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Abstract
Data showing a remarkable gender difference in life expectancy and mortality, including survival to extreme age, are
reviewed starting from clinical and demographic data and stressing the importance of a comprehensive historical
perspective and a gene–environment/lifestyle interaction. Gender difference regarding prevalence and incidence of
the most important age-related diseases, such as cardiovascular and neurodegenerative diseases, cancer, Type 2
diabetes, disability, autoimmunity and infections, are reviewed and updated with particular attention to the role of
the immune system and immunosenescence. On the whole, gender differences appear to be pervasive and still
poorly considered and investigated despite their biomedical relevance. The basic biological mechanisms
responsible for gender differences in aging and longevity are quite complex and still poorly understood. The present
review focuses on centenarians and their offspring as a model of healthy aging and summarizes available
knowledge on three basic biological phenomena, i.e. age-related X chromosome inactivation skewing, gut
microbiome changes and maternally inherited mitochondrial DNA genetic variants. In conclusion, an appropriate
gender-specific medicine approach is urgently needed and should be systematically pursued in studies on healthy
aging, longevity and age-related diseases, in a globalized world characterized by great gender differences which
have a high impact on health and diseases.
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INTRODUCTION

Lifespan and longevity are complex and multifactorial traits res-
ulting from an intriguing combination of ‘Nature’ and ‘nurture’,
the unique reciprocal interaction between environmental, genetic,
epigenetic and stochastic factors, each contributing to the overall
phenotype [1,2].

Women live longer than men and this difference in life expect-
ancy is a worldwide phenomenon indicating that human longevity
seems strongly influenced by gender defined as the combination
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between biological sexual characteristics (anatomy, reproductive
functions, sex hormones, expression of genes on the X or Y chro-
mosome) and factors related to behaviour, social role, lifestyle
and life experiences [3–6].

Following a historical perspective, in Europe in the 19th Cen-
tury, life expectancy was less than 40 years and longevity of the
two genders was generally very similar. The high female mor-
tality due to pregnancy and childbirth corresponded to a higher
male mortality from causes related to work, accidental injury
or violence. Moreover, infectious and communicable diseases
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Table 1 Number of deaths, percentage of total deaths by sex regarding the 14 leading causes of death in U.S.A. in 2013
Data refer to all races and all ages. Adapted from [14].

Male Female

Rank Cause of death Number Total deaths (%) Number Total deaths (%) Higher mortality for

1 Heart disease 321,347 24.6 289,758 22.4 ♂

2 Malignant neoplasms 307,559 23.5 277,322 21.5 ♂

3 Chronic lower respiratory diseases 70,317 5.4 78,888 6.1 ♀

4 Accidents (unintentional injuries) 81,916 6.3 48,641 3.8 ♂

5 Cerebrovascular diseases 63,691 4.1 75,287 5.8 ♀

6 Alzheimer’s disease 25,836 2.0 58,931 4.6 ♀

7 Diabetes mellitus 39,841 3.1 35,737 2.8 ♂

8 Influenza and pneumonia 26,804 2.1 30,175 2.3 ♀

9 Kidney diseases 23,493 1.8 23,619 1.8 =
10 Suicide 32,055 2.5 9,094 0.7 ♂

11 Septicaemia 17,994 1.4 20,162 1.6 ♀

12 Chronic liver disease and cirrhosis 23,709 1.8 12,718 1.0 ♂

13 Essential hypertension-related diseases 12,963 1.0 17,807 1.4 ♀

14 Parkinson’s disease 15,088 1.2 10,108 0.8 ♂

15 All other causes 253,421 19.4 302,707 23.5 ♂

affected and killed men and women almost equally [7]. Through-
out the 20th Century, mortality became concentrated in the older
ages, non-communicable diseases became the prevailing causes
of death, and a female survival advantage emerged and grew.
This divergence in life expectancy can partly be explained by the
declining rates in maternal mortality; however, a major contribu-
tion is due to differences in behaviour and biology between males
and females [8].

Using historical data from 1763 birth cohorts from 1800 to
1935 in 13 developed countries, Beltrán-Sánchez et al. [9] showed
that gender asymmetry emerged in cohorts born after 1880, that
excess adult male mortality is rooted in a specific age group (50–
70) and that heart disease is the main condition associated with
increased excess male mortality in birth cohorts of 1900–1935.
The authors have suggested that excess male mortality, found
even after accounting for smoking-attributable deaths, may be
explained by underlying traits of vulnerability to CVD (cardi-
ovascular disease) that emerged with the reduction of infections
and changes in diet and other lifestyle factors [9].

The maximum difference in life expectancy between males
and females was found between the 1970s and the 1990s. The
subsequent reduction of the gender gap can be attributed partly
to the narrowing of differences in risk behaviours between males
and females, along with the decline in mortality rates from CVD
among men [10]. In the EU-28 countries, the difference in life
expectancy between males and females was 5.5 years in 2013
(http://ec.europa.eu/eurostat/statistics-explained/index.php/
Mortality_and_life_expectancy_statistics); however, the gender
gap varied largely across EU member states.

The survival advantage of women is counterbalanced by a
worse quality of life in advanced age due to the increase in disab-
ility and degenerative diseases [12]. Therefore men and women
have a diverse chance to attain longevity and, at the same time,
the aging process is qualitatively different between genders.

The impact of gender difference in aging has been extensively
assessed, but the study of the interaction between a series of fun-
damental aspects such as hormonal, immunological and meta-
bolic pathways as well as genetic background remains largely
unknown.

Accordingly, the present review aims to (i) give an accurate
analysis of mortality causes and age-related diseases pattern in
men and women; (ii) describe the most important mechanisms
underpinning the gender difference in longevity and aging (sex
hormones, immunity, genetic factors, nutrition and stress); (iii)
attempt to explain the difference in longevity between males and
females, in human models of extreme longevity such as centen-
arians and long-lived families, suggesting the importance of an
integrated investigation of nuclear, mitochondrial DNA genetics
and gut microbiome; and (iv) stress the urgent need for a gender-
specific medicine, taking into account the profound differences
in pathophysiological pathways, in clinical characteristics and in
pharmacological response between men and women. In conclu-
sion, the scientific world is obliged to revise all outcomes in all
fields of medicine on the basis of gender differences.

GENDER AND AGE-RELATED DISEASES

The epidemiology of age-related diseases is substantially differ-
ent between genders and changes dramatically in women after
menopause [13]. Table 1 reports mortality data by sex regarding
the 14 leading causes of death in U.S.A. in 2013 and refers to
all races and ages [14]. Women died at higher rates than men
of chronic lower respiratory diseases, cerebrovascular diseases,
AD (Alzheimer’s disease), influenza and pneumonia, septicaemia
and hypertension-related diseases [14]. Even in the EU, a sig-
nificant gender gap exists in mortality rates in all countries.
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In particular, death rates for IHD (ischaemic heart disease) and
stroke are higher for men than for women [10].

There are important inequalities in healthy life years between
men and women. In EU countries, life expectancy at age 50
reached 29.8 years for men and 34.6 years for women in 2010, but
the average duration of life free from activity limitation remained
practically the same in women (68.6 years) and men (67.9 years)
[10,15,16], meaning that the almost 5 years of advantage in life
expectancy of women are years of diseases and disability.

Cardiovascular disease (CVD)
Differences between women and men in the epidemiology, patho-
physiology and symptoms of CVD are well-described. This
gender gap should been taken into account because it strongly
impinges on the effects of specific drugs and outcomes. Both
factors linked to sex (gene expression from the sex chromosomes,
sex hormones, metabolism of drugs by sex-specific cytochrome
expression) and gender (sociocultural processes, behaviours, ex-
posure to specific environment, nutrition, lifestyle and attitudes
towards treatments and prevention) play a fundamental role in
determining CVD risk [17].

Death rates for IHD are 70 % higher for men than for women
on average in all EU countries [10]. In addition, women showed
a delayed onset of IHD (7–10 years on average) in several west-
ern EU states, even though, due to harmful lifestyle modifica-
tions, the prevalence of IHD is increasing in young women [17].
Moreover, IHD in women may show different symptoms and pain
localization, and may need diverse diagnostic procedures and
drugs [18].

HF (heart failure) is one of the major health threats of Western
societies and affects up to 10 % of the elderly, in absolute numbers
more women than men [19]. However, women survive better than
men and HF in women frequently occurs at older age and with
less ischaemic aetiology than in men [20]. Recent data from the
Framingham Heart Study showed that, in the latter half of the
20th Century, incidence of HF has declined by about one-third
in women, but not in men, even though, after adjusting for age,
survival after HF onset was improved in both genders [21].

The difference in the epidemiology of hypertension between
men and women deeply changes with age. In particular, hyper-
tension has a low prevalence in young and adult age when it is
more predominant among men. By contrast, hypertension is more
common in women than in men in the elderly population [17].
Indeed, falling oestrogen production during and after menopause
has been associated with hypertension in women [22].

During aging, there is a sex-specific ‘cardiac remodelling’.
In particular, women develop more frequently concentric cardiac
hypertrophy with smaller internal cavity and relatively larger
wall thickness, preserving a better ejection fraction and myocar-
dial contractility than men. On the other hand, men show more
frequently eccentric hypertrophy leading to an increased stroke
volume and dilatation [17].

Women are particularly susceptible to the deleterious impact
of T2D (Type 2 diabetes) and hypertension on cardiovascular
health. These conditions were associated with higher risk of HF
in women with respect to men (T2D increases 3.4-fold and 2-
fold the risk of HF in women and men respectively; hyperten-

sion increases 5-fold and 2-fold the risk of HF in women and
men respectively) [21]. In addition, T2D worsens the coronary
artery disease outcome more in women than in men [23]. Finally,
some pregnancy-associated conditions, such as pre-eclampsia
and other hypertensive disorders, further contribute to increased
risk for future chronic hypertension, CVD, cerebrovascular dis-
eases and death in women [24].

Type 2 diabetes (T2D)
Recent data show that the difference in the global estimates of
T2D between men and women in terms of cases (male, 197.7
million; female, 184.1 million), prevalence (male, 8.7 %; female,
8.1 %) and age-specific prevalence [25] is small. Even if T2D
prevalence is similar in men and women, it is slightly higher in
men under 60 years of age and in women at older ages. Indeed,
the longer survival of women is one of the factors leading to a
higher prevalence of diabetes for women than for men at advanced
age [26]. However, a stronger connection between diabetes and
coronary heart disease has been demonstrated in women. In par-
ticular, the relative risk for mortality due to coronary heart disease
in diabetic patients is 50 % higher in women than in men, sug-
gesting that T2D may induce a more unfavourable cardiovascular
risk profile among women. Diabetic women have significantly
higher levels of blood pressure and lipids than men with diabetes
[27]. Moreover, findings from different studies conducted in the
U.K. and the U.S.A. showed that the greater coronary risk as-
sociated with T2D observed in women may reflect a treatment
bias that favours men. In particular, in these countries, diabetic
men with cardiovascular problems are more frequently treated
with hypoglycaemic drugs, aspirin, statins or anti-hypertensive
drugs than women with similar pathological conditions
[28–30].

Moreover, women over 65 years of age have a higher fre-
quency of insulin resistance, dyslipidaemias, central adiposity
and hypertension (named the metabolic syndrome) which in turn
is a greater risk factor for CVD in women [31,32]. In partic-
ular, central adiposity tends to be more pronounced in post-
menopausal women than in men playing a determinant role in
the increase in CVD risk. It has been demonstrated that visceral
adipose tissue contributes to insulin resistance secreting a variety
of inflammatory mediators [such as IL (interleukin)-6, TNF-α
(tumour necrosis factor α), leptin and resistin]. Moreover, lipid
profile [HDL- (high-density lipoprotein) and LDL (low-density
lipoprotein)-cholesterol as well as triacylglycerols] dramatically
worsens after the menopause favouring atherogenesis [32].

Cancer
Cancer mortality rates are higher for men than for women in
industrialized countries. In some EU countries (i.e. Lithuania,
Spain, Latvia, Estonia, the Slovak Republic, Portugal and Croa-
tia), the mortality rates for neoplasms in men are dramatically
increased. This gender difference can be explained partly by
the greater prevalence of risk factors among men as well as
by reduced availability/use of screening programmes for can-
cers affecting men, leading to lower survival rates after diagnosis
[10]. For instance, lung cancer accounts for the greatest number
of cancer deaths among men in almost all EU states. In 2011,
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death rates from lung cancer among men were the highest in
all EU countries where smoking habits among men remain very
frequent (Hungary, Poland and Croatia). However, lung cancer
mortality in American women has increased from 1950 to 1995
by 500 % [18]. Evidence has suggested that the development
of lung cancer is different in women in comparison with men.
Non-smoking women have a 2.5-fold higher risk than men to
develop lung cancer at a younger age, but they respond better
to treatment. Women who smoke have a higher susceptibility to
cigarette-smoking damage probably related to the polymorphism
of Glutathione S-transferase (GST) Mu 1, which plays a role in
detoxifying environmental carcinogens [33]. However, women
with lung cancer survive longer than men, regardless of therapy
and stage.

CRC (colorectal cancer) is the second leading cause of cancer
death in both genders; in women it occurs 5 years later than in
men. For this reason, the population screening for CRC should
be extended beyond 70 years of age. Moreover, CRC in wo-
men is more often located in the right colon, the histology is
mucinous, occult blood in stool may be negative until the last
stages and it is frequently diagnosed in an urgent/emergency
situation. Nevertheless, the survival is better in female patients
with respect to male patients [34]. CRC in women more fre-
quently expresses microsatellite instability showing a lower sens-
itivity to fluoropyrimidines, cornerstone drugs for the treatment
of colorectal carcinoma [35].

Currently, prostate cancer has become the most common can-
cer among men after skin cancer in the majority of EU countries,
particularly among men aged 65 years and over. However, death
rates for prostate cancer are lower than for lung cancer. The
primary risk factors are obesity, lack of exercise, age and family
history [10].

Breast cancer is the second most common form of cancer
in women after skin cancer in all EU countries. It can occur in
both men and women, but it is very rare in men (10 %). The in-
cidence rates of breast cancer have increased in the last decade,
but the death rates have diminished or remained stable, indicat-
ing an improving of survival rates due to earlier diagnosis and
better treatment [36]. Numerous risk factors for breast cancer in
women have been identified, including age, personal history of
certain benign breast diseases or breast cancer, early menstru-
ation or late menopause, never having been pregnant or having
a first pregnancy after age 30, use of oral contraceptives, family
history of breast cancer, presence of certain genetic mutations
(BRCA1 and BRCA2), history of radiation therapy to the chest,
long-term use of combined hormone therapy, use of DES (di-
ethylstilbestrol), increased breast density, alcohol use and obesity
after menopause. Risk factors for men for breast cancer include
obesity, Klinefelter’s syndrome and an excess of breast tissue
(http://www.cancer.gov/research/progress/snapshots/breast).

Neurodegenerative diseases
Women are more affected than men by dementia (definition com-
prising different conditions including AD and vascular dementia)
showing a more frequent and rapid decline of cognitive function
with aging. Prevalence rates among populations vary consid-
erably because of methodological reasons (diagnostic criteria,

sampling strategies and statistical analysis) [38]. Among people
aged 90 years and over, the gender gap rises to 30 % of prevalence
for men and 47 % for women [10].

The biological basis of gender impact on AD and neurodegen-
eration are still unclear. Indeed, the development and functioning
of the central nervous system is strongly influenced by gender.
The main risk factor for AD is age, and the fact that the majority
of AD patients are females has been attributed to longer life ex-
pectancy. However, women are reported to have higher rates of
AD than men, even after adjusting for survival [39,40]. The neg-
ative effect of the APOE (apolipoprotein E) ε4 allele, one of the
most established genetic risk factors for AD, may explain, at least
in part, this gender gap. Different studies have observed that fe-
male APOE ε4 carriers show a higher risk of AD compared with
males [41,42]. A recent paper demonstrated that female APOE
ε4 carriers presented widespread brain hypometabolism and cor-
tical thinning compared with female non-carriers, whereas male
APOE ε4 carriers showed only a small cluster of hypometa-
bolism and regions of cortical thickening compared with male
non-carriers, suggesting that the impact of APOE ε4 on brain
metabolism and structure is strongly dependent on gender [43].

AD can be caused by defects in mitochondrial oxidative
phosphorylation. Given that the mitochondrial genome (mtDNA)
codes for polypeptides that are essential components of the res-
piratory chain, a number of studies have investigated the associ-
ation between mtDNA-inherited variants and AD. In particular,
research conducted on AD patients and controls from Italy has
identified the sub-haplogroup H5 as a risk factor for AD for fe-
males in particular and independently of the APOE genotype [44].

It is also worth noting that sex hormones have a critical role
in neurodegeneration processes. Oestrogen has been shown to
be protective towards AD reducing amyloid β-peptide aggreg-
ation and improving neural functions [45–47]. During aging,
the decrease in gonadal hormones production is gradual in men
(testosterone), whereas in women, the fall of oestrogen is quick
after menopause when the incidence of AD suddenly increases
[39,48].

A neuroprotective effect of oestrogen on the risk of PD (Par-
kinson’s disease) onset and disease progression has also been
reported. Both the prevalence and the incidence of the PD is
higher in men than in women [49,50]. In women, the risk of PD
is related to the fertile lifespan considering that a later age at
menopause is associated with a later age at onset of PD [51,52],
whereas a premature menopause increases the risk of PD [53].
These data suggest a relationship between the duration of endo-
genous oestrogen exposure and the susceptibility to develop PD
in women.

Disability
It is important to underline that women pay for their survival
advantage with a worse quality of life in their old age due to an
increased prevalence of a variety of disabling non-lethal patho-
logical conditions [15].

Diseases influencing the ADL (Activities of Daily Living)
and IADL (Instrumental Activities of Daily Living) scales in
women are the consequences of CVD, osteoarthritis, osteoporosis
and cognitive decline. Women are more medicalized in terms of
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frequency of medical visits, days of hospitalization and number
of drugs routinely administrated [13,54]. A recent Italian study
on a cohort of hospitalized elderly patients (REPOSI) describes a
gender dimorphism in the demographic and morbidity profiles as
well as in the overall medication pattern of hospitalized elderly
people [55,56]. In all EU countries, women reported a poorer self-
perceived health, more long-standing illnesses and/or more health
problems than men [10]. A possible explanation for this gender-
associated health–survival paradox may be found in a higher
female sensibility to physical discomfort that led the women
to seek medical attention more frequently. Actually, the higher
prevalence and severity of arthritis and musculoskeletal disease
among older women widely contributes to their worse health
and functional status. In particular, women are more frequently
affected by severe forms of osteoarthritis affecting the hand, foot
and knee, and the incidence of this condition highly increases at
the time of menopause, suggesting a role for oestrogens in the
pathogenesis of osteoarthritis. Moreover, gender disparities may
also be caused by differences in bone strength, posture, ligament
laxity, pregnancy and neuromuscular strength [57,58].

Stress and spousal bereavement
Owing to their longer life expectancy and the tendency to marry
older men, women are more likely to become widows. Conjugal
loss in advanced age is a stressful life experience able to drastic-
ally alter the social environment of the surviving spouse. There-
fore widowhood is often associated with a feeling of loneliness,
depression, loss of physical and cognitive functions, and poor nu-
tritional status [59–62]. However, spousal bereavement may not
have the same implications for women and men. For example,
widows maintain higher levels of social contacts with family,
friends and neighbours [63] than widowers and this behavioural
difference may alleviate some of the undesirable effects of wid-
owhood. Thus, even if widows are more numerous than widowers,
it has been shown that widowhood has a more negative impact
on health status and mortality in men than women [62,64–66].

GENDER AND THE IMMUNE SYSTEM

Much research has been carried out into the role of sex hor-
mones in determining lifespan [67] and one hypothesis is that
sex hormones appear to influence the immune system. This can
determine a sexual dimorphism in the immune response in hu-
mans [68]. For instance, females produce more vigorous cellular
and humoral immune reactions and are more resistant to cer-
tain infections. In contrast, men are more susceptible to many
illness caused by viruses, bacteria, parasites and fungi. It is
well known that oestrogens, androgens and progesterone affect
cells of the innate and adaptive immune system differently dur-
ing the reproductive phase of life [69]. Oestrogens inhibit NK
(natural killer) cell cytotoxicity, reduce neutrophil chemotaxis
and consequently inflammation [70,71]. Moreover, macrophages
treated in vitro with oestradiol display a reduced production of
pro-inflammatory cytokines, i.e. IL-1β, IL-6 and TNF-α [72].
Oestrogens and androgens are responsible for a reduced im-

mature number of T-lymphocytes and thymus involution after
puberty [73] and can also influence the adaptive immunity in
an opposing way. Androgens polarize naı̈ve CD4+ T-cells to-
wards the Th1 subset and activate CD8+ T-cells; conversely,
oestrogens stimulate Th2 responses and activate antibody pro-
duction [74]. Testosterone increases IL-10 production, and men
with androgen deficiencies have higher levels of IL-1β, IL-2 and
TNF-α, higher antibody titres and higher CD4+/CD8+ T-cell ra-
tios [75]. Oestradiol reduces the apoptosis of immature B-cells
and also increases somatic hypermutation and isotype-switch re-
combination leading to high-affinity Ig-producing cells. These
effects might contribute to an improved humoral response in wo-
men, but also favour the appearance of autoreactive clones and
the susceptibility to autoimmune diseases [76]. Moreover, oestro-
gens down-regulate autoimmune regulator gene (AIRE) expres-
sion in mTECs (medullary thymic epithelial cells), that plays an
important role in protection against autoimmunity, triggering the
negative selection of self-reactive T-cells [77]. In addition AIRE
induces Treg (regulatory T-cell) development; consequently oes-
trogens contribute to increased susceptibility to autoimmunity
[77]. Several studies showed that females are 2–10-fold more
susceptible than males to a series of disabling autoimmune dis-
eases such as rheumatoid arthritis, multiple sclerosis, systemic
rheumatoid arthritis, systemic lupus erythaematosus, myasthenia
gravis, Sjogren’s syndrome and Hashimoto’s thyroiditis [78–80].
The better immune response of females is also evident after vac-
cinations; women reveal higher levels of immunoglobulins and
seroconversion and lower rates of disease [75]. In short, sex hor-
mones have different effects on immune responses, with oestro-
gens exerting an immune-improving action, and progesterone and
testosterone having an immune-suppressive effect.

The sudden loss of ovarian oestrogen and progesterone pro-
duction that characterizes menopause, induces pathophysiolo-
gical changes in different organs and systems [81]. Menopause
reflects the inevitable final hallmark of a woman’s fertile lifespan
and of the above-described beneficial effects of oestrogens on im-
mune responses. Menopause affects various women’s health as-
pects, including bone density, breast cellular composition, cardi-
ovascular health, mood/cognitive function and sexual wellbeing.
Moreover, old women lose their immunological privilege towards
infection [69] because the rapid reduction of oestrogen levels res-
ults in an increased susceptibility and mortality towards a series
of infectious diseases (hepatitis, and meningococcal and pneumo-
coccal infections) [69,79]. It is noteworthy that women will soon
spend half of their life in post-menopause, if the current trend of
increasing human life expectancy should persist. Various stud-
ies have reported an association between late-onset menopause
and reduction in all causes of morbidity and mortality [82]. Both
fecundity at an older age and a high age at menopause have been
associated with longevity [83]. Several studies have suggested
that ovarian sex steroid loss favours immunosenescence by con-
tributing to the remodelling of the immune system. Immunosen-
escence is a multifaceted phenomenon that increases morbidity
and mortality due to infections and age-related pathologies, and
is characterized by changes in innate and adaptive immune re-
sponses to foreign antigens [84,85]. In Figure 1, the main aspects
of immunosenescence [86–92] are shown and it is indicated that
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Figure 1 The progression to immunosenescence characterized by age-related changes in immune cells and inflammatory
mediators is faster in men than in women [86–93]
TLR, Toll-like receptor.

age-related changes in immune cells and inflammatory mediat-
ors, i.e. the progression to immunosenescence, are faster in men
than in women [93].

Functional aspects of age/gender-specific differences of the
immune system and its interplay with changing sex steroid
hormone levels have not been investigated extensively. Post-
menopausal women exhibit a reduced number of total lympho-
cytes, mainly B- and CD4+ T-lymphocytes [94] and an altered ex-
pression of inflammatory mediators such as an increased plasma
level of IL-1β, IL-6, IL-10 and TNF-α [95–98]. After a transi-
ent rise in post-menopausal women, IFN-ɣ (interferon γ ) levels
gradually decrease with age. Yet the production of IL-10 in-
creases during the post-menopausal period [95]. Moreover, in
in vitro stimulation studies, IFN-ɣ and IL-17 secretion is dimin-
ished in aged men in comparison with women [99]. In contrast,
the anti-inflammatory cytokine IL-10 increases in aged women
but not in men. Centenarians, mainly females, present markers
of inflammation [e.g. increased plasma levels of IL-6 and CRP
(C-reactive protein) and hypercoagulable state], but do not suffer
most of the detrimental effects of inflammaging. Accordingly,
centenarians seem to be equipped with gene variants that allow
them to optimize the balance between pro- and anti-inflammatory
molecules, thus minimizing the effects of the lifelong exposure
to environmental insults and stressors [100].

GENDER AND NUTRIENT-SENSING
PATHWAYS

DR (dietary restriction) without malnutrition, intended as a re-
duced intake of all dietary constituents except vitamins and min-
erals, is a well-known intervention to improve most aspects of

health during aging and to extend lifespan in model organisms
from invertebrates and rodents to primates, including humans
[101]. However, in humans, this practice remains difficult, if not
impossible, to sustain because it envisages unrealistic levels of
self-deprivation, can impair reproductive function and libido, res-
istance to infection and wound healing, and can increase the risk
of osteoporosis and fractures, anaemia and cardiac arrhythmias
[101]. Therefore interest in interventions able to recapture the
beneficial effects of DR has grown. Among the mechanisms me-
diating the effects of DR, particular attention has to be paid
to nutrient-sensing pathways, such as IIS [insulin and IGF-1
(insulin-like growth factor 1) signalling] by their transcription
factor FOXO (forkhead box O) or via mTOR (mammalian target
of rapamycin), which are considered key modulators of lifespan
and the aging process [102,103]. These highly conserved path-
ways are designated to couple nutritional status to energetically
expensive processes, such as growth, reproduction and metabol-
ism [104]. Several studies on experimental animal models have
tried to disentangle the effect of IIS/TOR (target of rapamycin)
signalling network on biological processes. Specifically, inter-
ventions aimed at the down-regulation of this pathway affect the
expression of hundreds of genes involved in immunity and stress
responses, activate anti-aging responses and are able to extend
lifespan mimicking the action of DR.

On the whole, data on animal models have shown that genetic
mutations inhibiting IIS and TOR nutrient sensing signalling have
a stronger effects on lifespan extension in females [101]. For ex-
ample, Drosophila mutants with impaired insulin-like signalling
have a significant life extension in females [105,106] and het-
erozygous IGF-1R (IGF-1 receptor)-knockout female mice are
long-lived and show a higher oxidative stress resistance than
wild-type mice, whereas the difference is not significant in males
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[107]. The deletion of S6K1 (ribosomal S6 protein kinase 1), a
component of the nutrient-responsive mTOR signalling pathway,
leads to a significantly increased lifespan and to an improvement
in a number of age-sensitive biomarkers of aging (fewer memory
and more naı̈ve T-cells, lower plasma leptin levels and fat mass) in
females only [108]. Similarly, rapamycin, an inhibitor of mTOR
kinase, increases the lifespan of genetically heterogeneous UM-
HET3 mice more in females than in males at each dose evaluated
[109].

In humans, IIS and mTOR signalling have been investigated
for their role in the development of diseases, such as diabetes and
cancer, and for their impact on longevity [110]. Large cohort stud-
ies have shown a significant interaction with gender. For example,
genetic variation in IIS pathway components [GHRHR (growth
hormone-releasing hormone receptor), GH (growth hormone),
IGF-1, insulin, IRS1 (insulin receptor substrate 1)] have a higher
influence on body size and are more beneficial for old age sur-
vival in women with respect to men [111]. Some human studies
have investigated the role of sex hormones in regulating the so-
matotropic axis (GH and IGF-1) underlining gender differences
in the impact of suppression of the nutrient-sensing pathways
on aging and longevity. For instance, oestradiol reduces hepatic
sensitivity to GH, whereas testosterone plays an opposite role
enhancing the growth-promoting effects of the somatotropic axis
[13,112,113] and increasing the risk of some age-related patho-
logies such as prostate cancer and cardiomyocyte hypertrophy
[114,115].

To date, there is a lack of data on the effect of DR on hu-
man longevity and whether this practice has a different impact
according to the gender is largely unknown. However, increasing
interest has been paid to trials on the effects of IF (intermit-
tent fasting) or adjusted rhythm of feeding on women’s health. A
study in overweight or obese pre-menopausal women has demon-
strated that IF (two non-consecutive days per week over a 6-month
period) is an effective intervention to reduce weight, fat mass
and waist circumference as well as to improve insulin sensitivity
and other biomarkers such as total and LDL-cholesterol, triacyl-
glycerols, CRP and arterial blood pressure [116]. Therefore IF
may be considered as an alternative and more feasible practice
than DR to reduce disease risk [116]. Interestingly, a ‘breakfast
diet’ (980 kcal breakfast, 640 kcal lunch and 190 kcal dinner;
1 kcal = 4.184 kJ) on lean women with polycystic ovary syn-
drome improves glucose metabolism, decreases free testosterone
and increases the ovulation rate with respect to an isocaloric ‘din-
ner diet’ (190 kcal breakfast, 640 kcal lunch and 980 kcal dinner)
[117].

However, to date, few studies have assessed the differences
between men and women in response to nutritional interven-
tions. Several papers have described the effects of a 4-week
fully controlled isoenergetic Mediterranean diet on a group of 38
men and 32 pre-menopausal women (24–53 years). The results
have shown an improvement in lipid profile, cardiovascular risk
and inflammation markers which was significant in both genders
[118,119]. Such a short-term consumption of Mediterranean diet
significantly ameliorates insulin homoeostasis [120], leads to a
favourable redistribution of LDL subclasses [121] and reduces
adiponectin levels [122] only in men. The greater improvements

in dietary intakes obtained in men with respect to women can
explain, at least in part, these gender-related responses [123], but
it is worth considering that gender differences in the remodelling,
distribution and secretory activity of adipose tissue as well as the
levels and ratio of androgenic and oestrogenic steroids may play
a fundamental role in metabolism homoeostasis. These data un-
derline the importance of considering gender in further studies
evaluating the effects of dietary intervention on diseases, aging
and longevity taking into account that men and women can show
very different responses and require personalized treatments.

HUMAN POPULATION MODELS TO STUDY
GENDER EFFECT ON AGING AND LONGEVITY

The particular combination of genetic, environmental, historical,
anthropological, socio-economic and cultural factors as well as
geographical origin could contribute to the longer female life ex-
pectancy worldwide. To increase our knowledge on these aspects,
the model of centenarians could represent a useful approach.
These extraordinary individuals (mostly women) are character-
ized by a peculiar and heterogeneous phenotype embodying the
best example of longevity and successful aging. Most of them
have survived, escaped or delayed the onset of major age-related
diseases [124–126]. Centenarians are the outcome of a number
of biological processes that exert their effects lifelong, from birth
(and even before) until the extreme limits of human life. From
a demographic point of view, the high number of centenarians
in our societies is the integrated result of complex interactions
between humans and their environment(s) which underwent con-
sistent changes since the beginning of the 20th century and which
are continuing today. Therefore the study of centenarians repres-
ents a sort of ‘historical probing’ that allows the tracing of the
above-mentioned complex basis of the longevity today. A histor-
ical perspective of demographic data on gender and longevity in
Italy is shown in Box 1.

The model of centenarians has some disadvantages due to
their rarity, lack of an age-matched control group and pheno-
typical frailty related to their extreme age. Literature suggests
that longevity ‘runs in families’ through different generations
[136] and, indeed, centenarian offspring appear to be healthier
[137,138] and to have a more favourable biological signature
[139] with respect to age-matched controls, thus representing a
suitable model to identify early biological factors/markers cor-
related to healthy aging and higher ‘risk’ of longevity. Thus fe-
male offspring of centenarian parents could represent a peculiar
subgroup of women characterized by a survival advantage not ac-
companied by the worst quality of life typical of elderly women.

Within this scenario, where plenty of data have described the
hormonal, immunological and metabolic gender differences, the
study of long-lived families has allowed us to address peculiar
aspects of the genetics of aging in women, following the ‘three
genetics conceptualization’ we have proposed recently [140]. We
have suggested that an integrated investigation of nuclear genet-
ics, mitochondrial DNA genetics and gut microbiome is essential
to grasp the genetic contribution to aging and longevity in humans
considered as meta-organisms.
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Box 1 Demographic data on gender and longevity: a historical
perspective in Italy

Low-mortality countries, as well as Italy, in the recent decades have
seen a process of reduction in mortality at all ages of life that has
allowed pronounced gains in life expectancy [127]. Currently, the
average life expectancy at birth in Italy is among the highest in the
world, having reached 80 years for men and 85 years for women.
The improvement in living conditions, education, nutrition and life-
styles, and progress in the prevention, diagnosis and treatment of
diseases, have been crucial in reducing the risk of death even in
advanced ages of life. Indeed, mortality rates at older ages showed
a linear downward trend between 1950 and 2012 [128].

The decline in old-age mortality is thought to be the main cause
of the dramatic increase in centenarians [129], whose number
doubles approximately every 7 years. According to data of the Italian
National Institute of Statistics (http://demo.istat.it/), the number
of centenarians has reached 19095 (i.e. over 31 per 100 thou-
sand residents) on 1 January 2015. At the same date, according
to the ISTAT register, 878 residents on Italian territory were semi-
supercentenarians (persons aged 105 or over), whereas 17 were
supercentenarians (persons aged 110 or over).

Increased levels of survival are linked to the long process of epi-
demiologic transition that saw a radical transformation of mortality
in its gender, age and cause profiles [131,132].
As shown in Figure 2, life expectancy in Italy was very similar for
males and females until the early 20th Century. Afterwards, the
evolution of life expectancy, while being dramatically marked by
a sharp drop during the two World Wars, showed a differentiation
between males and females that reached a maximum of 6.75 years
in 1979 and 1980.

The recent decrease in the gender gap is mainly due to the reduc-
tion of excess male mortality between the ages of 45 and 75 years.
On the other hand, the disadvantage of men compared with women
at older ages is emphasized. This phenomenon might be related to
a generation effect: whereas in the younger generations with more
healthy lifestyles the gap is reducing, the cohorts born in the early
20th Century and the mid-1930s are ‘carriers’ of an excess mor-
tality [133]. The current centenarians emerge from these cohorts
and show geographical differences in the female/male ratio (F/M),
which is higher in the North-West and North-East areas (around
7:1 and 6:1 respectively), intermediate in the Centre (around 5:1)
and lower in the South and Islands (around 4:1), according to the
most recent ISTAT and census data. It is worth mentioning that in
a mountainous zone of Sardinia (Nuoro province), an exceptionally
high number of male centenarians was identified, together with an
unusually low F/M ratio [134].

The pattern of distribution of extremely long-lived individuals is
certainly affected by environmental factors which shaped the geo-
graphy of life expectancy in Italy through a different impact on the
main causes of death in the elderly [135]. However, a role of ge-
netic factors is suggested by the finding of a correlation between
centenarians’ gender ratio across the national territory and the first
principal component obtained by studying the polymorphic variation
at 95 different loci [5].

X chromosome inactivation (XCI) skewing in
human aging and longevity
In cells from females, one of the two X chromosomes is epi-
genetically and randomly inactivated in early embryonic life.
Young women are a mosaic of two cell populations in which
either the maternal or the paternal X chromosome is inactivated,
and the ratio is close to 50 % for each chromosome. A general
concordance was seen in the XCI (X chromosome inactivation)
pattern between haemopoietic tissue (blood and/or spleen) and
several other tissues (e.g. brain, skin, heart, lung, muscle, kid-
ney and gastrointestinal). According to the ‘Heterogametic Sex
Hypothesis’, having two copies of the X chromosome may be
advantageous for females because of possible selection with age

of the better X chromosome while inactivating the deleterious
one [141]. In addition, previous data reveal that a small portion
(∼17 %) of the genes on the inactivated X chromosome are par-
tially active providing a further survival advantages for females
[141]. During aging, a marked deviation from the equivalent ratio
(50:50) between maternal and paternal X chromosome inactiva-
tion occurs (skewing of XCI) in blood cells and the concordance
of XCI among tissues may weaken with age. In particular, com-
paring haemopoietic tissues and brain in the oldest women, the
greatest difference between inactivation values of the two tissues
were found [142]. The XCI patterns in brain are of particular
clinical relevance, because the X chromosome is relatively en-
riched for genes involved in neuronal functioning [143]. Some
authors suggested that age-associated XCI skewing could be in-
volved in the pathogenesis of several diseases such as autoim-
munity and cancer [144]. Our proposed experimental model of
longevity/healthy aging consisting of female centenarians, their
female offspring, female offspring born from non-long-lived par-
ents (age-matched controls) and young women has allowed us to
extend to centenarians the study of XCI skewing and to demon-
strate that this process was significantly less severe and frequent
in centenarian offspring compared with their age-matched con-
trols [145]. These results highlight a possible detrimental link
between the rate of XCI skewing and healthy aging/longevity,
fitting the hypothesis that the balanced female mosaic is a win-
ning strategy, sustaining a co-operative adaptive mechanism with
possible biological advantages, whereas a skewed situation in
favour of one of the two X chromosomes would represent an un-
favourable condition to attain health and longevity. Conversely,
the absence of a similar mosaic strategy in men might contribute
to their shorter lifespan [1].

A recent paper has described the correlation between SEMs
(stochastic epigenetic mutations) (i.e. rare or stochastic epimuta-
tions not shared among individuals) and XCI skewing during
aging demonstrating that the number of SEMs was low in child-
hood and increased exponentially with age [146]. Moreover,
a multivariate analysis has indicated a significant correlation
between SEMs and degree of XCI skewing after adjustment for
age, indicating for the first time that XCI skewing may not be a
direct consequence of aging, but is mediated by the number of
SEMs. The data from this study support the hypothesis that an
increased number of SEMs might influence haemopoietic stem
cells viability or might create conditions able to induce clonal
stochastic loss of a specific type of haemopoietic cells [146].

mtDNA and gender in human aging and longevity
Mitochondria are considered to be important determinants of cell
aging because they are involved in several fundamental processes
such as cellular energy/ATP production, the urea cycle, heat pro-
duction, apoptosis, inflammasome activation and cell senescence.
Mitochondria are also the main producers of ROS (reactive oxy-
gen species), the most important by-products of OXPHOS (ox-
idative phosphorylation), which, besides their physiological role
in cell signalling, have been suggested to play a role in the aging
process as well as in age-related diseases. Data from primary
culture of fibroblasts from long-living individuals, including fe-
male centenarians, indicate that longevity is characterized by a
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Figure 2 Evolution of life expectancy at birth in Italy (1872–2012)
Data from the Human Mortality Database (University of California, Berkeley, and Max Planck Institute for Demographic
Research, http://www.mortality.org).

preserved bioenergetics function probably attained by a success-
ful mitochondria remodelling that can compensate for functional
defects through an increase in mass, i.e. a sort of mitochondrial
‘hypertrophy’ [147].

Another aspect deserving particular attention in the study of
female longevity is the complex and contradictory role of mtDNA
variability. mtDNA is an active part of the genetic machinery
of each cell and has an active cross-talk with the nuclear gen-
ome. Despite its limited length (16 569 bp), the mtDNA encodes
few genes with a quantitatively relevant action because of the
high copy number of mtDNA in each cell. mtDNA is inherited
only through the mother and its germline variants (haplogroups),
and D-loop mutations were found to be associated with longev-
ity in several populations indicating a maternal component of
longevity.

In particular, the EU large project GEHA (Genetics of Healthy
Ageing) studied 2200 ultra-nonagenarians (90+) from different
EU countries belonging to 90+ sibpairs together with the same
number of sex- and geographically-matched younger controls,
and was able to identify different haplogroups related to longev-
ity in males and females. The J2 haplogroup was associated with
male longevity, whereas the H2 and T2 haplogroups were as-
sociated with female longevity [148]. Taking advantage of the
complete sequencing of a high number of mtDNA molecules,
it was also possible to evaluate for the first time the cumulative
effect of specific and concomitant mtDNA mutations, including
those that have a low or very low impact. The analysis of the
mutations occurring in different OXPHOS complexes showed a

complex scenario with a different mutation burden in nonagen-
arian persons compared with controls. In particular, mutations in
subunits of OXPHOS complex I had a beneficial effect on longev-
ity, whereas the simultaneous presence of mutations in complex
I and III and in complex I and V seemed to be detrimental [148].
The final conclusion was that “particular rare mtDNA mutations
present only in specific populations might be beneficial (or det-
rimental) for longevity and may explain part of the genetic com-
ponent of longevity in that population, similarly to what has been
suggested for private nuclear DNA polymorphisms” [148].

mtDNA mutations are transmitted from centenarian mother
to the progeny. One of the factors that can contribute to aging
and longevity is the accumulation with age of mtDNA mutations.
mtDNA heteroplasmy, i.e. the presence in the same cell of wild-
type and mutated mtDNA molecules, has been supposed to have a
double role, fuelling mitochondrial dysfunction and, at the same
time, functioning as a reservoir of genetic variability helping
the cells to cope with environmental and physiological stressors
during life [149,150]. To test the hypothesis that mtDNA hetero-
plasmy could play a role in human aging and longevity, Giuliani
et al. [151] exploited two approaches: (i) the previously described
informative model, i.e. 31 centenarian families constituted by the
centenarian mother plus the female offspring, in comparison with
28 female offspring of not long-lived parents; (ii) the most recent
technology of ultra-deep mtDNA sequencing (average coverage
of 49334-fold for each 853bp mtDNA fragment examined). This
method allowed the detection of 119 heteroplasmic positions with
a minor allele frequency �0.2 %. The results indicate that a low
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level of heteroplasmies are transmitted and maintained within
families until extreme age. However, a non-heteroplasmic vari-
ant associated with longevity and healthy aging was identified but
a particular and unique heteroplasmy profile for each family was
drawn. Therefore mtDNA heteroplasmy appears to be a familial
trait transmitted by the mothers which can contribute to healthy
aging and longevity [151].

On the other hand, a number of studies have investigated the
association between mtDNA inherited variants and multifactorial
diseases, such as diabetes [152], ischaemic disease [153] and
neurodegenerative diseases such as PD [154] and AD [44]. As
described previously, a high-resolution analysis (sequencing of
displacement loop and restriction analysis of specific markers in
the coding region of mtDNA) found that sub-haplogroup H5 is a
risk factor for AD in particular for females and independently of
the APOE genotype partially explaining the higher prevalence of
AD in women [44].

Gut microbiota and gender in human aging and
longevity
Humans have to be considered as metaorganisms due to symbi-
otic relationship with the numerous microbial communities (‘mi-
crobiota’) present in various anatomical locations of the human
body. Several hundreds of individual bacterial species colonize
mouth, upper airways, skin, vagina and intestinal tract constitut-
ing a complex and dynamic ecosystem which cross-talk with the
environment as well as the rest of the body, including liver and
brain among others. At present, the microbiota associated with
the intestinal tract [GM (gut microbiota)] is the most studied. The
GM are essential for the synthesis of some fundamental nutrients
and energy production from food and are able to strongly mod-
ulate innate and specific immunity. The gastrointestinal tract of
newborns becomes colonized immediately after birth with micro-
organisms, mainly from the mother. The composition of vaginal
tract microbiota of the mother, the mode of delivery (natural or
Caesarean) and breast or formula feeding have a deep impact
on the GM of human offspring since the very beginning of life.
Strong evidence has suggested that the early composition of the
microbiota of newborns plays an important role for the postnatal
development and functionality of the immune system [155].

Data regarding the association between genders and spe-
cific GM communities are still unreliable even if some reports
found that some specific taxa (Bacteroides, Ruminococcus, Eu-
bacterium and Blautia) are more abundant in men, whereas Tre-
ponema is prevalent in women [78,156]. Probably, these differ-
ences in GM composition are due to lifestyle and dietary factors
as well as cultural gender-related habits rather than sex hormone
effects [78]. Alterations of the GM have been observed in numer-
ous diseases such as obesity, T2D, inflammatory bowel disease
and CRC. In particular, specific signatures of GM patterns are
associated with autoimmunity affecting prevalently women and
contributing to the increase in their morbidity [78]. Thus there
is an urgent need to consider the role of gender background in
the GM ecology and its relationship with autoimmunity disease
onset and therapy effects. This consideration is reinforced by
the fact that the importance of GM in human aging is dramat-
ically emerging. This endogenous ecosystem, together with the

external antigenic load, is coming out as a crucial driving force
of the homoeostasis of the immune system, and lifelong GM
changes, from newborns to centenarians, can represent an im-
portant source of inflammatory stimuli. Our group has shown
that female centenarians have a different composition of the GM
in comparison with sex-matched younger persons, which is as-
sociated with an increase in inflammaging (high plasma levels of
pro-inflammatory cytokines such as IL-6 and IL-8). In general,
with aging, a decrease in the biodiversity of the composition of
the GM is observed, with a trend towards an increase in potentially
pathogenic bacteria (pathobionts) with respect to the beneficial
ones (symbionts producing butyrate and other short-chain fatty
acids) [157]. However, data on the remodelling of the GM and its
association with inflammaging are still lacking in men, underlin-
ing again the importance of conducting gender-specific studies
to fill this gap.

AN AGENDA FOR THE FUTURE: A
MANDATORY NEED FOR A GENDER-SPECIFIC
MEDICINE

The aging process starts ‘in utero’ and early events exert potent
effects later in life both in adult age and in old age. This lifelong
perspective of aging and age-related diseases let emerge the im-
portance of going beyond sex and to consider ‘gender’. Indeed,
men and women differ not only biologically (biology, physiology
and genetics), but also regarding lifestyle and habits (smoking,
nutrition, physical activity, type of work and education, among
others) as well as regarding the capability of coping with stress
(spousal bereavement, serving as care-givers to family members).
These biological and non-biological factors interact continuously
lifelong, playing an overwhelming role in modulating health
and/or the propensity to diseases and disabilities later in life.

From basic to clinical sciences, there is a mandatory need
for studies where gender is appropriately and fully considered.
The enormous progress of medicine in the last 50 years has
been reached by scientific investigations and publications where
gender has been rather neglected: ‘put gender on the agenda’ has
been repeatedly stated by top journals such as Nature since 2010
[158,159].

Gender medicine can be considered quite a new but man-
datory dimension of medicine that has to go much deeper in
understanding the differences between men and women regard-
ing all pathophysiological pathways, clinical characteristics and
pharmacological responsiveness, as well as the importance of
lifestyle and cultural aspects [18].

Within this scenario, it is even better to speak about a ‘gender-
specific medicine’ and not only an indefinite and/or separated
‘gender medicine’ since the gender perspective is broader, should
be more pervasive and penetrate all specialties of medicine.
Gender medicine is not a separate exercise, or a separate branch
of medicine. Therefore gender should be the focus for the clinical
approach and this task requires a deep cultural change of mind
as well as a reorganization of clinical services in all countries
and health systems. Gender medicine is even more necessary in
neglected countries such as in Africa where the conditions of
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women are worse and gender differences are stronger and have
a higher impact on the health status. At the same time, it is cur-
rently no longer possible to conduct medical as well as biological
sciences and education programmes without taking into consid-
erations gender differences in the medical schools as well as in
all educational programmes.

The knowledge of the biology of gender differences in humans
are still in their infancy and there is an urgent need for specific-
ally targeted large studies across countries, to take into account
the above-mentioned cultural and anthropological differences in
a globalized world where migration of persons from countries
characterized by different genetic, cultural and anthropological
traits and habits is a hot topic.

In conclusion, the development of a gender-specific medicine
is of the utmost importance in order to complete our understand-
ing of the main mechanisms of aging as well as the differences
in prevention, care, treatment, evolution and outcomes of non-
communicable diseases in both genders.
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