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Abstract

High-throughput sequencing technology has helped microbial community ecologists explore

ecological and evolutionary patterns at unprecedented scales. The benefits of a large sam-

ple size still typically outweigh that of greater sequencing depths per sample for accurate

estimations of ecological inferences. However, excluding or not sequencing rare taxa may

mislead the answers to the questions ‘how and why are communities different?’ This study

evaluates the confidence intervals of ecological inferences from high-throughput sequenc-

ing data of foliar fungal endophytes as case studies through a range of sampling efforts,

sequencing depths, and taxonomic resolutions to understand how technical and analytical

practices may affect our interpretations. Increasing sampling size reliably decreased confi-

dence intervals across multiple community comparisons. However, the effects of sequenc-

ing depths on confidence intervals depended on how rare taxa influenced the dissimilarity

estimates among communities and did not significantly decrease confidence intervals for all

community comparisons. A comparison of simulated communities under random drift sug-

gests that sequencing depths are important in estimating dissimilarities between microbial

communities under neutral selective processes. Confidence interval analyses reveal impor-

tant biases as well as biological trends in microbial community studies that otherwise may

be ignored when communities are only compared for statistically significant differences.

Introduction

Microbiology has been revolutionized by high-throughput sequencing (HTS), allowing the

investigation of ecological and evolutionary patterns at unprecedented broader and deeper

scales, especially for the rare or cryptic microbial biosphere [1,2]. For example, until a few

years ago, sampling efforts significantly limited ecological and evolutionary inferences for the

hyperdiverse foliar fungal endophytes (FFE) because of the time and labor necessary for cul-

turing, isolating, and genotyping individual fungi from plant tissues. High-throughput ampli-

con sequencing (e.g., ITS rDNA sequencing), has transformed the field by allowing more
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samples to be sequenced at deeper coverage per community with greater resolution of genetic

variation within communities. Still, undersampling and lack of replication remain potential

sources of bias for microbial community ecologists. Pilot studies are suggested to understand

variability and species diversity of samples [3], but resources are often limiting, either in the

field or in the lab, for a preliminary power analysis. Understanding how current practices may

bias our inferences of HTS data will help design better experiments and fieldwork [4,5]. The

goal of this study is to use real fungal ITS rDNA sequencing datasets and simulated microbial

community datasets to better understand the interactive effects of key design variables, such as

sampling efforts and sequencing depths, on the robustness of a range of effect sizes, from

prominent to subtle community structures.

One of the most commonly debated questions for efficient HTS usage is sampling effort

versus sequencing depth (e.g., [5–9]). The number of samples and sequencing coverage are not

necessarily tradeoffs if multiple sequencing runs can be computationally combined for the

same samples. Nevertheless, the cost of sampling (e.g., experimental set-up, travel, tissue stor-

age, DNA extraction, etc.) tends to stay the same while the cost of sequencing has historically

decreased. Many analytical studies conclude that large numbers of samples at shallow coverage

(1,000–2,000 sequences per sample) are better than small numbers of samples at deep coverage

to detect biologically relevant patterns (e.g., [10,11]). This is because beta diversity (differences

among or between samples), unlike alpha diversity, tends to be relatively insensitive to

sequencing depths [11]. Deeper sequencing, however, is necessary to reveal rare (low-abun-

dance) taxa, whose importance in community ecology is debated [12]. Even when sequencing

depths are high enough to reveal a rich rare biosphere, rare taxa are sometimes deliberately

excluded from community analyses since they may represent sequencing errors, contamina-

tions (both pre- and in-sequencing, see [13,14]), or their exclusion improves statistical preci-

sion [15]. Discarding rare sequences is also recommended due to their likely artefactual

origins (e.g., [16,17]). The widespread practice to rarefy community samples to a common

number of minimum sequences also effectively removes the most rare taxa from final analyses.

Some studies even suggest shallow sequencing will improve correlations between community

composition and environmental parameters [18]. However, low-abundance taxa may be ‘con-

ditionally rare’ and reveal ecologically important species during disturbance or seed banks that

make robust ecosystems [12,19–21] or are likely ‘real’ biological signals [17,22]. Furthermore,

some evolutionary processes, such as drift or passive dispersal, may disproportionately affect

the populations of rare taxa more than abundant taxa [23], which leads to subtle differences

among communities that would not be inferred without deep sequencing.

In addition to sampling effort and sequencing depth, microbiologists are interested in

understanding how taxonomic resolutions influence the robustness and effect sizes of commu-

nity dissimilarities [24]. How taxonomic resolution influences the strength (i.e., effect size) of

ecological patterns could give clues to the underlying genetic structure of key taxa and the evo-

lutionary forces underlying community assembly (e.g., [25]). For example, if finer taxonomic

groupings increased beta diversity and gave greater resolution to the population genetic struc-

ture across landscapes or habitats, this reflects rapid niche divergence among closely-related

taxa. On the other hand, if coarser taxonomic groupings either increased or had little effect on

community structure, this reflects niche conservatism [24].

The goals of this study were to explore the precision (confidence intervals) and effect sizes

across three technical variables of HTS studies pertaining to microbial communities: 1) sam-

pling effort, 2) sequencing depth, and 3) taxonomic resolution. Foliar fungal endophyte com-

munities were used as case studies because studies using HTS data on FFE are still relatively

rare compared to those for bacterial or mycorrhizal fungi and the species (i.e., sequence) diver-

sity among potential sampling units (e.g., tissue mass, leaves, canopies, or host species range)
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is difficult to extrapolate from preliminary culturing studies. Foliar fungal endophytes are also

not a monophyletic assemblage, but are a diverse group, spanning at least two phyla and more

than six classes [26–28]. The number of species sequenced from a single individual depends

highly on the methods for isolation and identification, and internal transcribed spacer (ITS)

amplicon sequencing has revealed several dozen to over one hundred distinct operational tax-

onomic units (OTUs) per host individual or sample [29,30]. The sequence diversity also

depends on a number of technical practices (e.g., primer discrimination between plant and

fungal DNA, plant tissue size, PCR conditions, etc.) and is challenging to predict prior to

sequencing. The unknown sequence diversity presents barriers to designing sampling strate-

gies and performing power analyses. To better under the effects of technical variables, such as

sequencing depths, on ecological or evolutionary interpretations from HTS community data,

ITSrDNA datasets from Illumina MiSeq HTS were selected from two ongoing studies that

vary in effect sizes: FFE communities with 1) low dissimilarity between different tissue types of

the same host or 2) high dissimilarity between different geographic locations from the same

host species.

The effect sizes (i.e., microbial community dissimilarity) between groups and their confi-

dence intervals were non-parametrically analyzed using analysis of similarities (ANOSIM;

[31]) and permutational ANOVA (PERMANOVA; [32]). The ANOSIM R value is based on

the difference in the average ranking of dissimilarity indices between- and within-group com-

munities. ANOSIM is appropriate for testing general differences between groups and not only

differences between their centroids. PERMANOVA specifically tests if the centroids of the

groups are equivalent for all groups and is known to be unaffected by heterogeneity in disper-

sions for balanced designs [33]. The effects of increasing sampling effort or sequencing depth,

which increases the proportion of rare taxa in microbial communities, were tested with two

dissimilarity indices that are commonly used: Bray-Curtis and Jaccard. A binary metric, such

as Jaccard, that gives equal weight to rare and abundant taxa may increasingly overestimate

community dissimilarity as sequencing depths increase compared to the Bray-Curtis index

that gives more weight to abundant taxa. Increasing sequencing depths and sampling efforts

were expected to both improve confidence intervals on estimates of community dissimilarity,

although not necessarily linearly. The effects of taxonomic resolution were expected to vary by

the types of communities that were compared. Confidence intervals (CI) rather than p-values

were investigated to better understand the magnitude and precision of the differences in com-

munity structures [34]. Finally, the effects of sampling efforts and sequencing depths on effect

sizes and CI were measured for simulated communities under random drift (i.e., no selection).

The case studies here do not make recommendations on sampling size or sequencing depths,

but demonstrate how these two factors along with taxonomic resolution can affect various eco-

logical and evolutionary inferences from HTS data of microbial communities.

Materials and methods

Sampling and sequencing

The effects of sampling efforts, sequencing depths, and taxonomic resolution were tested on

the precision of ecological inference using datasets from two Illumina MiSeq sequencing of

foliar fungal endophytes (FFE). The FFE sequences came from tips and bases of Pinus taeda
(loblolly pine) needles (n = 127) growing in North Carolina, USA, or whole Pinus torreyana
(Torrey pine) needles (n = 38) from California, USA (Santa Rosa Island and San Diego). Sam-

pling, sequencing, data filtering procedures can be found in [23] for P. taeda needles and were

similar to sampling procedure for P. torreyana needles. P. torreyana needles were collected in

summer of 2015 from Santa Rosa Island (34.00 N, 120.05 W; permit issued by National Park
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Service) or Torrey Pine State Reserve (32.92 N, 117.25 W; permit issued by Department of

Parks and Recreation) in California, US. The P. torreyana stands were mature, at least 6 inches

in diameter at breast height. From each Torrey pine tree, 10 needles (10 different fascicles)

from different branches were collected haphazardly between 2 and 10 m from the ground

using a pole saw. In total, leaves from 24 tree samples from Santa Rosa Island and 14 tree sam-

ples from San Diego were processed for FFE sequencing.

DNA from needles were extracted and prepared in the same way as in [23]. The ITS1 region

was amplified using the ITS1F-KYO1 and ITS2-KYO1 [35] primers modified with Illumina

overhang adaptors. The first stage of amplification was carried out in a total volume of 25 μl

using 10 ng of DNA, 0.1 μM of BSA, 2.5 μl of 10x PCR buffer containing 15 mM MgCl2,

200 μM of each dNTP, 0.75 units of Choice-Taq DNA polymerase (Denville Scientific Inc,

Holliston, MA, USA), and 0.5 μM of each primer. The PCR conditions were 3 min at 95˚C, fol-

lowed by 35 cycles of 30 s at 95˚C, 30 s at 47˚C, 30 s at 72˚C, and a final elongation of 5 min at

72˚C. Non-template PCR reactions did not amplify any bands. Amplicons from duplicate par-

allel PCR reactions per sample were pooled and 5 μl were used as template in the second

amplification, which consisted of 3 min at 95˚C, followed by 10 cycles of 30 s at 95˚C, 30 s at

55˚C, 30 s at 72˚C, and a final elongation for 5 min at 72˚C. Amplicons were purified with

Agencourt AMPure XP SPRI magnetic beads (Beckman Coulter, Brea, CA, USA) using a 1:1

ratio, and normalized to 4 nM. Paired-end sequencing (2 × 250 bps) was carried out on an Illu-

mina MiSeq sequencer at the UC San Diego Sequencing Facility.

The sequencing analysis protocol is modified from the UPARSE pipeline recommended by

Edgar [36] and implemented in USEARCH v9.0.2132 ([37]; http://drive5.com/uparse). Paired-

end raw reads were assembled using fastq_mergepairs. Simultaneously, assembled reads

shorter than 50 bps and having either more than 200 bps or 30% difference within the overlap-

ping region were excluded. Because the overlapping regions averaged about 150 bps, most

paired reads were excluded if there were more than 30% difference (45 bps). Merged reads

were filtered for reads having a maximum expected error score lower than 1.0 [38]. Reads were

clustered at 100% similarity using the unoise command with a minimum abundance size of 2

(default is 8), which also detects and discards chimeras based on a chimeric model built from

the most abundant reads. Reads were then clustered together in molecular operational taxo-

nomic units (OTUs) with various similarity cutoffs of 90%, 95%, 97% or 99% using the clus-
ter_simem command, as recommended by the UPARSE manual. The centroid sequence of

each cluster (i.e., the most common sequence from each OTU picked by the cluster_otus com-

mand) was used in a BLAST [39] search against the entire GenBank nucleotide database

excluding sequences that originated from environmental sampling (ftp://ftp.ncbi.nlm.nih.gov/

blast/db/nt�, downloaded on January 8, 2016) and outputs were parsed in MEGAN 4 [40] for

taxonomic assignment (minimum score threshold of 170, minimum hit support of 1 read,

max percent of best score 5%). Fungal reads were exported to construct an OTU abundance

table using usearch_global with unfiltered reads.

See S1–S3 Tables for number of OTUs and reads in each sample. The datasets were chosen

based on varying effect sizes of community dissimilarity. The FFE communities between P.

torreyana stands in San Diego and Santa Rosa Island show high dissimilarity (ANOSIM

R> 0.70, PERMANOVA R2 > 0.17) whereas the FFE communities between the tips and bases

of P. taeda trees had statistically significant but relatively lower dissimilarity (ANOSIM

R< 0.4, PERMANOVA R2 < 0.07). Both datasets were compared with known samples con-

taining a single ITS clone in their respective sequencing libraries to assess potential mistagging

(e.g., [14]) and error rates.
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Statistical analysis

To test the effect of sampling effort on statistical confidence, I analyzed the ANOSIM R and

PERMANOVA R2 values for 1000 random subsamples of each group (e.g., tip vs. base of P.

taeda needles or P. torreyana needles from Santa Rosa vs. San Diego) with replacement, vary-

ing in sampling size. The reads per sample were normalized with cumulative sum scaling

rather than rarefying [41]. To test the effect of sequencing depth on statistical confidence, each

sample was rarefied 1000 times to varying sequencing depths (i.e., 100, 1000, 5000, 10000, and

20000) and then subsampled to show their confounding effects at varying sampling efforts.

The 95% confidence intervals were calculated from the 1000 random subsamples. Code for

analyses were written in R software package and used the R packages metagenomeSeq [41]

and vegan [42]. R codes can be found at DataONE Dash, Dataset, https://doi.org/10.15146/

R3Z96M.

Simulated community

To demonstrate how deep sequencing could be important in understanding effects of stochas-

tic processes, as opposed to selection, drifted communities were simulated by randomly resam-

pling from a community of 954 taxa and five million individuals. The OTU table from the P.

taeda study at 97% ITS2 rDNA similarity was chosen because it had close to 1000 taxa. To sim-

ulate drift, five million individuals were randomly sampled with replacement for 20 genera-

tions to create two drifted communities from the same original community. The drifted

communities were compared from 5, 10, 15 or 20 subsamples. The community under drift has

no new species either from diversification or migration from outside communities. Naturally,

the numbers of taxa and alpha diversities for the drifted communities are lower than the origi-

nal community, but are comparable between the two drifted communities. Their beta diversi-

ties were compared with Jaccard and Bray-Curtis indices as in previous analyses but without

normalizing or rarefying.

Results and discussion

Sampling effort

As expected, increased sampling efforts significantly improved the precision of effect size esti-

mations (Fig 1). Small sample sizes (3–5) produced imprecise and misleading estimates of

effect sizes even when communities were highly differentiated (Fig 1B). The confidence inter-

val (CI) widths plateaued for large sample sizes (>15) for both ANOSIM and PERMANOVA

estimates (S1 Fig). Although the ANOSIM estimates were imprecise at low sampling sizes and

improved considerably with increasing sampling efforts, the CI for PERMANOVA estimates

were relatively precise even at low sampling sizes. The CI of PERMANOVA estimates also

tended to be much more stable with increasing sampling effort than ANOSIM estimates, likely

due to PERMANOVA being a specific test of differences in centroids among groups and less

sensitive to heterogeneity of multivariate dispersions. The CI showed similar trends over

increasing sampling efforts for community dissimilarities based on Bray-Curtis (Fig 1) and

Jaccard (S2 Fig). The rate at which precision improved with increasing sampling efforts most

likely had much to do with the differential abundance of key OTUs among samples and their

abundance relative to other OTUs that increase background noise.

Sequencing depth

The sequencing depths (i.e., randomly rarefying without replacement the final OTU table to a

common number of sequences per sample) had less effect on CI than did sampling efforts (Fig

Sampling and sequencing fungal endophytes
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2, S3 and S4 Figs). However, estimates of effect sizes became more precise overall with increas-

ing sequencing depths, especially for communities at coarser taxonomic resolution (90%).

Sometimes precision decreased at high sequencing depths for OTUs at finer taxonomic resolu-

tion (99%; Fig 2A, S3B and S3D Fig), which was likely due to increasing noise by random or

artefactual OTUs. Increased sequencing depths improved the precision for estimating the dif-

ference between FFE communities of P. torreyana trees at different geographic regions (Fig

2B) more than for tips vs. bases of needles on the same trees of P. taeda (Fig 2A).

Changes in CI are influenced by several factors that change with sequencing depths, namely

the relative number and abundance of influential taxa in the community and random noise

that diminishes precision of estimations with additional rare taxa. When effect sizes are esti-

mated with ANOSIM, narrowing CI with increasing sequencing depths suggests that rare taxa

improve the estimation of average rankings (i.e., narrowing the sampling distribution of Jac-

card or Bray-Curtis indices) of within- and between-group dissimilarities. On the other hand,

when effect sizes are estimated with PERMANOVA, narrowing CI with increasing sequencing

depths suggests that rare taxa stabilizes the dissimilarity metrics between and within-groups.

Fig 1. Effect of sampling effort on estimates of ANOSIM R and PERMANOVA R2 effect sizes and 95% confidence intervals. Sampling effort

represents random subsamples of each comparison group with replacement. ANOSIM R (grey) and PERMANOVA R2 (red) values were calculated with

Bray-Curtis dissimilarity and 95% confidence interval based on 1000 subsamples. a) Comparison of FFE communities between bases and tips of P. taeda

needles at five-sample intervals from five to 60 samples each. b) Comparison of FFE communities between P. torreyana needles between different

geographic locations (Santa Rosa and San Diego, CA) at one-sample intervals from three to 14 samples each.

https://doi.org/10.1371/journal.pone.0189796.g001
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The CI between Jaccard and Bray-Curtis analyses were considerably more similar across

sampling efforts (S1 Fig) than across sequencing depths (S3 and S4 Figs), where Jaccard esti-

mations tended to be less variable than Bray-Curtis (S3 and S4 Figs). This revealed that estima-

tion of average rankings (ANOSIM) or partitioned variations (PERMANOVA) of community

dissimilarity based on OTU presence/absence are not as variable as based on relative abun-

dances. It is logical to assume that precision is influenced more by the dissimilarity metric

when there are fewer rare taxa (low sequencing depths) than when rare taxa are observed

more often (high sequencing depths).

Many analytical studies report ‘moderate’ sequencing (e.g., 1,000–2,000 reads per sample)

is sufficient to give similar inferences [10,11] to deeper sequencing data. When microbial spe-

cies are specialized to certain habitats, their abundance is expected to increase due to opti-

mized performances. On the other hand, generalist microbial species are found in diverse

environments but at lower abundances in any one habitat. Hence, shallow sequencing still has

a very high likelihood of uncovering differences in abundance or presence of specialist taxa to

capture similar effect sizes among communities as deep sequencing [43]. However, rare taxa

sometimes can have large influences on community dissimilarities, such as communities

Fig 2. Effect of sequencing depths on estimates of ANOSIM R and 95% confidence intervals based on Bray-Curtis dissimilarity indices.

Comparisons were made between FFE communities of a) bases and tips of P. taeda needles at 5, 10, 20 and 60 samples per group and b) between P.

torreyana needles between Santa Rosa and San Diego, CA at 3, 6, 9, and 14 samples per group. Sequencing depths were tested at 100, 1000, 5000, 10000,

20000. X-axes are on a log-scale. Dotted lines indicate 95% confidence intervals for different sampling sizes. Solid lines indicate the mean. Trends for

different sampling efforts were overlapped in a single plot.

https://doi.org/10.1371/journal.pone.0189796.g002
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across geographic regions [44], where drift and dispersal are the key factors differentiating

microbial communities. Sequencing depths may have had a greater effect on narrowing CI

widths for FFE communities between Santa Rosa and San Diego (Fig 2B) than communities

between tip and base sections of needles on the same trees (Fig 2A) because of the influence of

rare taxa in the former community comparison.

To further test if rare taxa could influence effect sizes of communities across geographic

regions, we compared the beta diversity of FFE communities among nine P. taeda plots located

at various distances from one another (same dataset from [23]). The effect of sampling effort

on the nine plots was not tested since there were only four trees per plot. Interestingly, unlike

the previous community comparisons, increasing sequencing depths markedly improved the

precision of dissimilarity estimates among FFE communities (Fig 3). The CI decreased more

with sequencing depths when ANOSIM R or PERMANOVA R2 was estimated with Bray-Cur-

tis (average CI decrease of 91% from 100 to 20,000 sequences) than with Jaccard (average CI

decrease of 46% from 100 to 20,000 sequences; S5 Fig). This further supports the importance

of rare taxa in such community comparisons since Jaccard gives more weight to rare taxa than

Bray-Curtis.

Fig 3. Effect of sequencing depths on estimates of geographic community dissimilarity and 95% confidence intervals for FFE communities that

differ in geography. FFE communities between nine P. taeda plots across varying distances (1–107 km) were compared. ANOSIM R (grey) and

PermANOVA R2 (red) values were calculated with Bray-Curtis dissimilarity and 95% confidence interval based on 1000 subsamples. Sequencing depth

tested at 100, 1000, 5000, 10000, 20000. X-axes are on a log-scale. Dotted lines indicate 95% confidence interval. Solid lines indicate the mean.

https://doi.org/10.1371/journal.pone.0189796.g003
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Taxonomic resolution

The CI tended to widen at finer taxonomic resolutions (99%; Figs 1–3, S1 and S2 Figs), which

is likely due to increasing noise by random or artefactual OTUs with finer clustering algo-

rithms and chimera filtering. This could be due to increased number of unique OTUs in each

of the groups due to splitting of taxonomic groups or greater niche divergence among influen-

tial taxa. Precision based on PERMANOVA analyses (S6 Fig) tended to be less affected by tax-

onomic resolution than ANOSIM analyses (S7 Fig), suggesting that finer taxonomic resolution

(99% cut-offs) increase heteroscedasticity among samples (i.e., noise) rather than affect the

overall centroid locations of each sample. This further echos recommendations by others to be

vigilant during clustering and filtering [45,46].

Simulation of drift

To test how sequencing depth affects the estimation and robustness of the effect size of random

processes, such as genetic drift, two communities were simulated to drift for 20 generations

from a common community and subsampled at varying sequencing depths. As expected,

drifted communities were only distinguishable with deep sequencing (> 10,000 sequences per

sample; Fig 4) when at least 1% of individuals were sampled from the simulated community.

The Jaccard dissimilarity distinguished between drifted communities slightly faster than Bray-

Curtis due to the greater weight on the rare taxa.

The effect of sequencing depths on CI, however, was not immediately apparent (S8 Fig)

since the addition of rare taxa maintained the variance of the sampling distribution of the rela-

tive rankings of within- and between-group dissimilarities (S9 Fig). The CI did not narrow

until more than 10,000 individuals were sequenced per sample.

Conclusions

In this study, confidence intervals and precision were emphasized over hypothesis-testing and

p values to understand the nature of community dissimilarities estimated with large sampling

sizes or deep sequencing depths in the era of HTS. While p-values are robust to testing the

probability of differences from null predictions, confidence intervals inform the strength of

this effect, which can be compared between different treatments. For example, one might com-

pare the strength of effect size between different environmental factors by looking at how 95%

CI values overlap with subsampling.

The results emphasize the importance of sampling efforts on precision, especially from low

to mid-size sampling efforts. The effect of taxonomic resolution and sequencing depth on CI

may also give clues to patterns of niche conservatism or divergence among taxa, the relative

abundance and number of influential taxa on community dissimilarities, as well as the efficacy

of filtering and clustering methods. This study also reveals how sequencing depths can bias

our inferences. Studies that explore selection and adaptation (specialization) may not require

deep sequencing because specialist taxa tend to be abundant [43] although low-abundant

(rare) taxa can also be host-specific [1,12]. Conclusions from culture-dependent studies with

lower sampling per community are still likely relevant and significant. In contrast, studies that

explore random processes influencing community assembly, such as drift or passive dispersal

(e.g., geographic barriers and local species extinctions), require deeper sequencing. This is

because abundant taxa are less likely to go to extinction by random processes compared to rare

taxa in a given period. These statistical effects are likely observed in other diverse microbial

communities characterized by few abundant taxa and many rare taxa and are not unique to

foliar fungal endophytes.
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A carefully randomized multiplex library should prevent low-abundance taxa with artificial

origins, such as mistagging [13,14], contaminations, or sequencing errors, from having spuri-

ous correlations that would lead to biased ecological inferences. Low-abundance taxa may

diminish the statistical power to detect key differences between samples (i.e., type II errors),

but a large enough sample size should overcome this as well as help avoid type I errors. On the

other hand, sequencing coverage alone cannot overcome potential spurious conclusions due

to mistagging or contamination, no matter how deep. In moving forward, microbial commu-

nity ecologists need to carefully prepare HTS libraries by the inclusion of mock or positive-

control communities, sample replicates, and balanced primer usage frequency to detect ambig-

uous rare OTUs and maximize the sequence information for analyses [14]. A prudent consid-

eration of the filtering and clustering practices will allow for the inclusion of rare taxa in their

final analyses for unbiased estimations of community dissimilarities.
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S1 Fig. Effect of sampling effort on 95% confidence intervals of ANOSIM R and PermA-

NOVA R2 estimates differentiating FFE communities between a) bases and tips of P. taeda
needles and b) P. torreyana needles from San Diego and Santa Rosa Island. The dissimilari-

ties were calculated using Bray-Curtis (a & c) or Jaccard (b & d). The CI depends on taxonomic

resolution (different colored line) and the statistical test (different panels).

(PDF)

S2 Fig. Effect of sampling effort on estimates of ANOSIM R and PermANOVA R2 effect

sizes and 95% confidence intervals. Sampling effort represents random subsamples of each

comparison group with replacement. ANOSIM R (grey) and PermANOVA R2 (red) values

were calculated with Jaccard dissimilarity and 95% confidence interval based on 1000 subsam-

ples. Jaccard indices were calculated with CSS normalized OTU tables. a) Comparison of FFE

communities between bases and tips of P. taeda needles at five-sample intervals from five to 60

samples each. b) Comparison of FFE communities between P. torreyana needles between dif-

ferent geographic locations (Santa Rosa and San Diego, CA) at one-sample intervals from

three to 14 samples each.

(PDF)

S3 Fig. Effect of sequencing depth on 95% confidence intervals of ANOSIM R (a & c) and

PermANOVA R2 (b & d) estimates differentiating FFE communities between bases and

tips of P. taeda needles. The dissimilarities were calculated using Bray-Curtis (a & b) or Jac-

card (c & d). The CI depends on sequencing depths (x-axis on log-scale), sampling effort (dif-

ferent markers), and taxonomic resolution (different panels).

(PDF)

S4 Fig. Effect of sequencing depth on 95% confidence intervals of ANOSIM R (a & c) and

PermANOVA R2 (b & d) estimates differentiating FFE communities between P. torreyana
needles from Santa Rosa Island and San Diego, CA. The dissimilarities were calculated using

Fig 4. β-diversity patterns are revealed with increasing sequencing depths between communities that

differ only by random processes. Non-metric multidimensional scaling of two simulated communities drifted

for 20 generations from one community with 5 million individuals and 974 OTUs (taxa) have beta-diversity

patterns revealed only after 50,000 sequences per sample, which corresponds to ~1% of the community per

sample. Ordinations are based on between-sample dissimilarity calculated with Bray-Curtis (left panel),

Jaccard (middle panel). OTU accumulation curves (right panel) demonstrate community sampling with varying

sequencing depths. From top to bottom, sequencing depths correspond to a) 100, b) 1000, c) 5000, d) 10000,

and e) 50000 sequences. Insets represent the accumulation curves from the previous sequencing depth.
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(PDF)

S5 Fig. Effect of sequencing depths on estimates of geographic community dissimilarity

and 95% confidence intervals for FFE communities that differ in geography. FFE commu-

nities between nine P. taeda plots across varying distances (1–107 km) were compared. ANO-

SIM R (grey) and PermANOVA R2 (red) values were calculated with Jaccard dissimilarity and

95% confidence interval based on 1000 subsamples. Sequencing depth tested at 100, 1000,

5000, 10000, 20000. X-axes are on a log-scale. Dotted lines indicate 95% confidence interval.

Solid lines indicate the mean.

(PDF)

S6 Fig. Effect of taxonomic resolution on the 95% confidence interval of PERMANOVA R2

estimates based on Bray-Curtis (a & c) or Jaccard (b & d) dissimilarity between FFE com-

munities; bases vs. tips of P. taeda needles (a & b) or P. torreyana needles from San Diego

vs. Santa Rosa Island (c & d). The CI depends on sampling effort (different panels), sequenc-

ing depths (different markers), and taxonomic resolution (x-axis).

(PDF)

S7 Fig. Effect of taxonomic resolution on the 95% confidence interval of ANOSIM R esti-

mates based on Bray-Curtis (a & c) or Jaccard (b & d) dissimilarity for FFE communities;

bases vs. tips of P. taeda needles (a & b) or P. torreyana needles from San Diego vs. Santa

Rosa Island (c & d). The CI depends on sampling effort (different panels), sequencing depths

(different markers), and taxonomic resolution (x-axis).

(PDF)

S8 Fig. Effect of sequencing depth on estimates of ANOSIM R and its 95% confidence

intervals for simulated communities under random drift for 20 generations using Bray-

Curtis and Jaccard. Sequencing depth tested at 100, 1000, 5000, 10000, 50000, and 100000

sequences per sample. Dotted lines indicate 95% confidence intervals for different sampling

sizes. Solid lines indicate the mean. Trends for different sample sizes were overlapped in a sin-

gle plot.

(PDF)

S9 Fig. Effect of sequencing depth on the Bray-Curtis dissimilarity values within and

between two simulated communities under random drift for 20 generations. Sequencing

depth tested at 100, 1000, 5000, 10000, and 50000 sequences per sample with 20 samples per

community. R and p-values indicate the ANOSIM R and p-values with 1000 permutations.

Density plots indicate the distribution of Bray-Curtis dissimilarity values within communities.

Red density plot indicates Bray-Curtis dissimilarity values between the two communities.

(PDF)

S1 Table. Number of ITS1/2 operational taxonomic units (OTUs) in entire dataset depend-

ing on similarity cut-off thresholds, and their effect sizes based on ANOSIM or PERMA-

NOVA using Bray-Curtis dissimilarity.

(PDF)

S2 Table. Number of operational taxonomic units (S obs) and sequence reads per sample

at different ITS2 similarity cut-offs for P. taeda needle section samples. Sample names are

as follows: Plot, Tree replicate, Bottom or Top branch, Base or Tip of needles. For example, tis-

sue sample 13TB represents needle sections from plot 1, tree 3, top canopy, and base of
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