Ucht−1 + bc)

(3)it = σg (Wixt + Uiht−1 + bi)

(4)ct = ft ◦ ct−1 + it ◦ c̃t

(5)ot = σg (Woxt + Uoht−1 + bo)

(6)ht = ot ◦ σh(ct)

Figure 3.   The long short-term memory (LSTM) model architecture.
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Proposed architectures.  The high accuracy achieved by NNs in a variety of challenging forecasting prob-
lems is attributed to their complex architecture. Deep NNs incorporate the concept of hierarchy due to the 
connection of multiple layers of neurons. Each layer is responsible for solving a small task of the main problem 
and its output is transferred to the next layer52. The solution to the problem is produced by the last layer of the 
network. The intermediate layers of deep NNs are called hidden layers. The main idea of introducing hidden lay-
ers to the architecture is that each hidden layer generates more advanced representations of the problem leading 
to higher abstraction levels. Thus, deep NNs can represent any non-linear function with relatively fewer neurons 
than a single-layer network. DL assumes that a hierarchical model with many layers is exponentially more effi-
cient at approximating some functions than a more shallow one53.

This approach can also be applied to LSTMs. The original LSTM model is composed of one single layer which 
receives the input data and passes the output signal to a single feed-forward output layer. However, in this study 
an alternative architecture is proposed, which involves multiple hidden layers of multiple LSTM units followed 
by a feed-forward output layer. Each layer provides a sequence output to the next layer, rather than a single 
value output. This architecture is called stacked LSTM network, and it has been introduced by Graves et al.54 
in their application of LSTMs to speech recognition. Proportional to simple feed-forward networks, stacked 
LSTM networks result in deeper models with higher levels of approximation accuracy. Moreover, due to the fact 
that LSTMs are used with sequence data (their hidden state is a function of all previous hidden states), deeper 
architectures lead also to deeper level of abstraction of the input data over time providing a representation of 
the task at different timescales55,56.

TL is exploited through the process of reusing the weights of a model which has been trained on the source 
domain data to fine-tune a new model based on the target domain data. The pre-trained model is referred to 
as the base model, while each new model in the target domain is referred to as TL model. The weights of each 
layer of the base model can be processed differently in order to provide better performance of the TL model 
in the target domain, using the following approaches: (a) keep the weights of the layer fixed, (b) fine-tune the 
weights of the layer based on the target domain data and (c) train the weights of the layer from scratch based 
on the target domain data.

In this paper, three TL strategies are developed and compared in terms of forecasting accuracy for the problem 
of PV production forecasting.

•	 TL Strategy 1: In the first strategy, the weights of the initial layers are frozen and the only trainable weights 
are the weights of the last hidden layer. This strategy is known as weight freezing and it is widely used in 
order to extract features from the source domain and carry them to the target domain. This is a widely used 
scheme when treating images, where the first layers are used as feature extraction layers and the last layers 
are used to adapt to new data.

•	 TL Strategy 2: In the second strategy, the base model is used as a weight initialization scheme for the TL 
model. The weights of all layers of the TL model are initialized based on data from the source domain and they 
are fine-tuned based on data from the target domain. This approach is extensively used with problems where 
there is an abundance of data in the source domain, but a scarcity of data in the target domain. However, a 
high degree of similarity between the source and the target domain is a necessary condition.

•	 TL Strategy 3: In the third strategy, the initial layers of the TL model are frozen and the last layer is trained 
from scratch, popping the last layer of the base model and adding a new layer after the frozen layers. This 
approach is similar to the first one, but it differs in the fact that the weights of the last layer are not initialized 
based on data from the source domain. Thus, the TL model serves as a feature extraction mechanism because 
of the frozen layers, but it can also be fine-tuned to the target domain because of the random initialization 
of the last layer’s weights.

Results
The results of this study are presented in three categories, namely; the forecasting performance of the baseline 
stacked LSTM model, the TL models performance results compared to the conventional model in the target 
domain and the results of applying TL with different volume of available data, respectively. By the term conven-
tional model we refer to the LSTM model in which no TL has been applied; in this context, the conventional 
LSTM model is solely based on training with data from the target PV.

Baseline model performance.  The stacked LSTM model has the following lag features: (a) Power output 
measured value, (b) air temperature, (c) global horizontal irradiance, (d) humidity, (e) month of the year (in 
the form of one-hot encoding) and (f) hour of the day (in the form of sine/cosine transformation). The above-
mentioned features are fed into the LSTM model in the format of “5 inputs - 1 output” of hourly data. More 
specifically, a point value for each feature is fed into the model for the last five hours and the PV power output 
for the next hour is predicted (one-hour ahead power output forecast).

Ensuring an accurate base model is a prerequisite for achieving accurate predictions in the target domain. 
In this context, the performance of the LSTM model for the base PV is evaluated with the following procedure: 
The base PV dataset is split into train set and evaluation set using a 80-20 split, keeping the first 80% as training 
and the remaining 20% as testing (17563 observations for the training process and 4391 observations for evalu-
ation purposes) and the LSTM model is trained on the training set. The accuracy of the model is evaluated by 
computing the root mean squared error (RMSE) and the mean absolute error (MAE) of the respective forecasts 
across the evaluation period considered, as well as the coefficient of determination R2 between the forecasts and 
the real values, as follows:
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where yt is the real value of the solar production time series at hourly interval t of the evaluation period, ŷt is 
the produced forecast of the model and ȳ is the average of the real values. Apart from these error metrics, two 
additional metrics are calculated in order to make the model evaluation more complete: the Mean Bias Error 
(MBE) and the normalized root mean squared error (NRMSE). The MBE represents the systematic error of a 
forecasting model to under or overforecast, while the NRMSE is suitable for the comparison between models 
of different scales connecting the RMSE value with the observed range of the variable. These two metrics are 
calculated as follows:

The model achieves high accuracy, managing to efficiently capture the daily patterns of the most important 
variables, as reflected by the utilized metrics ( MAE = 0.467 , RMSE = 0.992 , MBE = − 0.097 , nRMSE = 0.301 , 
R2

= 96.254% ). However, even these five error metrics are not enough to sufficiently illustrate the capabilities 
of the proposed model in comparison with other models in different geographical locations. According to Yang 
et al.57,58, the accuracy of solar forecasting models (in general, the term “solar forecasting” may refer to either solar 
irradiance forecasting or solar power forecasting; throughout this study the term refers to solar power forecasting) 
must be inter-comparable across different locations and different time periods through a common metric which 
is the forecast skill index. The forecast skill index is based on the comparison of the proposed model to a reference 
model on a specific error metric. However, two issues arise: What reference model and which error metric must 
be used? The most common reference model to standardize the verification of solar forecasting models is the 
persistence model. More specifically, the utilization of a smart persistence model as a reference model is highly 
recommended, rather that using the naive (or simple) persistence model59. Regarding the optimal error metric, 
the RMSE is the most suitable metric in the case of solar power production, as a metric that is appropriate for 
capturing large errors57. Thus, the formula of the forecast skill index is the following:

where RMSEproposed is the RMSE value of the developed LSTM model and RMSEreference is the RMSE value of 
the smart persistence model.

The last question that arises concerns the selection of the smart persistence model in the case of solar power 
forecasting. For solar irradiance forecasting problems, the smart persistence model derives from integrating clear 
sky conditions to the reference model59. The same also applies to PV power forecasts, where several smart persis-
tence models have been proposed60. More specifically, a clear sky index has been proposed by Engerer and Mills 
in case that the characteristics of the PV panel are known61, while another PV smart persistence model based 
on scaling global horizontal irradiance to PV production value has been presented by Huertas and Centeno62. 
In this study, the definition of Pedro and Coimbra is adopted, which is based on estimating the expected power 
output under clear-sky conditions63. The formula of the adopted smart persistence model is described by the 
following equation:

where y(t) is the measured power output and yc−s(t) represents the expected power output under clear-sky 
conditions. The purpose of this model is to decompose power output, indicating that a fraction of the power 
output relative to the clear-sky conditions remains the same between short time intervals. Moreover, at night 
conditions the forecast of the smart persistence model is considered equal to the clear sky power output. The 
approximated function for the clear-sky model can be created by averaging past power output values depending 
on the hour of the day (between 0 and 23) and the day of the year (between 0 and 255). The second step involves 
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(11)NRMSE =

RMSE

ȳ
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creating the smooth surface that envelops the above-mentioned function63. The power output expected under 
clear sky conditions for the base PV ( PV1 ) as a function of the hour of the day and the day of the year for the 
baseline model is presented in Fig. 4.

The smart persistence model performance is reflected by the following error metrics: MAE = 0.582 , 
RMSE = 1.274 , MBE = 0.029 , nRMSE = 0.387 , R2

= 93.811% . Although the smart persistence model 
shows quite good performance in comparison with the naive persistence model ( RMSENaive = 1.985 , 
MAENaive = 1.110 ), it is evident that the LSTM significantly outperforms the smart persistence model. This is 
also highlighted through the forecast skill index of the LSTM model which is equal to 0.221. A positive forecast 
skill index indicates that the proposed model outperforms the smart persistence model, while a negative one 
shows that the smart persistence model performs better.

Finally, Fig. 5 depicts the results of the forecasting models (LSTM baseline model and smart persistence 
model) for two different periods. It can be concluded that the model manages to capture seasonality, trends 
and weather-related variations both in summer and winter periods, and thus offer significantly better forecasts 
compared to the smart persistence model.

Transfer learning methods.  The TL models are equipped with exactly the same characteristics as the 
baseline model, using the baseline pre-trained model to solve exactly the same problem, with the same features 
and the same expected output, in a different PV plant. Therefore, the features of the TL models are: (a) Power 
output measured value, (b) air temperature, (c) global horizontal irradiance, (d) humidity, (e) month of the year 
(one-hot encoding) and (f) hour of the day (sine/cosine transformation) and the model output is a one-hour 
ahead forecast of the PV power output.

The validation process of the proposed TL strategies is implemented in 6 PV plants, with different nominal 
and peak capacity, located in 4 cities in Portugal. Four architectures are compared, including the presented TL 
strategies, as well as a conventional model where no TL has been applied. For the TL models, a pre-training is 
applied on the whole dataset of the base PV (30 months of data). Then, the four models are trained using one 
year of data (8760 h) and they are tested in the rest of the dataset. For each PV plant the size of the test dataset 

Figure 4.   The power output expected under clear sky conditions for the base PV as a function of the hour of 
the day (ranging between 0 and 23) and the day of the year (ranging between 0 and 255).

(a) Summer period (from 04-08-2020 to 11-08-2020) (b) Winter period (from 18-01-2021 to 25-01-2021)

Figure 5.   Example illustrating how the solar power forecasting model performs in comparison with the smart 
persistence model. The horizontal axis indicates the hourly time-step of the evaluation period, while the vertical 
axis shows the solar power production. The example refers to a randomly selected summer week (between hours 
54 and 222 of the validation set, corresponding to 04-08-2020 and 11-08-2020) and a randomly selected winter 
week (between hours 4060 and 4228 of the validation set, corresponding to 18-01-2021 and 25-01-2021) of the 
evaluation period.
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is different depending on data availability, as presented in Table 1. The models’ accuracy is evaluated based on 
their performance on the evaluation data using RMSE, MBE, MAE, NRMSE and R2.

20 training repetitions are performed for each model, in order to eradicate randomness. This number of rep-
etitions is generally proposed in the literature. The forecasting performance for all models is presented in Table 2, 
where the average values of RMSE, MBE, MAE, NRMSE and R2 are reported, providing some very useful insights.

Firstly, it is worth mentioning that all LSTM models perform better than the smart persistence model in terms 
of RMSE. This fact illustrates the suitability of the selected model and the selected features for this problem. 
The only case that the LSTM performs worse than the smart persistence model is for the conventional LSTM of 
PV2 . Even in this case the three TL models have lower error indexes than the smart persistence one. The forecast 
skill index varies between − 0.15 (it is negative in the case of PV2 ) and 0.48 for the conventional model, while it 
varies between 0.28 and 0.56 for the TL strategies. The average percentage increase of the forecasting skill index 
between the conventional and the TL models is 16.3% . Finally, the MBE index shows that none of the developed 
models shows any indication of bias.

Regarding the comparison between the conventional LSTM and the three TL models, the impact of TL is 
evident as TL strategies have better accuracy than the conventional one for all six PVs . The boxplots presented in 
Fig. 6 also show that the conventional LSTM has greater RMSE average value in all target PV plants, while it also 
demonstrates a bigger variance compared to the TL models. Indeed, the models that are used without TL suffer 
from high variance, offering considerably different accuracy in each repetition. On the contrary, models trained 
with the three TL strategies show nearly zero variance, while also achieving more accurate, non-biased forecasts. 
A remarkable point is that for PV3 , where the evaluation period is only 38 days (910 hourly point forecasts), the 
three TL models do not seem to outperform the conventional model in the extent that they do for the other PV 
plants. This is due to the fact that the evaluation takes place solely on March (winter period) where the problem 
is more complex as weather patterns are often disturbed, while another sign illustrating the forecasting difficulty 
in PV3 is that neither the smart persistence model is able to make better forecasts.

Table 2.   Average forecasting performance (accuracy) of the smart persistence model and the stacked LSTM 
models with and without TL. RMSE, MBE and MAE are measured in KWh, while for R2 and nRMSE the 
percentage is given for each model

PV Metric Without TL Smart Persistence TL Strategy 1 TL Strategy 2 TL Strategy 3

PV2

RMSE (KWh) 3.77 3.27 2.34 2.37 2.36

MBE (KWh) − 0.25 0.17 0.16 0.06 0.05

MAE (KWh) 1.81 1.38 1.11 1.11 1.12

nRMSE (%) 53.14 46.18 33.06 33.38 33.28

R
2 (%) 87.74 91.37 95.57 95.49 95.51

PV3

RMSE 11.39 17.32 10.59 11.35 11.48

MBE 0.83 0.02 0.79 0.81 0.80

MAE 6.01 6.49 5.29 5.94 5.85

nRMSE 40.78 62.15 37.94 40.63 41.13

R
2 93.60 85.27 94.49 93.68 93.53

PV4

RMSE 1.65 2.69 1.48 1.46 1.46

MBE − 0.01 − 0.82 0.11 0.06 0.07

MAE 0.81 1.32 0.70 0.69 0.70

nRMSE 35.57 57.84 31.94 31.42 31.51

R
2 94.46 85.40 95.55 95.70 95.68

PV5

RMSE 2.66 5.27 2.31 2.31 2.31

MBE − 0.08 0.35 − 0.04 − 0.11 − 0.16

MAE 1.37 1.52 1.13 1.15 1.15

nRMSE 31.68 62.75 27.56 27.46 27.54

R
2 95.17 81.51 96.43 96.46 96.44

PV6

RMSE 6.75 8.59 5.65 5.50 5.51

MBE 1.35 − 0.04 0.94 0.43 0.56

MAE 3.54 4.25 2.74 2.79 2.77

nRMSE 40.92 52.11 34.23 33.37 33.40

R
2 92.72 88.58 95.07 95.33 95.31

PV7

RMSE 3.64 4.59 2.47 2.40 2.41

MBE − 0.16 0.15 0.24 − 0.02 0.03

MAE 1.75 1.64 1.15 1.11 1.12

nRMSE 40.87 51.49 27.78 26.97 27.08

R
2 92.23 88.19 96.56 96.76 96.74
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Data availability impact.  As mentioned in the introductory section, one calendar year of data is the mini-
mum time interval for a model to be sufficiently trained, in order to incorporate all seasonal and weather pat-
terns of the problem. Also, the presented results indicate that TL models can perform better than conventional 
models considering a scenario where one year of training data is available, while conventional models are still 
better than reference smart persistence ones. However, the application of TL offers the possibility to obtain reli-
able and accurate predictive models, even when the available training data for the target domain are less than one 
year. In this context, the proposed architectures are compared on the target PVs for different training periods, 
namely 3 months, 6 months and 9 months of available data. It must be noted that, although the training period 
has changed, the testing period has been kept the same for comparison purposes between the different scenarios.

Figure 7 presents the RMSE index of the four models in the four aforementioned scenarios of different training 
periods. Results indicate that the TL models are more robust considering different volumes of training data and 
that their performance slightly improves when more data are available. This can be contributed to their anterior 
training on the base PV over 3 years of hourly data. On the other hand, the impact of data scarcity is apparent 
for the conventional LSTM model, which radically improves when the training period increases and identifies 
new seasonal and weather patters. It is worth mentioning that none of the 3-month trained conventional models 
outperforms the smart persistence model, while only three 6-month trained conventional models manage to 
achieve better accuracy compared to the smart persistence one. The same does not apply for the 3-month trained 
TL models, which have lower RMSE compared to both the conventional LSTM and the smart persistence model.

Finally, the difference in terms of RMSE between the conventional model and the best-performing TL model 
decreases as more training data are becoming available. This is evident in all six target PVs. For example, the 
difference in terms of RMSE in PV5 is limited from 150.5% (3-month training models) to 15.1% , about 10 times 
lower. Same decrease patterns are also identified in the other five PVs, further highlighting the importance of 
TL, especially when less than one calendar year of data is available.

Discussion
Collecting sufficient data from recently installed solar plants is a long process. The urgent need for accurate PV 
production forecasts has led to the idea of exploiting solar plants with sufficient data to provide accurate fore-
casts for recently installed ones. In this paper, the purpose of the research is to determine whether TL can be 
efficiently employed to provide PV production forecasts for solar plants with limited data size. Three TL strate-
gies based on a stacked LSTM architecture are developed and compared to a non-TL approach. The presented 
methodology is tested in power plants in different cities and with different nominal capacities. The findings of 
the experimental application indicate that all three TL strategies significantly outperform the non-TL approach 
in terms of forecasting accuracy, evaluated by several error indexes.

Moreover, the models are compared with a smart persistence model based on the clear-sky power output. 
The models which are trained with the three TL strategies significantly outperform the reference model, having 
a forecast skill score between 0.28 and 0.56 considered satisfying by the existing literature. On the opposite side, 

Figure 6.   Boxplot that summarizes the performance of the four stacked LSTM models for the six target PV 
plants based on the RMSE. Base stands for the model that no TL has been applied, while TL1, TL2, TL3 stand 
for the three TL strategies, respectively.
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the non-TL LSTM model shows limited forecasting accuracy, quantified by an average decrease of 16.3% in the 
forecast skill index. The aforementioned results correspond to the simulation scenario in which one calendar 
year of data is available. Results of additional experiments using varying volumes of training data suggest that 
the less data available, the greater the gap between TL strategies and the non-TL approach, further necessitating 
the use of TL. Especially in the scenario that 3 months of data are available for training, the gap between the 
conventional model and the TL ones significantly increases, while the conventional LSTM fails to outperform 
even the reference model.

Last but not least, one of the most significant parameters in the concept of TL is the replicability of the pre-
sented TL strategies. In order to assess this aspect, the experimental application has been performed on three 
PV panels located in the same city as the base PV and on three PV panels located in different cities. This enables 
comparison between the two groups in terms of forecasting accuracy. However, the fact that these PV panels are 
located in different cities and have different nominal power indicates that the comparison must take place on the 
forecast skill index, to be in alignment with the proposed verification guidelines for deterministic solar forecasts. 
Thus, the average forecast skill index for PV panels in the same city is 0.4, while the corresponding value for PV 
panels in different cities is 0.43. This is undoubtedly a sign that the forecasting accuracy of the models is not 
affected by the geographical distance between the base and the target PV.

This study is the first step towards enhancing our understanding of the impact of TL on solar plant power 
prediction. Future work will concentrate on assessing the impact of the base model’s training data volume, 
investigating whether training base models with more data or with data from different solar plants could further 
improve forecasting accuracy. This could result in the evolution of cross-stakeholder models and data sharing 
among energy communities, with the aim to promote inclusiveness in smart cities environments. Further studies, 
which take geographical characteristics differences between the base and the target domain into account (i.e., 
altitude, solar plant orientation), will also need to be performed. Finally, the prospect of being able to use TL for 
solar plants power forecasting, serves as a continuous incentive for future research on transferring knowledge 
in similar problems, such as cross-building energy forecasting, wind power prediction, and hydraulic plant 
generation forecasting, among others.

Data availibility
The meteorological data included in this study are available within the Copernicus Atmosphere Data Store - via 
CAMS Solar Radiation time series database (https://​ads.​atmos​phere.​coper​nicus.​eu) and the Weather Under-
ground (https://​www.​wunde​rgrou​nd.​com) website. User registration required (free) for downloading. All power 
output data analyzed during this study can also be provided upon request.

Code availability
The deep learning-based pre-trained models for PV power output forecasting and the source code required for 
reproducing the results of this study are available at https://​github.​com/​Eliss​aiosS​armas/​Trans​fer-​learn​ing-​strat​
egies-​for-​solar-​power-​forec​asting-​under-​data-​scarc​ity.

Figure 7.   Comparative performance of the four models based on RMSE index for 3 month, 6 month, 9 month 
and 12 month training period for the six target domain PVs.

https://ads.atmosphere.copernicus.eu
https://www.wunderground.com
https://github.com/ElissaiosSarmas/Transfer-learning-strategies-for-solar-power-forecasting-under-data-scarcity
https://github.com/ElissaiosSarmas/Transfer-learning-strategies-for-solar-power-forecasting-under-data-scarcity
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