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ABSTRACT: Most DNA evidence is a mixture of two or more people. Cybergenetics TrueAllele� system uses Bayesian computing to sepa-
rate genotypes from mixture data and compare genotypes to calculate likelihood ratio (LR) match statistics. This validation study examined the
reliability of TrueAllele computing on laboratory-generated DNA mixtures containing up to ten unknown contributors. Using log(LR) match
information, the study measured sensitivity, specificity, and reproducibility. These reliability metrics were assessed under different conditions,
including varying the number of assumed contributors, statistical sampling duration, and setting known genotypes. The main determiner of
match information and variability was how much DNA a person contributed to a mixture. Observed contributor number based on data peaks
gave better results than the number known from experimental design. The study found that TrueAllele is a reliable method for analyzing DNA
mixtures containing up to ten unknown contributors.
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DNA evidence is the gold standard of forensic science (1).
With the advent of polymerase chain reaction (PCR), minute
quantities of DNA could be amplified a billion-fold to detectable
levels (2). For twenty years, PCR amplification of short tandem
repeat (STR) testing (3) has enabled forensic scientists to iden-
tify people through crime scene evidence, or exclude them (4).
For a DNA item from one person, the strength of match is statis-
tically expressed as a likelihood ratio (LR)—one over the match-
ing genotype’s rarity in a population.
Most DNA evidence contains two or more people (e.g., rape

kits, handguns, and clothing). These DNA mixtures are highly
probative, able to associate several people to an evidence item
collected from a crime scene. A suspect may be unable to
explain why his DNA is there. Mixtures can also show who did
not leave their DNA.
DNA signals from one person are easy to interpret and statisti-

cally report (5). This is because there is just one genotype possi-
bility, having only one or two alleles at a locus. However,
different combinations of contributor genotypes can explain a
mixture’s quantitative STR peak height data. These multiple
genotype possibilities must all be considered, and assigned

accurate probabilities, in order to calculate a valid LR match
statistic. The combinatorial task is beyond human calculation,
especially with more than two contributors in the mix (6).
Cybergenetics developed the TrueAllele� probabilistic geno-

typing method twenty years ago to solve the DNA mixture prob-
lem (7). Using Bayesian modeling (8), the computer considers
genotype combinations of multiple contributors, assigns geno-
type probabilities, and compares genotypes to calculate LR
match statistics (9). The system helped identify victim remains
in the World Trade Center disaster (10) and has been used in
forensic casework since 2009 (11). TrueAllele and related soft-
ware (12–17) systems are widely used by crime labs for resolv-
ing DNA mixtures.
Early validation studies entailed detailed comparison of com-

puter and human interpretation. But computers rapidly outpaced
human mixture analysis. The LR statistic usefully summarizes
much of DNA collection, testing, analysis, interpretation, report-
ing, and testimony in a single number (18). Moreover, the log(LR)
logarithm is a standard additive scientific unit of information,
called the “weight of evidence” (19). Modern DNA mixture vali-
dation studies use these LR summary match statistics (20–23).
Early TrueAllele validation studies were conducted on single

source DNA samples (24). Later peer-reviewed TrueAllele vali-
dations studied mixtures containing up to two (9,20,25), three
(26), four (27,28), or five (29) people. Typical validation metrics
included sensitivity, specificity, and reproducibility. Other
assessed variables and features were low-template DNA, joint
data analysis, and contributor number. The studies tested both
laboratory-generated and casework DNA mixture data.
This study assesses the validity of TrueAllele� computer inter-

pretation on complex DNA mixtures. It extends previous
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validation work (9,26,29) by examining STR data from labora-
tory-generated mixtures containing up to ten unknown contribu-
tors. The study measures log(LR) match information along the
usual axes of sensitivity, specificity, and reproducibility
(18,22,26). It also examines the influence of contributor number
on these metrics, and the effect of statistical sampling duration.
Other results include the impact of “peeling” away multiple lay-
ers of genotype contributors, and how the number of input data
peaks affects the LR. Mixture composition followed a random-
ized design, with two TrueAllele interpretation groups indepen-
dently analyzing the same STR data using their own in-house
computer systems.

Materials and Methods

Data Generation

The Cuyahoga County Regional Forensic Science Laboratory
(CCRFSL) prepared 18 DNA mixture samples. The number of
contributors ranged from 2 through 10, with two samples per
contributor number. To design the DNA mixtures, reference
genotypes for a sample were randomly drawn from 20 preset
male and female individuals of predominantly Caucasian des-
cent. Mixture weights were randomly drawn from a uniform
Dirichlet distribution; these designed mixture proportions are
shown in Table 1.
CCRFSL generated the STR mixture data in their laboratory.

DNA quantity was measured with Applied Biosystems� (AB,
Foster City, CA) Quantifier� Duo quantification kit using a
7500 SDS Real-Time PCR System. Each 0.5 ng DNA mixture
sample was amplified using the PowerPlex� Fusion amplifica-
tion system (Promega, Madison, WI).
A 0.5 lL volume of amplified DNA product was size-sepa-

rated using an AB 3500 genetic analyzer. The analyzer recorded
electropherogram (EPG) data as .hid files. CCRFSL determined
a ratio of 0.37 for 3130 to 3500 AB genetic analyzer relative
fluorescence units (RFU). TrueAllele analysis multiplied peak
heights by this ratio, rescaling 3500 data down to the 3130
levels specified in prior probability parameters.

Interpretation Methods

TrueAllele� Casework (Cybergenetics, Pittsburgh, PA) was
used to separate the STR mixture data and calculate DNA match
statistics. The software version numbers were 3.25.5840.1 for

the genotyping server, and 3.3.5926.1 for the Visual User Inter-
face (VUIerTM) client. The system has no analytical threshold.
Signals were used at or above 10 RFU, a level within baseline
noise.

Genotype Separation and Mixture Weight

TrueAllele uses a hierarchical Bayesian probability model that
adds genotype alleles, accounts for artifacts, and determines vari-
ance to explain STR data and derive parameter values and their
uncertainty (9,20). The computer employs Markov chain Monte
Carlo (MCMC) statistical sampling (30) to solve the Bayesian
equations. The resulting joint posterior probability provides mar-
ginal distributions for contributor genotypes, mixture weights,
and other explanatory variables.
Starting from DNA mixture data, TrueAllele separates out

contributor genotypes, up to probability. This statistical inference
is objective, since there are no data choices, and the separation
process does not know the comparison references. The inference
is thorough, since the computer considers tens of thousands of
possible values for each variable.
With laboratory-generated data, observed mixture proportions

may differ from designed proportions, due to pipetting or ampli-
fication variation. TrueAllele can determine more precise mixture
weights by conditioning on all known contributor genotypes
(29), as used here for presenting more exact weights.

Match Information

After genotype separation, TrueAllele calculates an LR match
statistic between a separated unknown genotype and a reference
genotype, relative to a population genotype (9). This comparison
gives the strength of association (or “weight of evidence”)
between the two genotypes, recorded in log(LR) ban units (31).
The LR is the final common pathway in forensic DNA analy-

sis, summarizing identification information from the entire STR
process in one number that can be reported or presented in court.
Key validation metrics can be statistically assessed in terms of
additive log(LR) values (18).

Linear Relationship

The amount of DNA match information is proportional to the
amount of contributor DNA, measured on logarithmic scales
(20,29). No DNA gives zero information. As contributor DNA

TABLE 1––Study design.

Name 2-1 2-2 3-1 3-2 4-1 4-2 5-1 5-2 6-1 6-2 7-1 7-2 8-1 8-2 9-1 9-2 10-1 10-2

Designed (Des) 2 3 4 5 6 7 8 9 10
Observed (Obs) 2 2 2 3 3 4 4 5 5 5 5 5 6 5 5 6 6 5
Reference weight 78 66 94 55 66 41 39 36 56 35 65 21 33 42 32 24 46 25

22 34 5 33 22 26 37 30 19 20 17 20 20 16 20 17 18 19
1 12 7 20 16 21 13 18 5 19 18 15 15 17 17 14

5 14 6 9 9 13 4 15 13 12 11 11 6 13
1 5 2 8 4 13 9 8 7 9 5 12

1 6 3 8 3 5 7 8 5 6
3 4 2 2 4 8 1 5

1 1 3 6 1 3
1 0.2 1 1

0.5 1

The sample name (Name) gives the number of contributors in the study design, followed by an instance number. The number of contributors Cybergenetics
observed (Obs) did not exceed the actual number in the study design (Des). Each column gives the mixture contributor weight as percentages. In a column
where Des is greater than Obs, Des–Obs grayed out contributors could not be inferred.
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amount increases, so too does average LR. The log–log relation-
ship is linear (Fig. 1), with a predictable slope (29). When evi-
dence genotype probability reaches 100%, the contributor’s
log(LR) plateaus at its maximum value. The relationship is
inverted with exclusionary information.
Some mixture ratios disrupt the ramp-shaped relationship.

Equal contributor weights dent the ramp downward (20). This is
because peak height data become less helpful in separating geno-
types when contributor amounts are similar. The less separated
genotypes give lower log(LR) values, which fall below the line.

Allele Dropout

Genotype alleles appear as peaks in EPG data. An allele’s
expected peak height is proportional to the number of molecules
(grouped from all contributors) in the pre-PCR DNA template.
PCR is a random counting process, so competition for the poly-
merase DNA copying enzyme favors those alleles that are pre-
sent in greater amounts (32). Less amplified alleles may show
lower peaks that “drop out” from the data (e.g., are below an
analytical threshold of, say, 30–300 RFU) for DNA interpreta-
tion methods that use such thresholds. Entirely missing peaks
may result from absent alleles.
TrueAllele’s likelihood function compares observed data

with a hypothesized peak pattern to assess how well the pat-
tern explains the data. A pattern that closely approximates the
data has greater likelihood; conversely, poor data explanations
have lower likelihood. With dropout, the true allele does not
appear in the data. Therefore, the true genotype containing
that allele poorly explains the data and receives a lower likeli-
hood.
In Bayesian inference, this lower likelihood imparts a lower

probability to the true genotype. TrueAllele accounts for drop-
out by assigning lower probability to genotype values that

lack data support. When comparing with references, low evi-
dence genotype probability may translate into exclusionary
LRs at a locus.

FIG. 1––Linearity. Scatterplot showing log(LR) match information (y-axis) versus log(DNA) (x-axis) for TrueAllele analysis of forty two-person mixtures
solved assuming a known contributor genotype. The data (blue dots) follow an increasing regression line ramp (solid blue line) that plateaus once reaching
maximum match information. The million LR match level is shown (dashed gray line). Reproduced from (20) with permission of the author (https://doi.org/10.
1371/journal.pone.0008327.g007). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2––Independent analysis requests.

Mixture

Contributors Sampling

Designed
Observed

1000’s (K) of
Cycles

CYB CCRFSL CYB CCRFSL

2-1 2 2 2 5 5
2-2 2 2 2 5 5
3-1 3 2 2 10 15
3-2 3 3 3 10 15
4-1 4 3 3 25 25
4-2 4 4 4 25 25
5-1 5 4 4 50 50
5-2 5 5 5 50 50
6-1 6 5 5 100 100
6-2 6 5 5 100 100
7-1 7 5 5 100 100
7-2 7 6 6 100 100
8-1 8 6 6 100 100
8-2 8 5 6 100 100
9-1 9 5 6 100 100
9-2 9 6 6 100 100
10-1 10 6 6 100 100
10-2 10 5 7 100 100

Each mixture item (Mixture) was processed using a user-specified number
of contributors (Contributors) and MCMC sampling cycles (Sampling). The
contributor number was based on either the study design (Designed) or
observed data peaks (Observed). Parameters are shown for Cybergenetics
(CYB) and Cuyahoga County crime laboratory (CCRFSL) processing. In the
number of sampling cycles, “K” denotes a thousand.
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FIG. 2––Sensitivity. Histograms show match statistics for comparisons to true contributors. The horizontal axis gives match statistics as binned log(LR) val-
ues. The vertical axis is the number of comparisons for each log(LR) bin. The distributions are shown for (a) two through (e) six observed unknown contribu-
tors. [Color figure can be viewed at wileyonlinelibrary.com]
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TrueAllele Processing

Procedure

TrueAllele analysts processed the samples in two ways, using
designed and observed contributor numbers. The designed num-
ber of contributors was defined by the experimental design. Mix-
tures showing fewer data peaks could indicate a smaller number
of observed contributors.
Analysts counted STR data peaks, and considered the height pat-

tern, to estimate the observed number of contributors. TrueAllele
interpretation requests were run at least twice. MCMC burn-in was
as long as read-out, running up to 100,000 (100K) cycles in this
study (Table 2). EachMCMC sampling cycle visited all variables.
To calculate match statistics, inferred genotypes were com-

pared with known reference genotypes, relative to the National
Institute of Standards and Technology (NIST) 1036 African-
American, Caucasian, and Hispanic ethnic populations (33). The
co-ancestry coefficient was set to 1%. The reported log(LR) was
the minimum calculated across ethnic populations. Labels of
log(LR) bins represent the least integer value of a unit-length
interval. For example, bin “3” collected log(LR) values in the
[3,4) interval between 3 and 4 ban.

Peeling

Known genotypes can be entered into TrueAllele, remaining
constant throughout a computer run. These fixed parameters
reduce the number of unknown genotypes in a mixture. The
additional information can produce sharper probability distribu-
tions for the remaining genotypes. For example, in a two-person
sexual assault mixture, assuming the victim’s known genotype
can help infer an unknown assailant genotype. In the Australian
Robert Xie case (34), TrueAllele peeling helped separate the
genotypes of five family members mixed together in a garage
floor bloodstain.
In sequential genotype “peeling,” with N contributors the initial

TrueAllele run separates out N unknown genotypes. Comparing
these inferred genotypes with provided references establishes a first
contributor genotype, based on the highest match statistic. In the
next run, the computer is given the first established genotype, and
solves for the remaining N�1 unknown genotypes to establish a
second contributor genotype. Continuing, the third run assumes the
first and second established genotypes to solve for N�2 unknown
genotypes and establishes a third contributor genotype. Genotype
peeling continues until all contributors are resolved.
There is no fixed log(LR) cutoff for peeling away a contribu-

tor genotype. An unhelpful known genotype assumption may
depress a match statistic, or leave it unchanged. Alternatively,
peeling order can be determined by mixture weight.
Genotype peeling has an equivalent LR formation. Let Ki be a

known genotype, Uj an unknown genotype, and S a subject’s
comparison genotype. At the Mth peeling stage with M known
genotypes in an N contributor mixture, the LR is,

LR ¼ PrfdatajK1;K2; . . . ;KM ;U1;U2; . . . ;UN�M�1; Sg
PrfdatajK1;K2; . . . ;KM ;U1;U2; . . . ;UN�M�1;UN�Mg

Sampling

Longer MCMC sampling generally improves genotype infer-
ence. The mixtures were processed over a range of sampling

times. The usual sampling time was 100K cycles for both burn-
in and read-out. Additional sampling times of 5K, 10K, 25K,
and 50K MCMC cycles were explored to assess log(LR) sensi-
tivity and reproducibility. Specificity was assessed on five-ob-
served-contributor samples, since this mixture group yielded the
most inferred genotypes.

Peak Number

TrueAllele EPG analysis quantitatively models the peaks that
are present in DNA data. The system’s likelihood function per-
mits the number of modeled genotype alleles to differ from the
number of data peaks (9). To accelerate the inference process, a
maximum number of peaks can limit DNA data at a locus.
Ranking peaks by descending height can also remove some low-
level baseline artifacts.
DNA mixture samples containing two, three, four, or five

observed contributors were processed at a default peak limit of
10 peaks. These mixtures were also re-examined using up to 20
peaks. Samples containing six or more contributors were pro-
cessed at a 20-peak limit.

Independence

Cybergenetics and CCRFSL ran their own TrueAllele sys-
tems independently on the same STR data of the 18 mixture
samples. The two groups used the same server software ver-
sion. Software operators independently determined observed
contributor number. Table 2 lists the processing parameters
Cybergenetics and CCRFSL used for TrueAllele mixture sepa-
ration requests.

Validation Metrics

SWGDAM guidelines advise assessing sensitivity, specificity,
and reproducibility in probabilistic genotyping validation studies
(22). These three metrics were evaluated on log(LR) results
based on observed contributor number. Summary statistics and
distributions were calculated for each metric, and grouped by
contributor number.
The sensitivity metric measures how well a genotyping sys-

tem detects true contributors to a DNA mixture (22,26). Sensi-
tivity was evaluated by examining the log(LR) distribution of
genotype comparisons to true contributors. Values under zero
ban were considered contributor negatives for purposes of this
study.
The specificity metric measures how well a genotyping system

rejects noncontributors (22,26). A log(LR) distribution was
formed by collating match statistics that compared a set of
inferred mixture contributor genotypes with 10,000 randomly
generated Caucasian reference genotypes. Values over zero were
considered noncontributor positives in this study. The cumulative
probability of noncontributor positive match values was deter-
mined.
The reproducibility metric describes the closeness of match

values on replicate computer runs (22,26). MCMC has sampling
variation, which was quantified by measuring within-group stan-
dard deviation (18). This root-mean-square rw statistic describes
the variation of a group of log(LR) values for one contributor to
a DNA mixture, where genotypes derived from multiple inde-
pendent computer runs are compared with the same correspond-
ing reference genotype.
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FIG. 3––Specificity. Histograms show the log(LR) distribution for comparisons to noncontributors. The horizontal axis gives match statistics as binned
log(LR) values. The vertical axis is the number of occurrences for each log(LR) value. The distributions are shown for (a) two through (e) six observed
unknown contributors. [Color figure can be viewed at wileyonlinelibrary.com]
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Results

Sensitivity

Contributors Decrease Match Strength

As the number of mixture contributors increased, average
match strength decreased. Match statistic histogram distributions
shifted toward zero information, as the contributor number
increased from two to six contributors (Fig. 2).
Minimum and mean log(LR) values decreased with increasing

contributor number (Table S1a). Mean log(LR) decreased from
23 ban for two contributors, to 5 ban with six contributors. The
minimum log(LR) fell more gradually, decreasing from 6 ban
for two contributors to �1 ban with six contributors.
Genotypes inferred from mixtures were usually uncertain. In

contrast, a genotype inferred from a single-source DNA sample
from one person generally showed little or no uncertainty, giving
a probability of one at matching allele pairs. More definite geno-
types generally yielded higher match statistics.
A single source evidence genotype most often produced a

log(LR) value over 25 ban, when testing on 22 PowerPlex
Fusion loci. With more mixture contributors, the maximum log
(LR) value of the major contributor remained relatively constant
at 26 ban (Fig. 2; Table S1a).

Contributors Increase Negatives

With more mixture contributors, the log(LR) distribution
shifted leftward toward zero ban. This shift increased the chance
of a contributor negative log(LR) value. Negative log(LR) values
were seen with five or six contributor mixtures (Table S1a). Out
of 78 comparisons to true contributors, 3 gave negative log(LR)
values (Table S1b). The lowest value was �1.06 ban, seen in a
six-contributor mixture.

Specificity

Contributors Decrease Specificity

The noncontributor distribution shifted progressively rightward
toward zero ban with more mixture contributors (Fig. 3). For
two-person mixtures, the average log(LR) value was �33 ban.
Average log(LR) gradually increased to �13 ban with six
unknown contributors. Almost all the noncontributor compar-
isons produced a negative log(LR) value, regardless of contribu-
tor number.

Right Tail Distribution

The average log(LR) of the noncontributor distribution mea-
sured expected specificity. Far to the right of this noncontributor
average, positive log(LR) outliers formed a forensically relevant
tail distribution (Table S2a). The right tail’s 99.99 percentile
increased from �1.46 ban for two contributors, to 2.45 ban for
six contributors, showing some dependence on contributor
number.

Positive Match Support

More contributors to a mixture generally produced more non-
contributor positives (Table 3). The frequency and magnitude of
noncontributor positive log(LR) events increased with

contributor number. With two contributors, there was one non-
contributor positive event, having a value under 1 ban. With
three or four contributors, log(LR) remained under 4 ban. One
five-contributor mixture gave a value over 5 ban. With five or
six contributors, a positive noncontributor occurred 1% of the
time.

Probability of Misleading Evidence

Conditioned on a match statistic, the probability of misleading
evidence (PME) for uncertain genotypes gave the chance that a
noncontributor had a match statistic at least as large as the one
observed (35,36). While the chance of a positive noncontributor
log(LR) was 1% for five or six contributors, the PME dropped
to 0.05% with log(LR) over 2 ban (Table S2b). The PME
became quite small as LR increased.
PME generally increased with more contributors (Table S2b).

There were no log(LR) values over 3 ban for two-contributor
mixtures. PME increased to 0.000031 (one in 30,000 compar-
isons) with six contributors. The PME provided a frequency con-
text for assessing match error beyond a given log(LR) value.

Reproducibility

Contributors Increase Variation

Match statistic variation increased with more contributors,
with more dispersion seen in replicate computer runs (Fig. 4).
The within-group standard deviation rw quantified the log(LR)
variation in independent computer runs (Table S1a). Two-con-
tributor mixtures gave highly reproducible results (rw = 0.17
ban). Variation increased with more contributors, reaching its
largest value at six contributors (rw = 1.00 ban).

Relation to LR Magnitude

Reproducibility improved with match strength. Larger log(LR)
values had less variation, with replicate pairs lying closer to the
equality line (Fig. 4, black line). Smaller log(LR) values showed
more dispersion, which became more apparent with more con-
tributors (Fig. 4d,e).

Independent Analysis

Cybergenetics and the CCRFSL independently operated
TrueAllele on the same mixture data. Both groups found an
average log(LR) of 8 ban (Table 4), ranging from about �9 to
29 ban. The overall rw of replicate log(LR) values (one per
group for each comparison) between these two independent
groups was 0.70 ban, comparable to the replicate rw variation of
0.83 ban produced by the Cybergenetics group.

Quantity

The total DNA amount was divided between the contributors
to a sample. Therefore, more contributors decreased the average
amount of DNA per contributor. The minor component of a
two-person mixture could contain more DNA than the major
component of a five-person mixture. For example, the minor
contributor in two-contributor sample 2-2 had 170 picograms
(pg) of DNA, whereas the major contributor in seven-contributor
sample 7-2 had only 105 pg (Table 1).
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Contributors Divide the Sample

The amount of DNA per contributor generally decreased as
contributor number increased (Fig. 5). Two- and three-person
mixture contributors spanned the full 25 to 470 pg range, aver-
aging 205 pg (Table 1). But with four or more contributors, the
DNA amount averaged only 90 pg and was largely in the 25 pg
to 150 pg range.

Sensitivity Improvement

Contributors comprising more DNA generally yielded larger
match statistics (Fig. 5). The relationship between DNA amount
and match strength was linear with constant slope, regardless of
contributor number (29). Deviations from linearity were due to
similar contributor amounts, which reduced inferred genotype
information and depressed match statistics (20). Beyond 250 pg,

FIG. 4––Reproducibility. Horizontal and vertical axes show match statistics for true contributor comparisons. Each point is a pair of log(LR) values from
two separate Cybergenetics computer runs. Black lines represent equal values in replicate runs. The graphs are shown for (a) two through (e) six observed
unknown contributors. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 5––DNA amount. Plots show how match statistics depend on DNA amount for different numbers of contributors. The horizontal axis gives the logarithm
of DNA contributor amount (picograms). The vertical axis shows log(LR) match statistics. The plots are shown for (a) two through (e) six observed unknown
contributors. [Color figure can be viewed at wileyonlinelibrary.com]
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match strength plateaued, giving log(LR) values between 27 ban
and 29 ban for definite genotypes (Fig. 5).
Four-contributor maximum log(LR) dipped to 15 ban due to

the limited range of DNA amounts in these mixtures, which was
at most 190 pg. The largest amount of DNA for other contribu-
tor numbers generally exceeded 250 pg (Fig. 5).
Average log(LR) decreased when there was less DNA

(Table 5, sensitivity column). DNA amounts over 250 pg aver-
aged 28 ban. Under 50 pg, average log(LR) fell to 3 ban.

Contributor negative values came from low-level minor geno-
types. 92% of comparisons to true contributors gave positive
log(LR) values. Over 100 pg, all log(LR) values were positive.
With more contributors, less DNA was apportioned to each

one. This DNA reduction decreased average sensitivity (Fig. 2
and Table S1). Unlike maximum value, mean log(LR) decreased
with additional minor contributors.

Specificity Improvement

The eight samples observed to contain five contributors
yielded the most (forty) genotypes (Table 1). The five-contribu-
tor specificity distribution encompassed the largest range of
log(LR) values, �44 to 5 ban (Table S2a). On this genotype
subset, specificity increased with contributor DNA amount. Non-
contributor log(LR) averaged �6 ban for DNA amounts under
25 pg (Fig. 6a). Over 250 pg, average log(LR) decreased
to �38 ban (Fig. 6e). Specificity shifted leftward, toward more
exclusionary values for contributors with more DNA.
DNA amount affected the noncontributor tail distribution

(Table S3a). The 99.99 percentile was 2.6 ban for under 25 pg
of DNA, but �19.9 ban when over 250 pg. Maximum log(LR)
decreased from 3 ban to �20 ban across these DNA levels.
The number of noncontributor positive log(LR) values showed

how specificity depended on DNA amount (Table S3b). No non-
contributor positive values occurred for DNA amounts over
250 pg. More positive log(LR) events were seen with less DNA
over a broader range. Between 150 and 250 pg, noncontributor
positive values were under 2 ban. Under 150 pg, noncontributor
log(LR) positives reached 5 ban.
Cumulative noncontributor tail probability decreased with

increased template DNA (Table S3c). Under 25 pg, the probabil-
ity of noncontributor positive log(LR) was 0.0065. Over 250 pg,
no false-positive events were seen.

Amount versus Contributors

DNA amount explained genotype specificity better than did
contributor number. The log(LR) specificity distribution for
major contributors (≥250 pg) from five-person mixtures centered
around –37 ban (Fig. 6e), comparable to two-person mixtures,
which averaged �33 ban (Fig. 3a). Percentile values showed
major contributors from five-person mixtures having greater
specificity than for two-person mixtures, at �19.9 ban
(Table S3a) and �1.46 ban (Table S2a), respectively. Consider-
ing all contributor numbers, specificity similarly increased with
more DNA (Table 5, specificity column).
These observations are consistent with the linear relationship

between log(LR) match information and DNA quantity. A vali-
dation specificity distribution is the average of its component
probabilistic genotype specificity distributions (36). Therefore,
DNA amount determines the log(LR) distribution’s center, while
genotype uncertainty sets the distribution’s spread.
Mixtures having more contributors spawned more low-level

minor components (Table 1) to populate specificity distributions.
Since genotype specificity decreased with DNA amount, having
proportionately more minors decreased specificity (Table 5).

Reproducibility Improvement

As contributor DNA amount increased, reproducibility
improved from a rw of 0.76 ban to 0.59 ban (Table 5, repro-
ducibility column). The relative rw/log(LR) variation steadily

TABLE 3––Specificity.

log(LR)

Observed Contributor Number

2 3 4 5 6

Comparisons 120,000 120,000 160,000 800,000 360,000
0 1 180 344 5297 3364
1 0 54 113 1747 750
2 0 14 33 326 94
3 0 2 11 39 10
4 0 0 0 16 1
5 0 0 0 1 0
Total 1 250 501 7426 4219

Noncontributor positive events are counted for different match strengths
and contributor numbers. When evidence genotypes were compared with
noncontributor genotypes, noncontributor positive events were seen. The first
table column shows log(LR) bin values, while the following columns are for
different numbers of observed contributors. In each log(LR) row, table
entries count the number of noncontributor positive events.

TABLE 4––Independent analysis.

Operator Site

Cybergenetics CCRFSL

Genotypes 78 78
Minimum �5.16 �9.14
Mean 8.36 8.48
Median 5.98 5.61
Maximum 29.03 29.12
SD 8.37 8.54
rw 0.70

How independently running the software by operators located at different
sites affects the contributor distribution. Summary statistics show center,
spread, and extreme values. Within-group standard deviation shows the dif-
ference between log(LR) values, one replicate from each group. The mixture
samples were processed using observed contributor number.

TABLE 5––DNA amount.

DNA
amount
(pg)

Sensitivity Specificity
Reproducibility

Mean
log(LR)

Positive
log(LR)

values (%)
Mean
log(LR)

Negative
log(LR)

values (%) rw

0–50 3.00 91.67 �6.97 98.35 0.76
50–100 4.60 94.59 �9.25 98.87 0.78
100–150 11.59 100 �12.91 99.58 0.58
150–250 13.70 100 �20.66 99.98 1.26
250–500 28.34 100 �38.15 100 0.59

Measures of genotype information (columns) are shown for different DNA
amounts (rows). Means and true outcome percentages are provided for sensi-
tivity and specificity metrics. Within-group standard deviations are shown for
reproducibility.
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FIG. 6––DNA amount specificity. Each histogram shows the frequency distributions for comparisons to noncontributors. Results are for five-contributor mix-
tures, grouped by DNA amounts ranging from (a) under 25 pg to (e) over 250 pg. [Color figure can be viewed at wileyonlinelibrary.com]
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decreased as well, from 0.25 to 0.02. The major genotype split
in a duplicate run for mixture 6-1; this reduced log(LR) from
21.07 to 14.34 ban, which elevated rw to 1.26 ban in the 150–
250 pg range.

Assumptions

Contributors

The observed number of contributors differed from the study
design (Table 1). While there were only two samples in each
designed contributor group, there could be greater or fewer sam-
ples in an observed contributor group. For example, three sam-
ples were processed in the two-observed-contributor group,
producing six genotypes (Fig. 2, Tables 2 and S1).
As contributor number increased, so too did the variation in

the estimated number of contributors. The analyst’s observed
contributor number did not exceed the designed number (Table 1,
rows Des and Obs). For mixtures with up to six designed con-
tributors, the observed number differed from designed by at most
one. The difference between designed and observed numbers
increased along with the designed number. Cybergenetics and
CCRFSL consistently agreed on the number of observed contrib-
utors until there were eight or more designed contributors
(Table 2).
Varying the number of assumed contributors did not affect

overall sensitivity. True contributor log(LR) values were similar
under different contributor number assumptions (data not
shown). There were four outliers at higher match strength, with
designed log(LR) values less than observed; due to excess
assumed designed contributors, three major genotypes had split
into less definite genotypes, giving lower inclusionary log(LR)
values.
The average log(LR) value was about 7 ban for both sensitiv-

ity distributions. The difference between observed and designed
contributor assumptions affected the minimum, median, and
maximum values by less than one log unit (Table S4a). With a
Kolmogorov–Smirnov test statistic of 0.1613, a p-value of 0.37
showed no significant difference between sensitivity distributions
(Table S4b). On average, match statistics from observed and
designed contributor groups varied with a rw of 1.39 ban.
With more designed than observed contributors, the extra

assumed contributors gave more inferred genotypes. However,
these excess genotypes were generally uninformative, since (as
observed in the EPG) they had little support in the STR data.
This surplus was especially noticeable in the �10 to 0 ban range

FIG. 7––Contributor specificity. The histograms show the distribution of log(LR) match statistics for comparisons to noncontributors from computer process-
ing using observed (black) and designed (blue) contributor number approaches. Fewer genotypes were inferred under observed contributor number assump-
tions (156) than with designed contributor numbers (216), leading to fewer observed (1,560,000) than designed (2,160,000) comparisons. [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 6––Contributors specificity.

log(LR) Observed Designed

Comparisons 1,560,000 2,160,000
0 9186 26,772
1 2664 6498
2 467 966
3 62 94
4 17 16
5 1 0
Total 12,397 34,346

Counting positive-valued events for noncontributor log(LR) distributions.
Results are shown when assuming either an observed or designed number of
contributors. The positive counts are binned by integer log(LR) value.

TABLE 7––Peeling sensitivity.

Mixture weight (%)

Peeling Round

0 1 2 3 4 5 6

13 7 K K K K K K
22 6 7 K K K K K
12 5 4 5 K K K K
16 4 4 5 6 K K K
13 4 3 2 1 6 K K
15 3 3 4 1 6 8 K
2 1 1 1 1 3 3 4
2 0 2 2 3 2 3 4
4 0 1 1 1 2 0 2
1 0 0 0 0 �1 �1 0

Match statistic progression with successive rounds of genotype peeling for
sample 10-2. Contributor mixture weight (first column), as inferred by com-
puter modeling, is shown as a percentage of total DNA amount (rows). Each
rightward moving column represents the next round of peeling. Table entries
show contributor comparison log(LR) values, rounded to the nearest integer.
A “K” indicates that a contributor’s genotype was assumed as known in that
peeling round.
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(Fig. 7). The contributor number assumption did not materially
change the overall specificity distribution (Table S5a). For both
designed and contributor numbers, the minimum log(LR) was –
44 ban, and the maximum was about 5 ban.
Assuming the designed instead of observed contributor num-

ber yielded excess noncontributor positive log(LR) values. Posi-
tive counts increased from about 12,000 to 34,000 (Table 6).
The excess genotypes had log(LR) values mainly between 0 and
2 ban. Beyond 3 ban, the noncontributor positive cumulative
probability was essentially the same under different contributor
number assumptions (Table S5b).

Peeling

The genotype peeling method was applied to a ten-contributor
mixture (Table 7). The log(LR) values of minor contributors
were generally larger when peeling with known genotypes. For
example, the 15% minor contributor initially had a log(LR) of 3
ban (Table 7, row 15%). Following peeling, the match statistic
had become a more informative 8 ban.
Peeling improved average specificity of inferred genotypes.

Without peeling, the noncontributor distribution of the ten-per-
son mixture was centered around a log(LR) of �3 ban (Fig. 8).
This lower specificity reflected more contributors with small
DNA amounts (Fig. 6a). Peeling on the same DNA mixture data
yielded more exclusionary log(LR) values (Fig. 8). Genotype
peeling reduced exclusionary match statistics by about 3 ban,
and minimum log(LR) by 16 ban (Table S6a). This use of

known genotypes also reduced the number of noncontributor
positives two-fold (Table 8) and their cumulative probability
(Table S6b).
Early peeling rounds found sharpened evidence genotypes cor-

responding to true contributors. Once these genotypes had lar-
gely accounted for the data, later peeling rounds were less
informative, producing less focused genotypes. These minor
genotypes (mixture weights under 5%) from residual data
showed less specificity, producing more false log(LR) positives
over 3 ban. Without peeling, however, inferred genotypes were
more similar, less separated, and less informative.

Sampling

With few contributors, MCMC sampling cycles had little
effect on the match statistic. From 5K through 100K cycles,
log(LR) for the minor and major contributor of a two-person
mixture were consistently 21 ban and 27 ban, respectively
(Fig. 9a). With more contributors, sampling under 25K cycles
showed more variation (Fig. 9). Beyond 25K cycles, match
statistics remained consistent.
For example, the orange contributor line of Fig. 9e showed

log(LR) values ranging from 0 ban to 6 ban for sampling
between 5K and 25K cycles. Beyond 25K cycles, the line stayed
constant at 7 ban. The average log(LR) value for 50K sampling
was consistently within 1 log unit of the average log(LR) for
100K sampling (Table S7).
Abundant contributor DNA yielded larger log(LR) values,

showing little dependence on sampling time. Match statistics for
these contributors were relatively constant between 5K and
100K cycles, regardless of contributor number. For example, a
five-person mixture major contributor had a log(LR) of 17 ban
that remained within 2 ban when sampling from 5K to 100K
cycles (Fig. 9d, light blue line). Large match values were rela-
tively unchanged from 5K through 100K sampling (Fig. 9).
Sampling had greater impact on contributors having less

DNA. Initially low log(LR) values from 5K sampling increased
when additional sampling was conducted. For example, a mix-
ture with five (observed) contributors showed 1 ban with 5K
sampling; going beyond 10K cycles increased the statistic to 5
ban.

FIG. 8––Peeling specificity. The histograms show log(LR) frequency distributions for genotype comparisons to noncontributors. The genotypes were inferred,
both with (orange) and without (blue) peeling, from ten-contributor sample 10-2. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 8––Peeling specificity.

log(LR) Without Peeling With Peeling

Comparisons 200,000 200,000
0 9693 3480
1 1752 787
2 179 85
3 9 21
4 0 4
5 0 2
Total 11,633 4379

Noncontributor positive log(LR) comparison events, both with and without
peeling. Rows show positive log(LR) counts binned by integer log(LR) value.
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FIG. 9––Sampling. Plots show the influence of sampling on match statistics for true contributors of mixtures with (a) two through (e) six contributors. In a
plot, each true contributor’s colored line shows its average log(LR) values at different sampling times. Vertical error bars express standard deviations between
replicate computer runs. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 10––Sampling sensitivity. Histograms show sensitivity distributions for mixtures having five observed contributors. The charts show the results for vary-
ing sampling from (a) 5K through (e) 100K cycles. [Color figure can be viewed at wileyonlinelibrary.com]
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Sensitivity distributions were developed for five-observed-con-
tributor mixtures. More sampling reduced contributor negative
log(LR) results. With 5K sampling, five comparisons produced
negative log(LR) values (Fig. 10a). Beyond 5K sampling, just
one of those five comparisons gave a negative log(LR).
Specificity distributions were developed for mixtures having

five observed contributors. Increasing sampling from 5K to 25K
reduced genotype specificity (Table 9) by more thoroughly
exploring the posterior genotype distribution; probability was
diffused over more allele pair possibilities, lowering match
strength. More sampling time was needed to observe these less
probable allele pair events. Figure 11 shows that average speci-
ficity shifted rightward from �17 ban (5K sampling) to �11
ban (25K sampling). Noncontributor positive cumulative proba-
bility was less dependent on sampling, yielding relatively con-
stant 99.99 percentile values (Table S8a).
Regardless of contributor number, more sampling increased

match statistic reproducibility (Table 10). Additional sampling
improved reproducibility for mixtures containing more contribu-
tors, as measured by within-group variation rw. At 100K sam-
pling, rw was 1 ban or less, regardless of the number of
contributors.

Peaks

Sensitivity was largely unaffected by peak limit. Comparing
sensitivity at a locus limit of 10 or 20 data peaks, log(LR) aver-
ages were within 0.1 ban, regardless of contributor number
(Table 11). Overall rw was 0.71 ban. This small variation was
comparable to routine processing (without peeling), where rw

ranged from 0.17 ban to 0.87 ban (Table S1a). Since TrueAllele
models baseline noise, additional nonallelic peaks did not materi-
ally affect genotype or LR results.

Conclusion

Mixtures combine the DNA of different people into one bio-
logical sample. The interpretation task is to un-mix the biologi-
cal data and to determine the genotype of each contributor. That
inverse problem, recovering input genotypes from output data, is
difficult for human analysts, but can be accomplished using
modern statistical computing to solve a mathematical model.
A Bayesian probability framework makes few assumptions

and derives parameters of interest directly from the evidence
data. Parameter uncertainty is represented through probability. A

key variable of interest is the genotype of each contributor,
described as a probability distribution at each locus over all pos-
sible allele pairs. The ratio of posterior genotype probability
(after having seen data) to prior probability (before observing
data) is the LR, used in forensic science to assess association
strength between two biological items. The LR logarithm is a
standard measure of information.
The DNA match statistic (i.e., the LR) is the final common

pathway of forensic identification, regardless of calculation
method. The number can statistically include or exclude people
from a mixture and is used in court to summarize match
strength. The log(LR) forms the basis of forensic validation
(18,22), reducing genotype comparison information to a single
value.
Separated genotypes follow a predictive empirical law. When

compared with a person’s genotype, their log(LR) match infor-
mation is proportional to the logarithmic amount of DNA con-
tributed by the person (20,29) until a maximum LR is reached.
A well-understood deviation is that equal contributor amounts
lower LR values (20). The study measured sensitivity, speci-
ficity, and reproducibility using log(LR), and the metrics all
obeyed this linear law. The results were consistent with a linear
relationship between DNA amount and identification informa-
tion.
The data showed that contributor DNA quantity determines

mixture information and its variability. The 2016 President’s
Council of Advisors on Science and Technology (PCAST) pol-
icy report suggested limiting DNA mixture usage based on con-
tributor number and mixture weight (37). Our empirical
validation study underscores why this forensic policy proposal is
scientifically unfounded:

1 The number of contributors, and their relative weight in a
mixture, are merely factors affecting contributor DNA quan-
tity—the main independent variable.

2 The linear relationship between DNA quantity and match
information provides a useful predictive theory that explains
match strength.

3 Mixture interpretation validation studies demonstrate a con-
tinuum of predictable match information (from none to all).
There is no scientific evidence supporting PCAST’s proposal
to impose arbitrary limits.

While virtually all of TrueAllele’s Bayesian model parameters
are derived from DNA evidence data, the system does have
some user settable parameters. The study measured the impact of
these inputs on match information. It found that assuming a suf-
ficient number of contributors to explain the data gave reliable
results. Supplying known contributors could provide additional
genotype data that sharpened match association. Sampling for
twenty-five thousand MCMC cycles generally sufficed. More-
over, considering excess data peaks had minimal impact on the
answer.
An interesting finding involved the number of observed con-

tributors empirically estimated from the STR data. When assum-
ing this empirical number, genotypes faithfully represented the
data. By contrast, a larger experimental design number gave
excess uninformative contributors. Many mixtures contain DNA
contributors that are imperceptible in STR data. Bayesian reason-
ing is based on the data we have, not on desired meta-knowl-
edge we lack. This finding lets users confidently operate the
system when assuming a contributor number estimated from
observed data.

TABLE 9––Sampling specificity.

Sampling Time (thousands of cycles)

log(LR) 5K 10K 25K 50K 100K

0 1139 1698 3801 2896 2689
1 351 461 924 944 849
2 45 77 143 186 161
3 7 6 17 19 21
4 0 0 3 3 9
5 0 0 0 1 0
Total 1542 2242 4888 4049 3729

The effect of sampling duration on positive log(LR) right-tail events in the
noncontributor distribution. Positive log(LR) events are binned by integer
log(LR) value (left column). Results are shown for 400,000 noncontributor
comparisons, using mixture genotypes inferred assuming five observed
contributors.
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FIG. 11––Sampling specificity. Histograms show match statistic distributions for comparison to noncontributors with MCMC sampling ranging from (a) 5K
through (e) 100K cycles for mixtures of five observed unknown contributors. [Color figure can be viewed at wileyonlinelibrary.com]
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Many validation studies are based on laboratory-generated
samples, rather than casework items. However, the study sup-
ports interpreting evidence based on data observation, not
unknowable facts. A small amount of contributor DNA may suf-
fer allele dropout or imbalance, and so express its genotype
unfaithfully—or not at all—in the STR data. The correct infer-
ence is a probability distribution that quantifies this genotype
uncertainty, independently of what we believe we “know”
should be there. Contextual bias can only diminish forensic
objectivity (38).
Empirical testing is the basis of scientific (39) and legal (40)

reliability. Validation studies can test laboratory-generated data
(as was done here), or casework field data. Both are needed,
since methods that excel in the laboratory may fail in the field.
For transparency and respect for Sixth Amendment rights, defen-
dants should have an opportunity to test the forensic casework
methods and data used against them.
Previous validation studies demonstrated TrueAllele reliability

on DNA mixtures containing up to five unknown contributors
(29). Empirical testing has been conducted on both laboratory-
generated data (20,25,28,29) and casework field data (9,26,27).
Thirty additional unpublished studies, including internal labora-
tory validations, have been documented. This study extends that
testing, establishing TrueAllele reliability on mixtures containing
up to ten unknown contributors.
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