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Over the past few months, numerous studies harnessed in

silico methods such as molecular docking to evaluate food

compounds for inhibitory activity against coronavirus infection

and replication. These studies capitalize on the efficiency of

computational methods to quickly guide subsequent research

and examine diet-disease relationships, and their sudden

widespread utility may signal new opportunities for future

antiviral and bioactive food research. Using Coronavirus

Disease 2019 (COVID-19) research as a case study, we herein

provide an overview of findings from studies using molecular

docking to study food compounds as potential inhibitors of

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2), explore considerations for the critical interpretation of

study findings, and discuss how these studies help shape

larger conversations of diet and disease.
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Accelerated food research in the pandemic
world
The Coronavirus Disease 2019 (COVID-19) pandemic has

led to a rapid increase of research on antiviral food-derived

compounds, specifically those targeting Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Food

compounds with biological activities in addition to their

nutritional properties are generally considered safer for

consumption than synthetic pharmaceutical drugs and have

beenreceivingrenewedinterest inrecentyearsas templates

for drug design in light of genomic and technological

advances [1]. Emerging evidence for the apparent protec-

tive effects of certain dietary practices and nutritional status

on COVID-19 susceptibility and recovery further highlight
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the potential biological importance of antiviral and other

bioactive food compounds [2–4]. Indeed, food-derived

polyphenols have demonstrated antagonistic properties

against SARS-CoV, which was the culprit behind the

2003 SARS outbreak, Middle East Respiratory Syndrome

Coronavirus (MERS-CoV), and other viruses [5–7].

While in vitro approaches have been and continue to be

widely used to assess antiviral activity, the urgency and

severity of the pandemic has prompted many studies to

adopt in silico methods, which can predict molecular

interactions much faster than in vitro approaches and

with atomic-level detail. In particular, molecular docking

has been used in numerous studies, oftentimes as a sole

method, to screen food compounds for SARS-CoV-2

inhibitory activity. Although this method has been

increasingly used in contemporary food science, it is

predominantly used to evaluate molecular interactions

during nutrient metabolism, and between bioactive pep-

tides or functional, taste-inducing, or harmful compounds

and their respective targets [8–10]. The vast majority of

these studies employ molecular docking after in vitro, or

even in silico [11], testing to assess the mechanisms

underpinning observed results. Against a new target

and its alarming threat on global health, however, the

sole application of computational methods allowed for

screening studies to be rapidly conducted and communi-

cated. These studies capitalize on not only the efficiency

of computational methods, but also the expanding data-

bases of food-sourced compounds, decades of research on

antiviral food compounds, and timely discoveries of

SARS-CoV-2 from other fields including structural biol-

ogy and pharmaceutical science. This recent surge of

research thus presents a unique opportunity to assess

COVID-19 as a case study for how molecular docking

can be used in food research to understand diet-disease

relationships.

Molecular docking for drug discovery
Molecular docking is a computational technique com-

monly used in pharmaceutical science to predict the fit of

a compound to a target substrate, which is oftentimes a

protein of clinical or functional importance. The deter-

mination of fit varies depending on the algorithms used

and may take into account molecular spatial orientation,

statistical models, and physicochemical interactions [12].

Using the structural information of both target and

ligands, sampling algorithms first generate multiple con-

formations of each ligand associating with the target and

scoring functions subsequently assign numeric scores to
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each conformation and rank the overall scores [13]. The

highest scored ligands are most likely to form stable

complexes with the target, and therefore have highest

potential to disrupt the function and activity of the

protein target. Atomic-level interactions between each

ligand-substrate pair can also be inferred from the dock-

ing results.

The efficiency and growing accuracy of molecular dock-

ing at evaluating large catalogs of compounds — exceed-

ing 1 million in some cases [14] — for specific targets has

increased the use of this technique in computer-aided

pharmaceutical drug design workflows over the past few

decades. Studies utilizing this method have played

critical roles in the development of currently available

drugs for the treatment of Human Immunodeficiency

Virus (HIV) and influenza, and have contributed in the

search for potential treatments of cancer, malaria, and

other diseases [15]. Beyond screening and optimizing

ligand potency for subsequent validation, this method

has increasing applications in other aspects of drug

design including side effect prediction or multi-target

evaluation related to a single disease [16]. Molecular

docking was thus rapidly implemented into the search

for potential COVID-19 treatment strategies once the

structures of notable SARS-CoV-2 proteins were solved

[17,18].

Potential SARS-CoV-2 inhibitors from foods
Over the last few months, numerous studies have used

molecular docking to screen food compound libraries for

candidate inhibitors of SARS-CoV-2, albeit with differ-

ent approaches. Several studies screened large databases

of ca. 10 000 to over 162 000 food constituents for

candidate compounds [19,20,21�,22�]. Casting a wide

net allowed these researchers to identify specific chemi-

cal features that may be integral for strong association

with the target substrate. For example, compounds that

contained aromatic nitrogen atoms [20] and polycyclic

structures were predicted to form strong associations

with residues within the active site of SARS-CoV-2 main

protease (Mpro), a crucial protein of coronavirus replica-

tion [22�]. Other researchers took a more targeted

approach in their screening and focused on specific

compound types when curating libraries of potential

ligands. A common strategy was to screen compounds

previously associated with antiviral activity, such as

polyphenols. From these studies, polyphenols from

green tea [23], pomegranate peel [24], honey and prop-

olis [25]; flavonoids from citrus [26] and other sources

[27,28]; and tannins [29] were reported to have high

predicted potency against SARS-CoV-2 Mpro.

Rather than focus on specific compound types, some

researchers opted to conduct food-oriented exploratory

expeditions. Such studies evaluated known compounds

of specific foods such as spices [30,31], cinnamon [32],
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olives [33�], and teas [34]. Interestingly, a large number of

studies evaluated foods that are traditionally associated

with medicinal properties and ethnopharmacological

usage. Authors of such studies screened libraries of com-

pounds curated based on literature review or traditional

knowledge [35–40], their presence in medicinal ingredi-

ents such as black cumin (Nigella sativa) [41,42], or

chemical identification by chromatographic and spectro-

metric analyses of medicinal foods such as garlic oil,

horchata, and Liupao tea [43,44�,45]. The drug-likeness

of highly ranked compounds was determined in many of

these studies using in silico assessments of their pharma-

cokinetic and toxicological properties, with authors con-

cluding that high-ranking compounds have potential for

lead optimization into drug candidates and warrant fur-

ther experimental validation, although such validation

studies currently remain scarce. The identification of

potential antiviral compounds from these studies were

typically presented as supporting evidence for the pur-

ported antiviral activities of the food sources.

Food compounds that exhibit non-antiviral biological or

functional properties were also curated and assessed for

potential activity against SARS-CoV-2. Wahedi et al. [46]

evaluated stilbenes, which are associated with anti-

tumor, anti-inflammatory, and other biological activities,

with the aim of repurposing them as agents against

COVID-19 and found that resveratrol may have potent

activity inhibiting the host-virus interactions mediated

by SARS-CoV-2 spike protein. Food-derived peptides

with purported anti-hypertensive activity were predicted

to interact with various targets of SARS-CoV-2 and

demonstrated potential as lead compounds for

COVID-19 treatment [47]. Nisin, a well-established

and common food preservative with known antimicro-

bial activity, was reported for the first time to potentially

possess antiviral activity via interactions with human

angiotensin-converting enzyme 2 (ACE2), a protein

involved in coronavirus-host recognition [48]. These

studies mirror pharmaceutical drug repurposing

research, which seek to identify new therapeutic uses

for drugs that are already extensively studied, approved,

or discontinued. By taking advantage of the research and

development already conducted on existing compounds,

drug repurposing expedites the search for new drugs.

Considering the examples listed above, it is possible,

then, that repurposing studies on food ingredients and

approved additives may also help expedite the search for

new bioactive food ingredients.

Proteins may release antiviral peptides after
digestion
In contrast to treating food as a cornucopia of potentially

therapeutic compounds as described above, some

researchers have sought to screen for compounds that

may be released by digestive enzymes after consumption.

Studies using this approach assessed bioactive peptides
www.sciencedirect.com
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released from dietary proteins from grains, seeds [49,50],

and microalgae [51]; fish [52] and squid [53]; and soy

cheese [54�]. While some studies followed the modern

omics approach, wherein peptides are first isolated and

identified in vitro using liquid chromatography and mass

spectrometry [49,54�], most of these studies adopted an

entirely in silico approach that used simulated gastroin-

testinal digestion to predict the resulting mixture of

hydrolyzed peptides. Also unlike contemporary bioactive

peptide research, which typically focus on peptides as a

purified end product [9], several studies listed here also

considered the applicability of the source protein as

nutritional interventions for COVID-19 patients [50–

53]. Aside from peptides, intact proteins from bee-

secreted royal jelly with antiviral activity against Hepati-

tis C and B viruses [55] were also predicted to associate

with several SARS-CoV-2 and host targets [56], although

the mode of delivery of these proteins for COVID-19

remains to be explored.

Links between diet and COVID-19
susceptibility
The use of molecular docking in food and nutritional

sciences to explain or theorize relationships between diet

and disease susceptibility has emerged during the pan-

demic. When epidemiological analysis revealed that

countries with marine-sourced dietary omega-3 fatty acids

had lower fatality rates of COVID-19, Vivar-Sierra et al.
[57�] used molecular docking results to help propose that

a possible explanation was impeded host entry due to

omega-3 fatty acids reinforcing the closed (i.e. inaccessi-

ble) conformation of the SARS-CoV-2 spike protein.

Chowdhury et al. [58] used molecular docking to suggest

that the strong association predicted between choline and

SARS-CoV-2 Mpro could help explain earlier observations

that higher choline levels in expecting mothers who were

infected with COVID-19 may have protective effects for

fetal brain development. As a final example, Wang et al.
[22�] postulated that the higher consumption rates of beer

and tea, both of which they reported as sources of poten-

tially potent SARS-CoV-2 Mpro inhibitors after screening

10,870 food compounds, may play a role in the fast

recovery of Germany and China, respectively, after their

initial waves of COVID-19.

Critical interpretation of results
Although the recent increase in docking research led to

some compounds being evaluated in multiple studies,

direct comparative analyses of results among studies are

rare [52,59] and challenging due to differing methodolo-

gies [60�]. For example, although Rout et al. [31] and

Ibrahim et al. [37] both evaluated the ginger compounds

gingerol, shogaol, and zingerone against Mpro, their use of

different docking software and starting protein structures

may contribute to their discrepancies in ranking: while

the former study scored these compounds closely (�5.8 to

�6.1 kcal/mol), gingerol and shogaol were scored higher
www.sciencedirect.com 
(�7.1 and �7.4 kcal/mol, respectively) than zingerone

(�5.7 kcal/mol) in the latter study. Further, while both

studies scored the former two compounds lower than

capsaicin and piperine, the analysis by Umesh et al.
[30] scored them both higher.

When interpreting recent study findings, another aspect

to consider is how the molecular docking results were

processed. While many studies discussed in this review

aimed to identify lead compounds for optimization into

potent drugs using molecular docking as a primary

method, computer-aided drug design often implements

molecular docking into longer workflows with pre-dock-

ing and post-docking data processing using molecular

dynamics, artificial intelligence, statistical methods, and

other methods to improve the accuracy of obtained results

[16]. Molecular docking itself also undergoes constant

improvement in pharmaceutical science, exemplified by

recent advances in dataset benchmarking and the use of

consensus scoring or machine learning for more accurate

results [61]. Although some of the studies in this overview

included molecular dynamics as a post-docking assess-

ment, many lack additional data processing steps. The

short production times of molecular dynamic simulations

used in some studies also risk missing important changes

in binding stability [43,47,58], changes of which occur

over timescales of 100–200 ns [19,22�]. Specific workflows

may also be required depending on the analytes evalu-

ated. For example, a rigorous filtering protocol with

positive and negative controls can mitigate false positives

when screening flavonoids [60�].

Beyond experimental set up, the results obtained from

molecular docking studies must also be contextualized

by the narrow scope of the analysis. For example, while

molecular docking can predict direct interactions

between food constituents and disease targets with high

precision, actual nutritional modulation of the body’s

response to disease may extend beyond such associations

and involve complex cell signaling pathways that cannot

be inferred from docking results alone. The protein

structures used may also lack physiological context, such

as the glycan shielding and crowding effects on SARS-

CoV-2 spike protein [62]. Furthermore, the typically low

bioavailability of high-ranking compounds has cast

doubt on the applicability of recent study findings

[63], although some researchers have proposed that

active compounds be incorporated into nanoparticles

or pharma-nutraceutical formulations to improve uptake

[35,64�] or administered as throat rinses [53]. Docking

studies alone also provide minimal insight on the dosage

required of a compound to elicit physiological or tem-

poral effects.

Despite the limited scope of standalone studies, the

recent increase in docking studies facilitate the observa-

tion of general trends. For example, many highly ranked
Current Opinion in Food Science 2022, 44:100804
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compounds with predicted inhibitory activity against

Mpro contain polycyclic structures [22�,31,33�] or, in the

case of peptides, amino acid residues containing ring

structures [50,53]. Compounds such as epicatechin and

its derivatives [23,27,44�] and hesperidin were also con-

sistently ranked highly as candidate inhibitors of various

targets involved in SARS-CoV-2 infection and replication

[36,40,64�,65�]. Reviewing the results from multiple stud-

ies can provide additional context for the findings from

standalone studies. Fatty acids, for example, may still

offer protective roles against COVID-19 despite low

predicted association with SARS-CoV-2 Mpro [22�] by

complexing with other viral targets [57�]. Similarly,

although organosulfur compounds such as diallyl disulfide

and diallyl trisulfide from garlic scored relatively low

among spice compounds for Mpro [30,37], further investi-

gation into these compounds may still be warranted due

to their abundance in garlic oil — together accounting for

over 51% of constituents — and predicted interaction

with ACE2 [45].

Translatability of findings
While examples of translatability between molecular

docking results and clinical effect exist in drug discovery

[15], such translations for food components and disease

are less abundant. Epicatechin and its derivatives [27,44�]
and high-ranking flavonoids [28] were reported to exhibit

potent in vitro inhibitory activity against Mpro. The anti-

viral activity of hesperidin against SARS-CoV-2 [65�] and

hepatitis A virus as a model RNA virus has also been

demonstrated in cellular and plaque assays, respectively

[64�]. Considering these limited examples and past

research on the antiviral activities of polyphenols [5],

the results reported from recent docking studies may

be translatable to in vitro experimental results at least

for some plant compounds. However, the in vivo inhibi-

tory activity of food components against SARS-CoV-2

remains largely unknown since suitable animal models

for COVID-19 remain under active development [66,67].

It is thus difficult to fully assess the applicability of recent

findings on the treatment of or protection against

COVID-19 at this time.

Even considering the lack of research evaluating the

nutritional and clinical contributions of recent molecular

docking studies on food components, the increased use of

molecular docking in food research has demonstrated the

practicality of this method for enriching discussions of

food and its effects on disease susceptibility. Using

COVID-19 research as a case study, it becomes evident

that molecular docking allowed researchers to respond

very quickly to an urgent global health issue and contrib-

ute to conversations of diet-disease relationships by con-

ducting large-scale screening of food antivirals for drug

development, exploring nutritional intervention strate-

gies, and searching for the molecular basis behind epide-

miological trends. Such conversations will become ever
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more important as the search for treatments against

SARS-CoV-2 continues and the world seeks to prepare

for post-pandemic normality. Already, evidence linking

plant-rich diets with protective effects against COVID-19

is mounting [3,4]. Deficiencies in certain vitamins and

micronutrients have also been associated with increased

COVID-19 hospitalization and mortality, and the appli-

cability of these nutrients as interventional strategies may

become clearer as more data is collected from ongoing

clinical trials [2]. While further validation studies are still

required to demonstrate clinical effects, the critically

interpreted results from molecular docking studies can

provide insights to guide subsequent research and a

starting point for theorizing diet-disease relationships.

These recent trends may thus provide impetus for future

antiviral and bioactive food research to continue leverag-

ing molecular docking when applicable. Whether the

recent widespread utility of this method is an artefact

of a severe pandemic, however, or signals new opportu-

nities for bioactive food research remains to be seen.
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