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A B S T R A C T

Objectives: 1) To develop a deep learning (DL) pipeline allowing quantification of COVID-19 pulmonary
lesions on low-dose computed tomography (LDCT). 2) To assess the prognostic value of DL-driven lesion
quantification.
Methods: This monocentric retrospective study included training and test datasets taken from 144 and 30
patients, respectively. The reference was the manual segmentation of 3 labels: normal lung, ground-glass
opacity(GGO) and consolidation(Cons). Model performance was evaluated with technical metrics, disease
volume and extent. Intra- and interobserver agreement were recorded. The prognostic value of DL-driven
disease extent was assessed in 1621 distinct patients using C-statistics. The end point was a combined out-
come defined as death, hospitalization>10 days, intensive care unit hospitalization or oxygen therapy.
Results: The Dice coefficients for lesion (GGO+Cons) segmentations were 0.75§0.08, exceeding the values for
human interobserver (0.70§0.08; 0.70§0.10) and intraobserver measures (0.72§0.09). DL-driven lesion
quantification had a stronger correlation with the reference than inter- or intraobserver measures. After
stepwise selection and adjustment for clinical characteristics, quantification significantly increased the prog-
nostic accuracy of the model (0.82 vs. 0.90; p<0.0001).
Conclusions: A DL-driven model can provide reproducible and accurate segmentation of COVID-19 lesions on
LDCT. Automatic lesion quantification has independent prognostic value for the identification of high-risk
patients.
© 2022 The Authors. Published by Elsevier Masson SAS on behalf of Société française de radiologie. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

In December 2019, an outbreak of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) spread worldwide from Asia to
Europe [1,2]. SARS-CoV-2 is responsible for coronavirus disease 2019
(COVID-19). It was declared a worldwide pandemic by the World
Health Organization on March 11th 2020. One of the main risks is the
congestion of the health care system due to an unusually rapid inflow
of patients, especially in the intensive care unit (ICU). Thus, there is a
need for precise patient selection and risk stratification to focus on
severe cases [3]. This stratification is based on clinical criteria, viral
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load on reverse-transcription polymerase chain reaction (RT−PCR)
and pulmonary lesions on chest CT.

Low-dose computed tomography (LDCT) is more effective than
chest X-ray for depicting ground-glass opacity (GGO) and consolida-
tion (Cons), with a lower dose of radiation than conventional chest
CT [4−7]. Some investigators have shown that a semi quantitative
clinical score reflecting the extent of lesions might be useful for
patient risk stratification [8,9]. Nevertheless, the computation of semi
quantitative scores remains a time-consuming process that is prone
to intra- and interobserver variability. Hence, there is a need for a
fast, reproducible and fully automated COVID-19 lung lesion segmen-
tation method that can be applied to a large cohort as a predictive
risk stratification tool in disease management and prediction.

Deep learning (DL) techniques, especially convolutional neural
networks (CNNs), have shown promising results in the automation of
medical imaging measures [10]. In thoracic imaging, these techniques
have shown excellent performance in nodule detection, lesion seg-
mentation and disease classification [11,12].

The main purpose of this study was to develop and evaluate a
complete DL pipeline that allows a fully automated segmentation of
COVID-19 pulmonary lesions on LDCT and the computation of lesion
volume and extent. Our secondary purpose was to investigate
whether automatic lesion quantification was associated with adverse
events among COVID-19 patients.

2. Materials and methods

2.1. Study design

This single-center retrospective study was conducted from March
3rd to July 2nd, 2020, and approved by the local Institutional Review
Board (N°: 2020-0012, RGPD/Ap-Hm: 2020-48). Training, validation
and test datasets including LDCT from 124, 20 and 30 patients,
respectively, were included to build a pipeline based on CNNs
adapted to assess automatic segmentation and quantification of
COVID-19 lesions on LDCT as well as computation of lesion volume
and extent. A flow diagram of the procedure is shown in Fig. 1. Then,
we evaluated the predictive value of deep learning (DL)-driven quan-
tification of lung lesions on adverse event occurrence in a dataset of
1621 patients, excluding data from the training, validation and test
datasets. Among those 1621 patients, 983 have been previously
reported [13,14]. The authors did not receive any financial or material
support from any industrial company in the execution of this study.

2.2. Population and data

2.2.1. Population
All patients were enrolled from a single center (La TIMONE Hospi-

tal − Assistance Publique Hôpitaux de Marseille (APHM)). All patients
who presented between March 30th and June 2nd 2020 with a con-
firmed COVID-19 infection using SARS-CoV RNA detection from a
nasopharyngeal swab sample [15,13] and were eligible for unen-
hanced LDCT were retrospectively included. LDCT was performed on
all patients who were over 55 years old or had risk factors for adverse
outcomes for COVID-19, such as hypertension, diabetes, obesity
(BMI>30), dyspnea or abnormal lung auscultation. The exclusion cri-
teria were refusal to participate in the protocol and an age below
18 years.

2.2.2. Clinical data
The following clinical parameters were recorded by infectiologists

(M.M. and J-C.L., with 25 and 20 years of experience, respectively)
the same day as the LDCT: age, sex, date of the first symptoms, tem-
perature, heart rate, systolic and diastolic blood pressures, respira-
tory rate, oxygen saturation, cough, rhinorrhea, dyspnea, diarrhea,
myalgia, and lung auscultation abnormalities. Medical history was
2

recorded: heart disease, tobacco use, chronic obstructive pulmonary
disease, asthma, diabetes, obesity, sleep apnea syndrome, oncological
status and immunosuppression status. The time between the first
symptoms and the LDCT was recorded. Patient follow-up lasted
10 days for patients with no adverse events, and the follow-up period
was extended to cover the in-hospital stay for patients who required
hospitalization. The primary endpoint of the second objective was a
combined outcome consisting of either a need for oxygen therapy, a
need for transfer to the ICU, hospitalization ≥10 days and/or death.

2.2.3. Radiological data
All patients underwent unenhanced, deep-inspiration LDCT on

the same system (Revolution EVO − GE Healthcare, WI, USA) with
parameters detailed in Appendix A. To develop our pipeline, we used
a training dataset composed of 124 LDCT examinations (68767 CT sli-
ces) and a validation dataset of 20 LDCT examinations (6317 CT sli-
ces) from consecutive patients in clinical care. To obtain a training
dataset including all types of lesions and with a homogeneous repar-
tition of lesion extent and severity, the chest tomography severity
score (CT-SS) developed by Yang et al. was used on the whole cohort
[16]. This score, ranging from 0 to 40, has been validated as a semi-
quantitative clinical method to quantify the extent and severity of
lung abnormalities in COVID-19. All CT-SS images were evaluated by
two experienced chest radiologists (J-Y.G. and P.H., with 25 and
7 years of experience, respectively). Patients for the training and vali-
dation datasets were chosen depending on their CT-SS, resulting in
13/144 (10.5%) and 2/20 (10%) severe patients (CT-SS >19.5) and
111/144 (89.5%) and 18/20 (80%) mild patients (CT-SS < 19.5). The
test dataset was composed of 30 consecutive patients (15587 CT sli-
ces) from clinical care and did not overlap with the training dataset
nor the validation datasets.

2.2.4. Manual segmentation
Manual image segmentation was undertaken for the combined

training, validation and test datasets by a single observer (Observer 1
(O1), A.B., with 5 years of experience). For each patient, all images
from the lung window LDCT were anonymized. Images were
imported in DICOM format into the validated post processing soft-
ware 3D Slicer (https://www.slicer.org, 2014) [17]. Manual segmen-
tation of the lung window CT was applied to the entire lung volume,
including all slices, using thresholding, painting and erasing methods
to obtain the segmentation masks of three distinct labels: GGO, Cons,
and normal pixels within the lungs (LungN). GGO and Cons were dis-
tinguished using a threshold based on the attenuation values in HU
compared to that of the pulmonary artery [18]. Distal vascular and
bronchial trees were not extracted from the labels. The non-seg-
mented part of the image was classified under a fourth label: back-
ground (BG). After being validated by one experienced chest
radiologist (J-Y.G.), the obtained segmentation masks were consid-
ered the ground truth, especially for GGO and Cons. Clinical parame-
ters were obtained from the ground-truth segmentations as follows:
lung volume (cm3) was the sum of the LungN, GGO, and Cons labels.
The GGO and Cons volumes (cm3) were extracted from the respective
labels. The GGO and Cons extents (%) were the ratios of the GGO and
Cons volumes, respectively, to the total lung volume. Lesion extent
(%) was the sum of the GGO and Cons extents. The user interaction
time was recorded for all manual segmentations. All ground-truth
manual segmentations and extracted clinical measures were labeled
O1a.

2.3. Network architecture

Our pipeline was composed of three 2D slice-based CNN models
and aimed to produce automated segmentation of GGO and Cons on
LDCT images with corresponding measures in terms of volume (cm3)
and extent (%). All automated segmentations and extracted measures

https://www.slicer.org


Fig. 1. Overview of the study design and data flow.
Note — LDCT: low-dose computed tomography; O1a: ground-truth manual segmentation by Observer 1. DL: deep learning; CT-SS: chest tomography severity score; LungN:

normal lung; GGO: ground-glass opacity: Cons.: consolidation; O1b: intraobserver manual segmentation by Observer 1; O2: manual segmentation by Observer 2; O3: manual seg-
mentation by Observer 3.
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Fig. 2. Pipeline description in 3 steps.
Note— Step 1: The algorithm selects all consecutive slices containing lung parenchyma. Step 2: The algorithm automatically segments all labels (ground-glass opacity, lung, and

condensation). Step 3: The algorithm computes clinical metrics derived from automatic segmentation.
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were named Auto. Details on the architecture of the complete pipe-
line are presented in Appendix B. An overview of the complete pipe-
line is shown in Fig. 2.

2.4. Performance evaluation

2.4.1. Segmentation evaluation
To assess the segmentation accuracy of our model, we compared

the manual ground-truth segmentations (O1a) to the automatically
obtained segmentations (Auto) in terms of technical metrics and clin-
ical parameters on the test dataset (n= 30). For the technical metrics,
we evaluated the model performance with the Dice similarity coeffi-
cient (DSC) and mean volume similarity function (MVSF) [19]. Our
DSC calculation method was identical to those from [20] and [21]. A
2D-CNN is trained and then used to segment the volumetric (3D)
image of a patient. This is obtained through slice-by slice 2D interfer-
ence and the resulting 2D segmentations are concatenated with
regard to the z-axis to produce the final 3D segmentations. The met-
rics (i.e. DSC) can then be computed at 3D-level. The O1a and Auto
clinical parameters were evaluated using lesion volume (cm3) and
lesion extent (%) using mean absolute error (MAE), bias and correla-
tion. Significance of the bias was evaluated by Wilcoxon signed-rank
test. Efficiency, defined in terms of the user interaction time, was
evaluated and compared.

2.4.2. Reproducibility
The reproducibility of the Auto method was compared to the

inter- and intraobserver segmentation performances. Observer 1
4

performed a second analysis, labeled O1b, 2 weeks after the ground-
truth segmentation; the tasks within the second analysis were per-
formed in randomized order to minimize bias. Two other indepen-
dent observers (Observer 2 (O2), A.M., with 3 years of experience;
observer 3 (O3), B.M., with 3 years of experience) manually seg-
mented the same test dataset; their segmentations were labeled O2
and O3, respectively. The observers were blinded to the subjects’
characteristics and the segmentations made by the other observers.

2.4.3. Prognostic value
To assess the prognostic performance of the radiological quantifi-

cation of lesion extent and type for adverse events among COVID-19
patients, we evaluated both forms of radiological quantification: the
CT-SS and the automatic quantification, corresponding to disease
extent (%) obtained with the presented DL pipeline. For automatic
quantification, we evaluated GGO, Cons and lesion extent scores.
Lesion extent was the sum of the GGO and Cons extents. To assess
the predictive performance of these quantifications, we performed
multivariate logistic regression on the combined outcomes. To this
end, we used all the patients fulfilling our inclusion criteria and
included in the study between March 3rd and July 2nd, excluding
patients from the training and validation datasets.

2.5. Statistical analysis

Quantitative variables are expressed as the mean§ standard devi-
ation and range or median, Q1-median-Q3 and range. Categorical
data are expressed as raw numbers, proportions and percentages. To
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assess the predictive performance of the DL-driven automatic lesion
extent quantification on the prognostic value dataset, we performed
multivariate logistic regression on the following outcome: “transfer
to ICU and/or death and/or hospitalization ≥ 10 days and/or oxygen
therapy”. We randomly divided the prognosis value dataset (n=1621)
into a training subset (70% of the initial sample size, n=1135) and a
validation subset (30% of the initial sample size, n=486). Model
parameters were estimated on the training dataset, and prognosis
performance was assessed on the validation dataset. A reference
model (A) was first tested and adjusted for the following covariates:
age, sex, comorbidities (cancer, diabetes, coronary artery disease,
hypertension, chronic respiratory diseases, obesity), and time from
symptom onset to scan date. Next, we tested a second model (B)
where we added CT-SS as an independent variable and a third model
(C) where we added the automatic lesion extent quantification
obtained by DL-driven segmentation. Second-order interaction terms
between the scores and the covariates were tested in Models B and C.
We used likelihood ratio tests for comparing models. To estimate the
models’ ability to discriminate individuals, we computed the C-statis-
tic on the validation dataset [22]. The optimal cutoff value for the
automatic lesion extent quantification was selected based on the
Youden index to maximize accuracy (sensitivity + specificity�1).

A two-sided a of less than 0.05 was considered statistically signifi-
cant. All analyses were carried out using SAS 9.4 statistical software
(SAS Institute, Cary, NC).
3. Results

A total of 1785 patients were included, and the clinical character-
istics, CT-SS and pulmonary lesion distributions of the training, vali-
dation, test and prognostic value datasets are shown in Table 1.
Pulmonary lesions evaluated on LDCT from the training, validation
and test datasets were extracted from the manual ground-truth seg-
mentations (O1a). Those from the prognosis value dataset were
derived from the model segmentation. An example of the automated
segmentation results is shown in Fig. 3. The overall test dataset of
LDCT scans had a median mean dose−length product of 38.75 §39.9
mGy.cm.

3.1. Segmentation evaluation

The results for the DSC and clinical parameters between the auto-
matic and manual segmentations, as well as a comparison to the
inter- and intraobserver performances, are shown in Table 2. The cor-
relations between automatic and manual measures of lesion extent
are presented in Table 2 and Fig. 4.
3.1.1. Segmentation accuracy
The DSC was 0.75§0.08 for the overall lesion segmentations,

0.71§0.10 for GGO segmentation, and 0.64§ 0.09 for Cons segmenta-
tions. The MVSF results are presented in Appendix C.

The MAE was 70.3§65.8 cm3 for the GGO volume, 29.5§35.9 cm3

for the Cons volume and 71.4§72.6 cm3 for the lesion volume. The
biases were -18.3§95.4 cm3 for the GGO volume, 14.4§44.4 cm3 for
the Cons volume and -3.9 §102.6 cm3 for the lesion volume, and
none of these biases was found to be significant. In terms of disease
extent, the MAE was 2.2§2.1% for the GGO extent, 1.0§1.3% for the
Cons extent and 2.1§2.4% for the lesion extent. The biases were not
significant for the lesion extent quantification (-0.1% § 3.2; p = 0.59).
Disease extent measures were highly correlated with ground truth,
with a lesion extent correlation of 0.947 (p<0.001).

Concerning segmentation efficiency, the mean interaction time
was significantly different between manual and automated segmen-
tation: 14.74 § 2.9 min versus 19 seconds (p<0.001) for each patient.
5

3.1.2. Reproducibility
For lesion segmentation, the DSC was higher for the Auto vs. O1a

evaluation (0.75§0.08) than for the interobserver (O1a vs. O2: 0.70§
0.08; O1a vs. O3: 0.70§0.08) or intraobserver agreement (0.72§0.09).
It was identical for the GGO and Cons segmentations. The automated
lesion volume measures had an MAE of 71.4§72.6 cm3; the interob-
server MAEs were as follows: O1a vs. O2: 105.1§102.6 cm3; O1a vs.
O3: 122.8§105.4 cm3. The intraobserver MAE was 117.0§82.7 cm3.
The correlation with the ground truth was higher for the automated
measures of lesion volume (0.94) than for the interobserver (O1a vs.
O2: 0.88; O1a vs. O3: 0.87) or intraobserver (0.91) measures. For
lesion extent, the MAE was lower for the Auto vs. O1a evaluation
(2.1§2.4%) than for the interobserver (O1a vs. O2: 3.1§2.9%; O1a vs.
O3: 3.9§3.7%) or intraobserver evaluations (3.5§2.7%). The lesion
extent correlation r was 0.947 for automated measures versus 0.909,
0.872 and 0.920 for the inter- and intraobserver measures. There
were statistically significant biases in lesion extent for the O1a vs. O3
interobserver and intraobserver measures. Bland−Altman plots are
presented in Appendix D.
3.2. Prognostic value

There were 227 patients (14%) in the prognostic value dataset
who presented with the combined outcome (Table 3). After adjust-
ment for baseline clinical characteristics, the global scores were sig-
nificantly associated with outcome occurrence (“transfer to ICU and/
or death and/or hospitalization ≥ 10 days and/or oxygen therapy”.)
and the addition of GGO or Cons did not modify the prognostic pre-
diction for either the human or automatic radiological score. The
adjusted odds ratios were 3.02 (95% CI: 2.44; 3.73) for the CT-SS and
3.86 (95% CI: 2.96; 5.05) for automatic quantification. The C-statistic
was 0.82 (0.79−0.88) in Model A excluding all radiological scores,
0.89 (0.95−0.93) in Model B including CT-SS and 0.90 (0.86−0.94) in
Model C including DL-driven quantification. The differences between
Models A and B and between Models A and C were statistically signif-
icant (likelihood ratio tests: p<0.001). ROC curve analysis for lesion
extents DL-driven quantification is shown on Appendix E.
4. Discussion

The main finding of the study was that the proposed automatic
quantification pipeline provides an accurate and reproducible seg-
mentation of GGOs and consolidations in COVID-19 infection. With
respect to the human ground-truth segmentation, the variability of
the model was lower than the inter- or intraobserver variability. The
presented model was computationally efficient, requiring less than
20 seconds for complete DL-driven segmentation. Its accuracy was
similar regardless of the extent of the lesions. Furthermore, the pre-
sented data showed that the automatic quantification of lesion extent
provides a strong prognostic marker of adverse events during COVID-
19 infection.

During the COVID-19 pandemic, diagnostic imaging has multiple
roles, including diagnosis, prognosis, and follow-up [23]. One poten-
tial method to obtain a precise evaluation of disease-related lesions
and prognosis is to quantify the extent of the lesions. This study pro-
poses a distinct segmentation of different COVID-19 lesions, differen-
tiating GGO from consolidation. Most previously published works
have focused on automated algorithms that help distinguish COVID-
19 infection from other pulmonary infections [24,25]. One of the
main strengths of the present paper was the use of LDCT as input
data. COVID-19 patients might undergo multiple CT examinations for
diagnosis, follow-up and evaluation of complications of SARS-CoV-2
infection. At times when LDCT is encouraged in pneumonia diagnosis,
automated algorithms should be adapted to these technical modifica-
tions [26].



Table 1
Characteristics of the different datasets.

Characteristics of the different datasets
Training dataset Validation dataset Testing Dataset Prognosis value dataset
(n= 124) (n= 20) (n= 30) (n= 1621)

Sex,

Men, n (%) 63 (50.8) 15 (75.0) 14 (46.7) 777 (47.9)

Age

Age 18-44 years, n (%) 49 (39.5) 6 (30.0) 4 (13.3) 583 (36.0)
Age 45-64 years, n (%) 58 (46.7) 11 (55.0) 17 (56.7) 759 (46.8)
Age >64 years, n (%) 17 (13.7) 3 (15.0) 9 (30.0) 279 (17.2)

Time between symptom onset and LDCT

≤7 days/asymptomatic, n (%) 61 (49.2) 10 (50.0) 17 (56.7) 1057 (65.2)
≥7 days, n (%) 63 (50.8) 10 (50.0) 13 (43.3) 564 (34.8)

Comorbidities

Hypertension, n (%) 17 (13.97 3 (15.0) 10 (33.4) 333 (20.5)
Diabetes mellitus, n (%) 10 (8.1) 1 (5.0) 8 (26.7) 192 (11.8)
Cancer, n (%) 4 (2.8) 0 (0.0) 5 (16.7) 75 (4.6)
Respiratory diseases, n (%) 19 (15.3) 2 (10.0) 1 (3.3) 193 (11.9)
Cardiac diseases, n (%) 7 (5.6) 1 (5.0) 3 (10.0) 135 (8.3)
Obesity (BMI ≥30, n (%) 9 (7.3)) 2 (10.0) 5 (16.7) 233 (14.4)

Medication

Beta blockers, n (%) 6 (4.8) 1 (5.0) 3 (10.0) 95 (5.9)
HMG-CoA reductase inhibitors, n (%) 3 (2.4) 0 (0.0) 5 (16.7) 99 (6.1)
Dihydropyridine derivatives, n (%) 3 (2.4) 0 (0.0) 6 (20.0) 87 (5.4)
Angiotensin II receptor blockers, n (%) 6 (4.8) 1 (5.0) 7 (23.3) 104 (6.4)
ACE inhibitors, n (%) 5 (4.0) 1 (5.0) 2 (6.7) 33 (2.0)

Symptoms

Cough n (%) 63 (50.8) 12 (60.0) 16 (53.3) 658 (40.6)
Rhinitis, n (%) 23 (18.5) 5 (25.0) 4 (13.3) 293 (18.1)
Fever ≥ 38°C, n (%) 31 (25.0) 10 (50.0) 9 (30.0) 272 (16.8))
Anosmia, n (%) 36 (29.0) 4 (20.0) 6 (20.0) 339 (20.9)
Ageusia, n (%) 29 (23.4) 4 (20.0) 6 (20.0) 324 (20.0)
Dyspnea, n (%) 27 (21.7) 3 (15.0) 9 (30.0) 326 (20.1)
Thoracic pain, n (%) 12 (9.7) 4 (20.0) 1 (3.3) 212 (13.1)

CT-SS

Mean score/40 (standard deviation) 8.6 (§8.1) 7.5 (§9.1) 18.2 (§6.5) 6.0 (§7.2)
Severe forms (CT—SS >19.5) 13 (10.5) 2 (10.0) 9 (30) 127 (7.8)

Pulmonary lesions

Overall, n (%) 104 (83.9) 16 (80.0) 30 (100.0) 1408 (86.9)
GGO, n (%) 103 (83.1) 16 (80.0) 30 (100.0) 1406 (86.7)
Cons, n (%) 83 (66.9) 4 (20.0) 29 (96.7) 908 (56.0)
GGO & Cons, n (%) 82 (66.1) 4 (20.0) 29 (96.7) 906 (55.9)

Clinical outcomes

Oxygen therapy (Oxy), n (%) 20 (19.1) 5 (25.0) 10 (33.3) 180 (11.1)
ICU, n (%) 7 (5.6) 2 (10.0) 2 (6.7) 43 (2.7)
Death, n (%) 1 (0.7) 0 (0.0) 2 (6.7) 20 (1.2)
Hospitalization ≥10 days (Hospit10days), n (%) 13 (10.5) 6 (30.0) 7 (23.3) 129 (8.0)
ICU/Death, n (%) 7 (5.6) 2 (10.0) 3 (10.0) 57 (3.5)
ICU/Death/Hospit10days, n (%) 14 (11.3) 6 (30.0) 7 (23.3) 150 (9.3)
ICU/Death/Hospit10days/Oxy, n (%) 21 (16.9) 6 (30.0) 12 (40.0) 227 (14)

Note — LDCT: low-dose computed tomography; BMI: body mass index; ACE: angiotensin-converting enzyme;
CT-SS: chest tomography severity score; GGO: ground-glass opacity: Cons.: consolidation; ICU: intensive care
unit.
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Fig. 3. Examples of the obtained automatic segmentations (Auto) compared to the corresponding LDCT images and manual reference segmentations (Manual).
Note— Normal lung (purple), consolidation (yellow), ground-glass opacity (green).
A. Example 1: Mid-thoracic carina level. The second row shows higher-magnification views of the areas in the red rectangles.
B. Example 2: Inferior mediastinum level. The second row shows higher-magnification views of the areas in the red rectangles.
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The training dataset had substantial variability in pulmonary
lesion extent and disease severity (from 0% to 36%). One of the main
strengths of our study was that manual segmentation was conducted
on all LDCT images in the training, validation and test datasets. Con-
trary to many segmentation models, the algorithm and obtained
results were tested on all images in the test dataset (which was num-
bered at 15587 images for the 30 patients) rather than selected slices.

The literature has seen a wide number of CNN-based methodolo-
gies for automatic segmentation of lung abnormality on CT scan.
Works may be divided in three categories: those that base the train-
ing on CT scans fully annotated by experts [21,27], those that make
use of weak/noisy labels to lower the annotation load [20,28,29]) and
those using transfer learning to transfer knowledge from non-
COVID19 lesions [30]). Regarding the network architectures, 2D
CNNs [20,21,27] and 3D CNNs [27,28,30] are both represented. Some
researchers focus on the detail of the architectures and advocate for
additional modules, such as attention blocks [21,29]. Despite of the
vast number of papers proposing new architectures and modules, 8
out of the 10 finalists in the COVID-19 Lung CT Lesion Segmentation
Challenge chose an UNet architecture as we propose [27]

In 2020, Belfiore et al. highlighted the need to quantify the per-
centage of ventilated lung parenchyma as distinguished from the
affected lung parenchyma [31]. Here, we propose a segmentation
tool that differentiates normal from affected lungs (GGO and Cons).
Cons DSC, volume and extent measures were always lower than the
GGO measures. Interestingly, this demonstrates the difficulty of pro-
ducing Cons segmentations. This could be due to the anatomic pre-
sentation of COVID-19 consolidations, which mostly have a sub
pleural distribution and affect the lower segments [9]. Hence, consol-
idations are sometimes in continuity with the sub pleural fat and the
7

chest wall, which can lead to segmentation failure. Consolidations
were the only measure whose correlation was lower for the auto-
mated measure (Auto vs. 01a) than for the interhuman measure (O1a
vs. O3). This finding suggests that our model might fail partially in
cases of peripheral and lower lobe consolidation. Liu et al. proposed
CT quantification of pneumonia lesions to predict the progression of
severe disease and distinguished three labels: consolidation, semi-
consolidation and ground glass [32]. They used a simple threshold to
differentiate these labels. The authors obtained a DSC of 0.82 for
COVID-19 pneumonia but did not publish the algorithmic details,
biases or correlations. Chassagnon et al. presented a COVID-19 seg-
mentation algorithm with a mean lesion DSC between automated
and manual segmentation of 0.69 [25]. For GGO lesion segmentation,
the DSC of 0.71 § 0.10 in the present study was below that of Jung et
al. for the automated segmentation of GGO (0.78 § 0.07) [33]. This
discordance can probably be explained by the difference in morpho-
logical patterns between parenchymal lesions and nodules.

Among all tested factors, age remained the best predictor of clini-
cal outcome. However, the C-statistic was significantly improved
when DL-driven quantification was added for the combined outcome,
which confirms the benefit of adding the radiological score to evalu-
ate the prognosis. DL-driven quantification was not superior to the
CT-SS in predicting the occurrence of clinical outcomes but did not
require any human input. Concerning gender, ‘men’ is no longer a
risk factor after adjustment on CTSS and automatic CT scores. This
was due to a significant difference in CT scores between men and
women. The same statistical reason can explain hypertension results.
The present code is protected (IDDN.FR.001.220003.000.S.
C.2020.000.31235) and can be shared upon the signing of a collabora-
tion agreement.



Table 2
Model segmentation performances in comparison to human reproduc-
ibility on the test dataset (n=30).

Model segmentation performance in comparison to human reproducibility

Auto vs. O1a O1a vs. O2 O1a vs. O3 O1a vs. O1b

Technical metrics: Dice similarity coefficient

LungN 0.99 (§0.01) x x x
GGO 0.71 (§0.10) 0.64 (§0.15) 0.63 (§0.15) 0.62 (§0.14)
Cons. 0.64 (§0.09) 0.54 (§0.19) 0.64 (§0.12) 0.57 (§0.17)
Lesion 0.75 (§0.08) 0.70 (§0.08) 0.70 (§0.10) 0.72 (§ 0.09)

Clinical parameters: volume and extent
Volume
GGO

MAE (cm3) 70.3 (§65.8) 140.3 (§126.2) 117.3 (§106.5) 100.9 (§73.4)
Bias (cm3) -18.3 (§95.4) 21.2 (§189.3) 68.3 (§144.1) -30.6 (§122.3)
p 0.29 0.80 0.02 0.20
Corr. 0.940 0.757 0.857 0.898

Cons.

MAE (cm3) 29.5 (§35.9) 62.6 (§81.8) 29.3 (§31.7) 68.1 (§57.6)
Bias (cm3) 14.4 (§44.4) -24.9 (§100.5) -2.9 (§43.4) -36.2 (§82.2)
p 0.39 0.49 0.89 0.03
Corr. 0.902 0.792 0.937 0.733

Lesion

MAE (cm3) 71.4 (§72.6) 105.1 (§102.6) 122.8 (§105.4) 117.0 (§82.7)
Bias (cm3) -3.9 (§102.6) -3.8 (§148.1) 65.4 (§149.3) -66.8 (§128.0)
p 0.88 0.96 0.03 0.01
Corr. 0.941 0.880 0.873 0.910

Extent
GGO

MAE (%) 2.2 (§2.1) 4.3 (§3.8) 3.8 (§4.0) 3.3 (§2.7)
Bias (%) -0.6 (§3.0) 0.8 (§5.7) 2.3 (§5.0) -1.3 (§4.1)
p 0.25 0.70 0.03 0.13
Corr. 0.940 0.766 0.822 0.884

Cons.

MAE (%) 1.0 (§1.3) 2.1 (§2.8) 1.0 (§1.1) 2.2 (§1.9)
Bias (%) 0.5 (§1.6) -0.7 (§3.5) -0.1 (§1.5) -0.7 (§2.8)
p 0.56 0.61 0.83 0.08
Corr. 0.882 0.754 0.926 0.673

Lesion

MAE (%) 2.1 (§2.4) 3.1 (§2.9) 3.9 (§3.7) 3.5 (§2.7)
Bias (%) -0.1 (§3.2) 0.0 (§4.3) 2.2 (§4.9) -2.0 (§4.0)
p 0.59 0.96 0.03 <0.01
Corr. 0.947 0.909 0.872 0.920

Note — DSC: Dice similarity coefficient; MVSF: mean value similarity
function; LungN: normal lung; GGO: ground-glass opacity; Cons.: con-
solidation. Lesion: GGO + Cons. The means § standard deviations of the
metrics are reported.
MAE: mean absolute error. The means and standard deviations (in
parentheses) of the absolute differences are reported. Bold characters
represent significant results.
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Our study has some limitations. All CT images were acquired on
the same CT scanner in one clinical center. Additionally, the pre-
sented algorithm cannot provide a segmentation of the distal vascu-
lar and bronchial trees. A future goal of our work should be to include
arterial and bronchial segmentation in our algorithm for even more
precise lesion segmentation.
8

5. Conclusion

A complete DL-driven pipeline for LDCT, which allows minimum
radiation exposure, was developed to segment GGOs and consolida-
tion due to COVID-19 lung involvement. The algorithm produces
automatic lesion volume and extent measures that can be directly



Fig. 4. Correlation of disease extent measures between automatic and manual segmentations on the test dataset (n= 30).
Note— Evaluation of Auto vs. O1a (Column 1), O1a vs. O2 (Column 2), O1a vs. O3 (Column 3), of O1a vs. O1b (Column 4). The green line is the fitted regression line. The red line is

the identity line. GGO: ground-glass opacity; Cons: consolidation.
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provided to physicians. DL-driven segmentation was more reproduc-
ible than humanmeasures, achieving lower biases and mean absolute
error than human inter- and intraobserver comparisons of lesion
Table 3
Multivariate logistic regressions for the primary endpoint.

Multivariate logistic regressions for the primary endpoint
Death/ICU/Hospit>10d/Oxy (n=227, 14%)

Model A Model B Model C
OR 95% CIa OR 95% CIa OR 95% CIa

Sex (ref. women)
Men 1.47[1.01;2.15] 1.17[0.77;1.77] 1.00[0.64;1.55]

Age (ref. 18-44
years)
45-64 years 4.29[2.22;8.30] 2.30[1.14;4.61] 2.35[1.16;4.77]
>64 years 15.34[7.60;30.97] 8.76[4.18;18.34] 6.85[3.21;14.61]

Hypertension 1.65[1.09;2.50] 1.44[0.90;2.29] 1.94[1.19;3.16]
Diabetes mellitus 1.27[0.78;2.07] 1.06[0.61;1.84] 0.97[0.54;1.73]
Cancer 2.20[1.09;4.43] 2.21[1.04;4.67] 2.34[1.06;5.20]
Respiratory
diseases

0.81[0.46;1.43] 0.80[0.41;1.56] 0.99[0.52;1.88]

Cardiac diseases 1.89[1.10;3.24] 1.99[1.08;3.66] 1.52[0.79;2.92]
Time between symptoms/LDCT (ref. ≤ 7 days)
> 7 days 1.08[0.73;1.59] 0.71[0.46;1.10] 0.86[0.54;1.37]

CT-SS 3.02[2.44;3.73]
Automatic lesion
extent

3.86[2.96;5.05]

C statistic (95% CI)b 0.82 [0.79-0.88] 0.89 [0.85-0.93] 0.90 [0.86-0.94]

Note— a: Adjusted odds ratios with 95% confidence intervals. b: The C-statistic is a
measure of goodness of fit for binary outcomes in a logistic regression model. It is
equal to the area under the receiver operating characteristic (ROC) curve and
ranges from 0.5 to 1.
Models were based on the training set of the prognostic value dataset (n=1135),
and the C-statistic was estimated on the validation set (n=486) of the prognostic
value dataset. All scores were standardized (mean=0, standard deviation=1) prior
to the analysis. LCDT: low-dose computed tomography; ICU: intensive care unit.
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volume and extent. Lung involvement as quantified by our DL-driven
pipeline was significantly associated with the occurrence of adverse
events. This framework should be tested on multicenter datasets to
evaluate disease severity at the time of the first LDCT evaluation.
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