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This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate
prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network
which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is
supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested
model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of
one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model
with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique
for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with
𝐾-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more
accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-
making process.

1. Introduction

Techniques of artificial intelligence and machine learning
started to apply in time series forecasting. One of the reasons
was the study of Bollerslev [1], where he proved the existence
of nonlinearity in financial data. First models of machine
learning applied into time series forecasting were artificial
neural networks (ANNs) [2].This was due to the fact that the
artificial neural network is a universal functional black-box
approximator of nonlinear type [3–5] that is especially helpful
in modeling of nonlinear processes having a priori unknown
functional relations or system of relations is very complex to
describe [6] and they are even able to model chaotic time
series [7]. They can be used for nonlinear modeling without
knowing the relations between input and output variables.
Thanks to this, ANNs have been widely used to perform
tasks like pattern recognition, classification, or financial
predictions [8–11]. Following the theoretical knowledge of
perceptron neural network published byMcCulloch and Pitts
[12] andMinsky and Papert [13], nowadays, it is mainly radial

basis function (RBF) network [14, 15] that has been used as it
showed to be better approximator than the basic perceptron
network [16–18].

In this work we extend the standard RBF model by using
moving average for modeling the errors of RBF network.
We chose the RBF neural network for our exchange rates
forecasting experiment because according to some studies
[19] ANNs have the biggest potential in predicting financial
time series. In addition, Hill et al. [20] showed that ANNs
work best in connection with high-frequentional financial
data. Moreover, we will combine the standard ANN with EC
technique called genetic algorithms. As, according to some
scientists [21], the use of technical analysis tools can lead to
efficient profitability on the market, we decided to combine
our customized RBF network with moving averages [22]. We
will use the simple moving average to model the error part
of the RBF network as we supposed it could enhance the
prediction outputs of the model.

Applying the prediction analysis, the forecasting ability
of this nonlinear model will be compared and contrasted
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with a standard neural network and an autoregressive (AR)
model with GARCH errors to determine the best model
parameters for this currency pair forecasting problem. We
will provide out-of-sample evidence since it focuses directly
on predictability as it is important to avoid in-sample overfit-
ting for this type of nonlinear models [23].

The soft computing application we suggest is novel in two
ways; we use the standard neural network hybridized with
simple moving averages to form a whole new hybrid model.
Except for the standard algorithm for training the neural
network, we also use other (advanced) technicques.

2. Suggested Hybrid-RBF Neural Network
Combined with Moving Average

Hybrid models have become popular in the field of financial
forecasting in recent years. Since studies from Yang [24]
or Clemen [25] theoretically proved that a combination of
multiple models can produce better results, we will also use
the combined model of customized RBF neural network
(supplemented by genetic algorithms for weights adaptation)
and simple moving average tool for modeling the error part
of the RBF. We eliminate the error of the neural network by
modeling the residuals of RBF.

Let 𝐹 be a function defined as F: 𝑥
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∈

R1 which is a representation assigning one value 𝑦
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The necessary condition is that the model must be
adapted to approximate the unknown function 𝐹; that is, the
model must fulfill the condition that the difference between
estimated output produced by the model and the original
value is minimal.

𝑥, 𝑤, V, 𝑠 denote the ANN parameters; 𝑥 is the input
vector of the dimension 𝑛; 𝑤 and V are the parameters of
the network (also called synapses or weights) and are used
for the interconnection of the neural network. The input
vector 𝑥𝑇
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hidden layer that is formed by 𝑠 hidden neurons. In the
RBF network, the radial basis function of Gaussian type
instead of a sigmoid function is used for activating neurons in
hidden layer of a perceptron network.The Gaussian function
for activating neurons is for 𝑗th hidden neuron defined as
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3. Methodology

The neural network we used for this research was RBF which
is one of the most frequently used networks for regression.
RBF has been widely used to capture a variety of nonlinear
patterns (see [26]) thanks to their universal approximation
properties (see [27]).

In order to optimize the outputs of the network and to
maximize the accuracy of the forecasts we had to optimize
parameters of ANN. The most popular method for learning
in multilayer networks is called backpropagation. It was
first invented by Bryson and Ho [28]. But there are some
drawbacks to backpropagation. One of them is the “scaling
problem.” Backpropagation works well on simple training
problems.However, as the problem complexity increases (due
to increased dimensionality and/or greater complexity of the
data), the performance of backpropagation falls off rapidly
[29]. Furthermore, the convergence of this algorithm is slow
and it generally converges to any local minimum on the error
surface, since stochastic gradient descent exists on a surface
which is not flat. So the gradient method does not guarantee
to find optimal values of parameters and imprisonment in
local minimum is quite possible.

As genetic algorithms have become a popular opti-
mization tool in various areas, in our implementation of
ANN, backpropagation will be substituted by the GA as an
alternative learning technique in the process of weights adap-
tation. Genetic algorithms (GA), which are EC algorithms
for optimization and machine learning, are stochastic search
techniques that guide a population of solutions towards
an optimum using the principles of evolution and natural
genetics [30]. Adopted from biological systems, genetic
algorithms are based loosely on several features of biological
evolution [31]. In order to work properly, they require five
components [32], that is, a way of encoding solutions to
the problem on chromosomes, an evaluation function which
returns a rating for each chromosome given to it, a way of
initializing the population of chromosomes, operators that
may be applied to parents when they reproduce to alter their
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genetic composition, parameter settings for the algorithm,
the operators, and so forth. GA are also characterized by basic
genetic operators which include reproduction, crossover, and
mutation [33]. Given these genetic operators and five com-
ponents stated above, a genetic algorithm operates according
to the following steps stated in [29]. When the components
of the GA are chosen appropriately, the reproduction process
will continually generate better children from good parents;
the algorithm can produce populations of better and better
individuals, converging finally on results close to a global
optimum. Additionally, GA can efficiently search large and
complex (i.e., possessing many local optima) spaces to find
nearly global optima [29]. Also, GA should not have the same
problem with scaling as backpropagation. One reason for
this is that it generally improves the current best candidate
monotonically. It does this by keeping the current best
individual as part of their population while they search for
better candidates.

In addition, as Kohonen [34] demonstrated that non-
hierarchical clustering algorithms used with artificial neural
networks can cause better results of ANN, unsupervised
learning technique will be used together with RBF in order to
find out whether this combination can produce the effective
improvement of this network in the domain of financial time
series. We will combine RBF with the standard unsupervised
technique called 𝐾-means (see [35]). 𝐾-means algorithm,
which belongs to a group of unsupervised learning methods,
is a nonhierarchical exclusive clusteringmethod based on the
relocation principle.Themost common type of characteristic
function is location clustering. And the most common
distance function is Euclidean.

The 𝐾-means will be used in the phase of nonrandom
initialization of weight vector 𝑤 performed before the phase
of network learning. In many cases it is not necessary to
interpolate the output value by radial functions, it is quite
sufficient to use one function for a set of data (cluster),
whose center is considered to be a center of activation
function of a neuron. The values of centroids will be used
as initialization values of weight vector 𝑤. Weights should
be located near the global minimum of the error function
(1) and the lower number of epochs is supposed to be used
for network training. The reason why we decided to use 𝐾-
means is that it is quite simple to implement and in addition
to that, in the domain of nonextreme values, it is relatively
efficient algorithm. In our experiments, the adaptive version
of𝐾-means will be used which is defined as follows:

(1) random initialization of centroids in the dimension of
input vector,

(2) introduction of input vector 𝑥
𝑖
,

(3) determination of the nearest from all centroids to a
given input,

(4) adaptation of the coordinates of the centroid accord-
ing to the rule as follows: 𝑐

𝑗
󸀠 = 𝑐
∗

𝑗
󸀠 + 𝜂(𝑥𝑖 − 𝑐𝑗󸀠), where

𝑗
󸀠 is the nearest cluster to the introduced input and 𝜂
is a learning rate parameter,

(5) termination of the algorithm if all inputs were pro-
cessed or the coordinates of the cluster are not
changing anymore.

4. Empirical Research

We chose forex market for our experiments. Our experiment
focuses on time series of daily close price of USD/CAD (the
data were downloaded from a website http://www.global-
view.com/forex-trading-tools/forex-history/) (Canadian dol-
lar versus US dollar), one of major currency pairs, covering a
historical period from October 31, 2008, to October 31, 2012
(𝑛 = 1044 daily observations). Due to validation of a model,
data were divided into two parts (Figure 7). The first part
included 912 observations (from 10/31/2008 to 4/30/2012)
and was used for the model training. The second part of
data (5/1/2012 to 10/31/2012), counting 132 observations, was
used for model validation by making one-day-ahead ex-post
forecast.These observations include new data which have not
been incorporated into model estimation (parameters of the
model were not changing anymore in this phase). The reason
for this procedure is the fact that an ANN can become so
specialized for the training set that loses flexibility, hence the
accuracy in the test set.

We used our own application of RBF neural network
implemented in JAVA with one hidden layer according to
Cybenko [36]; the feedforward network with one hidden
layer is able to approximate any continuous function. For
the hidden layer, the radial basis function was used as an
activation function as it has been showed that it provides
better accuracy than the perceptron network. We estimated
part of the RBFmodel with several adapting algorithms: RBF
implemented with a backpropagation algorithm, a genetic
algorithm, and combination of 𝐾-means and backpropaga-
tion. As for the backpropagation learning, the learning rate
was set to 0.001 to avoid the easy imprisonment in local
minimum. The number of epochs for each experiment with
backpropagation was set to 5000 as this showed to be a good
number for backpropagation convergence. The final results
were taken from the best of 5000 epochs and not from the
last epoch in order to avoid overfitting of the neural network.
𝐾-meanswas used instead of random initialization of weights
before they were adapted by backpropagation. Coordinances
of clusters were initiated as coordinances of randomly chosen
input vector. 𝐾-means cycle was repeated 5000 times and
the learning rate for cluster adaptation was set to 0.001. The
number of clusters was set to the number of hidden neurons.

For GA algorithm the following was needed: a method
of encoding chromosomes, the fitness function used to
calculate the fitness values of chromosomes, the population
size, initial population, maximum number of generations,
selection method, crossover function, and mutation method.
Our implementation of the genetic algorithm we used for
weight adaptation is as follows. The chromosome length was
set according to the formula:𝐷∗ 𝑠 + 𝑠, where 𝑠 is the number
of hidden neurons and 𝐷 is the dimension of the input
vector. A specific gene of a chromosome was a float value
and represented a specific weight in the neural network. The
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whole chromosome represented weights of the whole neural
network.Thefitting function for evaluating the chromosomes
was themean square error function (MSE).The chromosome
(individual) with the best MSE was automatically transferred
into the next generation. The other individuals of the next
generation were chosen as follows: by tournament selection
100 individuals were randomly chosen from the population.
The fittest of them was then chosen as a parent. The second
parent was chosen in the same way. The new individual was
then created by crossover operation. If the generated value
from <0, 1 was lower than 0.5 the weight of the first parent
at the specific position was assigned to the new individual.
Otherwise, the new individual received the weight of the
secondparent.Themutation ratewas set to 0.01. If performed,
the specific gene (weight) of a chromosome was changed to a
random value. The size of the population and the number of
generations for the genetic algorithm were set accordingly to
the settings of backpropagation. Based on some experiments,
we used the size of the population that equaled 1000 and the
number of generations was set to 10.

When the best configuration of the RBF network was
found, the RBF error was thenmodelled in order tominimize
the total error of the model. Using moving average, the
forecast of the future error of the RBF was counted as an
average of last network errors. We used only simple moving
average: the weights of the previous network errors had
the same weight. To find out the optimal number of the
parameters of moving average tool, we used various numbers
of previous errors for counting the future (average) value of
RBF error.

The numerical characteristic for assessing models called
mean squared error (MSE) was used:

MSE = 𝐻−1
𝐻

∑

ℎ=1

(
∧

𝑌𝑛−𝐻+ℎ − 𝑌𝑛−𝐻+ℎ)

2

, (4)

where ℎ is the forecasting horizon and𝐻 is the total number
of predictions for the horizon ℎ over the forecast period.

In order to make a comparison with standard statistical
models, we also performed the empirical Box-Jenkins analy-
sis [37] in order to compare our suggested model with stand-
ard statistical model (for details of Box-Jenkins analysis see
the appendix). Box-Jenkins analysis focused on the original
and differentiated series of daily observations of USD/CAD
currency pair covering a historical period from October 31,
2008, to October 31, 2012. The data, as stated above, was
downloaded from the following website: http://www.global-
view.com/forex-trading-tools/forex-history/.The best results
for out-of-sample prediction were achieved with EGARCH
(1, 1, 1) model with Gaussian error distribution. Therefore,
this model was compared with the neural network models
and our suggested model. The volatility of this model is
defined as follows:

log (ℎ
𝑡
) = −0.172109 + 0.117148

󵄨󵄨󵄨󵄨𝜀𝑡−1
󵄨󵄨󵄨󵄨

√ℎ
𝑡

+ 0.037398

󵄨󵄨󵄨󵄨𝜀𝑡−1
󵄨󵄨󵄨󵄨

√ℎ
𝑡

+ 0.992135 log (ℎ
𝑡−1
) .

(5)
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Figure 1: Predictive accuracy of the standard RBF network, AR(1)
input.

5. Results and Discussion

The reason why the prediction qualities were applied on
the validation set (ex-ante predictions) was the fact that an
ANN can become so specialized for the training set that
could lose accuracy in the test set. Therefore, the estimation
of all models was only based on 912 observations, in order
to make further comparisons with the predictions of the
132 remaining observations. In this paper, we only used
one-step-ahead forecast: that is, horizon of predictions was
equal to one day. In order to eliminate deformation of our
results by a single replication we used a procedure applied
in Heider et al. [38]; that is, experiment for every model
configurationwas performed twelve times, the best andworst
results were eliminated, and from the rest the mean and
standard deviations were counted.The result of a givenmodel
is from the best neuron configuration (in every model we
tested number of hidden neurons from 3 to 10 to find the best
output results of the network).

InTable 1 (RBFnetwork, one autoregressive input), we see
that network with BP achieved the best results when having 4
neurons in the hidden layer (see also Figure 1). On the other
hand, the advanced methods for network learning (𝐾-means
+ BP, GA) achieved the best results with 4 (GA), respectively,
9 neurons (𝐾-means + BP). However, when using these
advanced methods the number of hidden neurons seemed to
not play an important role as the results were comparable.
Following from that one can deduce that for remembering
the relationships in this time series it is enough to use smaller
number of hidden neurons (three or four). When looking at
the results of the standard BP, the reason for increasing the
error with the higher number of neurons is the fact that the
more of the neurons the longer time for the weights adaptions
of the network.

Also, the standardBPwas the greatweakness of the neural
network. The convergence is really slow and it generally
converges to any local minimum on the error surface, since
stochastic gradient descent exists on a surface which is not
flat. So the gradient method does not guarantee to find
optimal values of parameters and imprisonment in local
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Table 1: Predictive qualities of tested models on ex-post (out-of-sample predictions).

Neurons Network optimization RBF network Hybrid neural network
MSE stdev MSE stdev

3
Backpropagation 0.0000282628 0.0000129939 0.0000169513 0.0000039062
𝐾-means + backpropagation 0.0000175381 0.0000006224 0.0000137675 0.0000009931
Genetic algorithm 0.0000180929 0.0000016469 0.0000136146 0.0000003816

4
Backpropagation 0.0000183763 0.0000028765 0.0000136485 0.0000005710
𝐾-means + backpropagation 0.0000173006 0.0000004025 0.0000130549 0.0000003013
Genetic algorithm 0.0000176860 0.0000006219 0.0000137306 0.0000010974

5
Backpropagation 0.0000299369 0.0000812952 0.0000168334 0.0000069884
𝐾-means + backpropagation 0.0000174326 0.0000007575 0.0000133526 0.0000003885
Genetic algorithm 0.0000176925 0.0000016246 0.0000141386 0.0000011016

6
Backpropagation 0.0000248756 0.0000105719 0.0000140990 0.0000016518
𝐾-means + backpropagation 0.0000187115 0.0000024836 0.0000140002 0.0000011530
Genetic algorithm 0.0000205995 0.0000073265 0.0000139753 0.0000010496

7
Backpropagation 0.000029955 0.0000381995 0.0000152401 0.0000018918
𝐾-means + backpropagation 0.0000170959 0.0000002617 0.0000135883 0.0000004315
Genetic algorithm 0.0000265817 0.0000100553 0.0000160908 0.0000033735

8
Backpropagation 0.0000530843 0.0000462909 0.0000161911 0.0000018501
𝐾-means + backpropagation 0.0000169521 0.0000003200 0.0000133422 0.0000002243
Genetic algorithm 0.0000181709 0.0000016133 0.0000152679 0.0000030365

9
Backpropagation 0.0000594814 0.0000611668 0.0000156977 0.0000018874
𝐾-means + backpropagation 0.0000168649 0.0000002319 0.0000132936 0.0000003833
Genetic algorithm 0.0000290958 0.0000136948 0.0000174571 0.0000049429

10
Backpropagation 0.0000842809 0.0000580551 0.0000163252 0.0000019133
𝐾-means + backpropagation 0.0000179805 0.0000029834 0.0000139659 0.0000011918
Genetic algorithm 0.0000236821 0.0000093964 0.0000193432 0.0000056131

stdev: standard deviation.

minimum is quite possible. Another drawback to backprop-
agation is the “scaling problem.” Backpropagation works
well on simple training problems. However, as the problem
complexity increases (due to increased dimensionality and/or
greater complexity of the data), the performance of backprop-
agation falls off rapidly.

Due to these disadvantages of BP,we tested othermethods
for network adaptation. No surprise that the RBF network
combined with 𝐾-means or GA for weights adaptation
provided significantly better results than the original RBF
(see Table 1). Moreover, besides lower mean MSE, another
advantage of using genetic algorithm or 𝐾-means upgrade
is the consistency of predictions, that is, standard deviation
of performed experiments at the same network configuration
(see Figure 2). The standard deviation of these methods is
uncomparably lower than the standard deviation when using
the standard backpropagation (see Table 1 and Figure 2).

The biggest strength of 𝐾-means is the speed of conver-
gence of the network.Without𝐾-means, it took considerably
longer time to achieve the minimum. However, when the
𝐾-means was used to set the weights of the network before
backpropagation, the time for reaching the minimum was
much shorter. The advantage of this combination is that
lower number of epochs is supposed to be used for network
training. Moreover, 𝐾-means is quite simple to implement.

Backpropagation
K-means + backpropagation
Genetic algorithm

3 4 5 6 7 8 9 10

0.000100

0.000080

0.000060

0.000040

0.000020

0.000000

Figure 2: Standard deviation of the standard RBF network, AR(1)
input.

However, one must bear in mind that𝐾-means is a relatively
efficient algorithm only in the domain of nonextreme values.

We tested also GA in weights adaptation and we found
out that the convergence is also considerably faster than
at backpropagation and therefore it is no surprise that
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sometimes the network converged only after 5 generations.
In addition to that, genetic algorithm does not have the same
problem with scaling as backpropagation. One reason for
this is that it generally improves the current best candidate
monotonically. It does this by keeping the current best indi-
vidual as part of their population while they search for better
candidates. Genetic algorithms are generally not bothered by
local minima. Also, genetic algorithms are especially capable
of handling problems in which the objective function is
discontinuous or nondifferentiable, nonconvex, multimodal,
or noisy. Since the algorithms operate on a population instead
of a single point in the search space, they climb many peaks
in parallel and therefore reduce the probability of finding
local minima. In other words, a key concept for genetic
algorithms is the schemata. A schema is a subset of the fields
of a chromosome set to particular values with the other
fields left to vary.Therefore, as originally observed inHolland
[31], the power of genetic algorithms lies in their ability to
implicitly evaluate large numbers of schemata simultaneously
and to combine smaller schemata into larger schemata [29].
The disadvantage of using genetic algorithms in the neural
network is the fact that it demands quite a lot of parameters
to set it up correctly (population size,mutation rate, crossover
function, crossover rate, tournament size, fitness function,
etc.).

When comparing weights adaptation via GA and 𝐾-
means plus backpropagation, the results are almost the same.
Even though 𝐾-means provided better results compared to
GA, the differences are not very large. However, GA has a
bigger potential to perform even better forecasts as there are
more parameters needed to be optimized. Backpropagation,
even though it is used with 𝐾-means, seemed to reach its
global minimum even with the higher number of epochs (we
tested backpropagation up to 10000 cycles) and the results
were almost the same.

For assessing our new hybrid neural network model we
used the same strategy as for the standard ANN. For the
value of parameter of the moving average, we tested the
values from one to one hundred and we experimentally
found out the best value for the tested data (for the majority
of testing procedures the optimal value of moving average
parameter was 44). Finally, just like for the standard RBF,
from the best ten out of twelve experiments, the mean and
standard deviations of the best results of suggested hybrid
(having the optimal value of MA parameter) were counted.
For every number of hidden neurons tested, the results
are stated in Table 1 which contains the results of out-of-
sample predictions provided by the different models and
optimization techniques, respectively. The illustrated results
from one testing procedure are shown in Table 2 (it is
important to note that the final results presented in Table 1 are
made as the mean and standard deviation of ten procedures
like the one in Table 2).

We also performed the predictive comparison with stan-
dard RBF network as well as the statistical ARIMA and
GARCH model in order to show the prediction power of
our suggested model. Table 4 states the final results of the
numerical comparison of tested models. The standard RBF
provided the best outputs when combined with 𝐾-means

Table 2: Prediction power of suggested hybrid model (backpropa-
gation, one input).

MA order MSE
0 (standard RBF) 1.873950157362012E − 5
1 3.799165246508804E − 5
2 2.615127248199574E − 5
3 2.367687507828842E − 5
4 2.2783554024814407E − 5
5 2.0696629830254916E − 5
6 2.005212457137589E − 5
7 1.9699739236710283E − 5
8 1.899554614297672E − 5
9 1.8775515147039734E − 5
10 1.887215699290597E − 5
11 1.902577681032068E − 5
12 1.8665433411401154E − 5
13 1.8538236785067435E − 5
14 1.8747363637004875E − 5
15 1.877614881966081E − 5
16 1.885927703360986E − 5
17 1.8730311643222403E − 5
18 1.865192824881276E − 5
19 1.8613846327275632E − 5
20 1.8246180732788623E − 5
21 1.8304204212300793E − 5
22 1.8346810489111456E − 5
23 1.8767301251545768E − 5
24 1.8221445314293524E − 5
25 1.8337288088681414E − 5
26 1.8372328768988E − 5
27 1.713290433035233E − 5
28 1.7387905538550667E − 5
29 1.7455556353006092E − 5
30 1.76365575048565E − 5
31 1.7430582353411663E − 5
32 1.7628308525319124E − 5
33 1.7295489520120636E − 5
34 1.75881015020376E − 5
35 1.7826153183101944E − 5
36 1.71971230137477E − 5
37 1.733159545759489E − 5
38 1.6866625811781463E − 5
39 1.668511605555683E − 5
40 1.686512816301278E − 5
41 1.6615393182238008E − 5
42 1.674994621240823E − 5
43 1.6412484212686543E − 5
44 1.3700534874132779E − 5
45 1.3759565540757362E − 5
46 1.3741032598505082E − 5
47 1.3991779046903492E − 5
48 1.4203358839945669E − 5
49 1.4122256244441945E − 5
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Table 2: Continued.

MA order MSE
50 1.428843656456151E − 5
51 1.4470021893018167E − 5
52 1.4604793623824943E − 5
53 1.4639288195772851E − 5
54 1.460226532797794E − 5
55 1.4861518152409294E − 5
56 1.5056461844185913E − 5
57 1.5072953046357367E − 5
58 1.5151285670421108E − 5
59 1.5147537079794747E − 5
60 1.5206339461136763E − 5
61 1.5288938970910543E − 5
62 1.4741449702485418E − 5
63 1.447140949098859E − 5
64 1.4028230686891647E − 5
65 1.4262672084968514E − 5
66 1.4502514602499232E − 5
67 1.4728307701510205E − 5
68 1.4835695748235584E − 5
69 1.4287605837827516E − 5
70 1.4434608041518276E − 5
71 1.4617126171765766E − 5
72 1.4774475331564346E − 5
73 1.4997263039128846E − 5
74 1.5193999176213864E − 5
75 1.544098134602122E − 5
76 1.57116180097447E − 5
77 1.5950812116676206E − 5
78 1.6008865129767365E − 5
79 1.6154963269190848E − 5
80 1.6559218782739425E − 5
81 1.6752087063271413E − 5
82 1.7033959952437373E − 5
83 1.728771469799143E − 5
84 1.7564517921074768E − 5
85 1.7999075641112577E − 5
86 1.8132849402923305E − 5
87 1.8505092071315046E − 5
88 1.8708573514251417E − 5
89 1.8257784663164733E − 5
90 1.876741789470096E − 5
91 1.920441883415449E − 5
92 1.9082305553032882E − 5
93 1.7957378257703227E − 5
94 1.7963241034075204E − 5
95 1.836522209620149E − 5
96 1.8497275566932963E − 5
97 1.8523003590569908E − 5
98 1.7409426007853883E − 5
99 1.738247641932898E − 5
100 1.6890004735804907E − 5

Backpropagation (standard RBF)
Backpropagation (RBF-SMA hybrid)
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Figure 3: Predictive accuracy of standard RBF model and RBF-MA
hybrid model (BP algorithm).

K-means + BP (standard RBF)
K-means + BP (RBF-SMA hybrid)
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Figure 4: Predictive accuracy of standard RBFmodel and RBF-MA
hybrid model (𝐾-means + BP).

and backpropagation algorithms. The error of prediction at
this network was a little bit lower compared to statistical
model; however, these two models provided almost the same
results. Nonetheless, the suggested hybrid neural network
model providedmuch better forecasts compared to these two
models. Comparing the numerical (see Table 3) as well as
graphical results (see Figures 3, 4, and 5), the hybrid improved
the prediction power of the standard RBF considerably. We
can state that the application of our suggested new hybrid
neural network model into the domain of exchange rates
provides significantly better results than the standard RBF
neural network as well as statistical models.

6. Conclusion

Quantitative methods are excellent tool in decision-making
process as they rely on facts, numbers, and accurate math-
ematical methods and models. The most used approach,
which has been used for many years, is a statistical approach.
Statistical methods are verified methods which have been
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Table 3: Percentual improvement of MSE of our hybrid model compared to the standard neural network.

Neurons Backpropagation 𝐾-means + backpropagation Genetic algorithm
3 40,022573 21,499478 24,751698
4 25,727704 24,540767 22,364582
5 43,770397 23,404426 20,087043
6 43,321970 25,178633 32,157091
7 49,123352 20,517200 39,466626
8 69,499268 21,294707 15,976094
9 73,609061 21,175933 40,001306
10 80,630012 22,327521 18,321433

Table 4: Predictive comparison of tested models, best configurations (ex-post).

Model Regressor(s) Weights adaptation MSE∗1 sd∗2

RBF Autoregressive (1)
Backpropagation 0.0000183763 0.0000028765

𝐾-means + backpropagation 0.0000168649 0.0000002319
Genetic algorithm 0.0000176860 0.0000006219

RBF-SMA Autoregressive (1)
Back-Propagation 0.0000136485 0.0000005710

𝐾-means + backpropagation 0.0000130549 0.0000003013
Genetic algorithm 0.0000136146 0.0000003816

AR(0)-EGARCH(1,1,1) Conditional variance (1) Marquardt 0.0000170651 —
Berndt-Hall-Hall-Hausman 0.0000170651 —

∗1: mean squared error; ∗2: standard deviation.

Genetic algorithm (standard RBF)
Genetic algorithm (RBF-SMA hybrid)
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Figure 5: Predictive accuracy of standard RBF model and RBF-MA
hybrid model (genetic algorithm).

used in forecasting process for many years. As for computing
intelligent technologies, they are getting more and more
popular nowadays. The main representative neural networks
are based on mathematical model of human neuron and
therefore it does not have to fulfil any initial assumptions
like statistical models. In this paper we tested the predictive
power of neural networks in the domain of exchange rates.
We suggested a new hybrid network model combined with
moving averages. We used USD/CAD data which was later

divided into training set and validation due to model check-
ing. We also performed the tests with the statistical model.
We also used other algorithms in the neural network training
process; we combined RBF with an unsupervised learning
method called 𝐾-means and GA into the RBF. The reason
for incorporating other algorithms into the network was that
the BP is considered a weakness of the RBF. Both of these
upgrades showed to be helpful in the process of creating
better forecasts and should be definitely used instead of the
standard BP.

By performing experiments we can deduce that the
models of ANN are relatively fast, they are able to generalize,
and in addition to that it is not necessary to know all the
relationships of the system. Thanks to that, ANN modeling
is enabled to people who are not able to identify relations
between the variables of the model by using Box-Jenkins,
GARCH, or any other methodology. Moreover, in this work
we also suggested a new hybrid neural network model. The
reason for this was to improve the prediction accuracy of our
customized standard neural network. As for the prediction
results of our hybrid, we performed experiments to find out
that our suggested RBF-MA hybrid neural network has a
significant predictive superiority over the statistical model as
well as standard neural network models. On the validation
set the tested hybrid model proved excellent results and
according to MSE errors on the validation set, it was by far
the best model of all tested models. In our experiments its
numerical characteristics always overcame individualmodels
(ANN, statistical model); the improvements ranged from
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Figure 6: Histogram and statistical characteristics of original series of USD/CAD (training set).

about 18 per cent tomore than 89 per cent. Our hybrid neural
network model showed to be a great improvement of the
standard RBF neural network as we experimentally clearly
proved that for the USD/CAD this hybrid model provided
significantly better forecasts than the standard model of the
RBF neural network and as the statistical model and hence
there was a clear benefit of better one-day-ahead forecasts.

Despite the fact that neural networks and soft computing
techniques are a minor approach used in decision process of
business forecasting, it is definitely an attractive alternative
to traditional statistical models. Moreover, following from
our empirical findings for out-of-sample one-step-ahead
forecasts, we believe that our suggested hybridmodel has also
a great potential in the whole domain of financial forecasting
as well as other areas of continuous forecasting.

Appendix

Box-Jenkins Statistical Modeling

The empirical Box-Jenkins analysis [37] focuses on the
original and differentiated series of daily observations of
USD/CAD currency pair covering a historical period from
October 31, 2008, to October 31, 2012. The reason for this
particular study was to perform a comparison between our
tested model and the standard statistical model. The data, as
stated above, was downloaded from the following website:
http://www.global-view.com/forex-trading-tools/forex-histo-
ry/, and the statistical characteristics are in Figure 6.

As stated in the previous part of this paper, data was
divided into two parts—the training part and validation
part. As the validation part was used for model checking,
we only used observations from training set for statistical
modeling. For statistical modeling which included model
identification, model quantification, and model validation,
the Eviews software was used. Some of the advantages of
this software include simplicity, user friendliness, or detailed
outputs. In addition to that, it also has various versions of
GARCHmodel implemented.

Unit root tests results [39–42] presented in Table 5 show
that this series is not stationary as it is characterized by a unit

root. In order to stationarize the series, it was differentiated.
As seen from Table 5, unit root tests confirmed that the
differentiated series was stationary which is a necessary
condition in Box-Jenkins modeling.

By analyzing autocorrelation (ACF) and partial auto-
correlation function (PACF) of the differentiated series of
USD/CAD (see Figure 8), there were no significant correla-
tion coefficients, so one could deduce that first differences
of the original series formed a white noise process. In that
case, the original series would have formed random walk
process (RWP) as RWP was 𝐼(1) process. Assuming the
returns of the original series formed a random walk process,
we selected AR(0) as the basic level model. Ljung-Box 𝑄-
statistics confirmed this assumption and the applicability
of AR(0) process as the correlations were statistically not
significant.

However, the assumption of normality of residuals of
AR(0) returns was rejected (see Table 6). Moreover, the
observed asymmetry might have indicated the presence of
nonlinearities in the evolution process of returns. This non-
linearity was confirmed by graphical quantiles comparison
(versus normal distribution) and a scatter plot of the series
which did not appear to be in the form of a regular ellipsoid
(see Figures 9 and 10). In addition, BDS test rejected the
random walk hypothesis (see Table 7) as the BDS statistic is
greater than the critical value at 5%.Therefore, other tests had
to be performed in order to correctly model this series.

We noted that the residuals (Figure 11) were not charac-
terized by a Gaussian distribution (see Table 6). The asym-
metry might have indicated nonlinearities in the residuals.
When looking at the graph of residuals (Figure 11) one
could observe that the variability of these residuals could be
caused by a nonconstant variance. Residual with small value
follows another residual with a small value. On the other
hand, residual with a large value usually follows a residual
with another large value. However, this was not typical for
a white noise process. This assumption leads us to think
about stochastic model for volatility. The suitability for using
stochastic volatility model was also accepted by performing
heteroskedasticity test. ARCH test (see Table 6) confirmed
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Table 5: Unit root tests of USD/CAD.

(a)

Test Original series [𝑝 value] 1st differences (returns) [𝑝 value]

Augmented Dickey-Fuller

(I) −1.017396 (I) −30.61353
[0.2781] [0.0000]

(II) −1.848666 (II) −30.61866
[0.3569] [0.0000]

(III) −2.454401 (III) −30.60792
[0.3510] [0.0000]

Phillips-Perron

(I) −1.077154 (I) −30.66946
[0.2550] [0.0000]

(II) −1.794202 (II) −30.68702
[0.3836] [0.0000]

(III) −2.415434 (III) −30.67642
[0.3712] [0.0000]

(b)

Test Window

Spectral estimation method
Bartlett kernel Quadratic spectral kernel

Original series Returns Original series Returns
(II) (III) (II) (III) (II) (III) (II) (III)

KPSS
𝐻
0
: stationary series

Newey-West 2.735123
(0.463)

0.668131
(0.146)

0.074401
(0.463)

0.026211
(0.146)

4.846899
(0.463)

1.158977
(0.146)

0.072329
(0.463)

0.025495
(0.146)

Andrews 0.380551
(0.463)

0.150720
(0.146)

0.065257
(0.463)

0.022956
(0.146)

0.306275
(0.463)

0.132197
(0.146)

0.065106
(0.463)

0.022906
(0.146)

Elliot-Rothenberg-
Stock
𝐻
0
: unit root

Newey-West 30.18086
(3.26)

8.632243
(5.62)

0.358755
(3.26)

0.438046
(5.62)

29.71523
(3.26)

8.977311
(5.62)

0.352926
(3.26)

0.431096
(5.62)

Andrews 27.06265
(3.26)

8.375229
(5.62)

0.323259
(3.26)

0.394417
(5.62)

27.29972
(3.26)

8.378941
(5.62)

0.323530
(3.26)

0.394799
(5.62)

(I): model without constant and deterministic trend (5%).
(II): model with constant and without deterministic trend (5%).
(III): model with constant and deterministic trend (5%).

Table 6: Normality tests on distribution of residuals and othermain
characteristics.

Skewness Kurtosis J.B. A.D. ARCH-LM statistic

0.168931 5.518599 245.1157 6.422445 139.4994
[0.0000] [0.0000] [0.0000]

J.B.: Jarque-Bera statistic and A.D.: Anderson-Darling statistic.

that the series was heteroskedastic since the null hypothesis of
homoscedasticity was rejected at 5% and so the residuals were
characterized by the presence of ARCH effect which is quite a
frequent phenomenon at financial time series. Therefore, we
applied a stochastic volatility model into the basic model.

We estimated several models of ARCH [43] and GARCH
[1], respectively. We estimated several stochastic models;
except for the basic GARCH model we estimated GARCH
extensions too. For modelling the ARCH model we used
the information from the correlogram of squared residuals
(Figure 12). For each model we calculated Akaike [44],

Schwarz [45] information criteria, and log-likelihood func-
tion. It is important to remember that the estimation of dif-
ferent models was only based on 912 in-sample observations,
in order to make ex-ante predictions with remaining 132
observations. We used Marquardt optimization procedure
for finding the optimal values of GARCH parameters; initial
values of parameters were counted using Ordinary Least
Squares (OLS) method and then these values by iterative
process consisted of 500 iterations. Convergence rate was set
to 0.0001.

In view of Table 8, we find that the information criteria
are minimum for GARCH(1, 1) model with GED error
distribution. It showed that GARCH(1, 1) is very well applied
for this type of time series aswell as other financial time series.
Regarding the fact that we applied the models on exchange
rate data, it was no surprise that the asymmetrical effect was
not present. The residuals of the models were characterized
by the absence of conditional heteroskedasticity: the ARCH-
LM statistics are strictly less than the critical value at 5%. In
addition, the standardized residuals tested with Ljung-Box
𝑄 test confirmed that there were no significant coefficients
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Table 7: BDS test results on the series of AR(0) residuals.

𝑚
Fraction of pairs sd

BDS statistic 𝑧-statistic [𝑝 value] BDS statistic 𝑧-statistic [𝑝 value]
2 0.010940 3.729713 [0.0000] 0.007757 3.545123 [0.0000]
3 0.028568 6.150556 [0.0000] 0.013889 6.456223 [0.0000]
4 0.044991 8.162869 [0.0000] 0.014137 8.905923 [0.0000]
5 0.055748 9.738419 [0.0000] 0.011450 11.16068 [0.0000]
6 0.062941 11.44079 [0.0000] 0.008584 13.98217 [0.0000]
7 0.066187 13.17452 [0.0000] 0.006155 17.62420 [0.0000]
8 0.066580 15.04687 [0.0000] 0.004189 21.85108 [0.0000]
9 0.065576 17.28602 [0.0000] 0.002799 27.30739 [0.0000]
10 0.062153 19.51334 [0.0000] 0.001781 33.16601 [0.0000]
The BDS statistic was computed by two methods, with 𝜀 = 0.7.

Table 8: Evaluation characteristics of tested models.

Model Error distribution Akaike Schwarz Log-likelihood

ARCH(5)
Gaussian −6.946032 −6.909037 317.917
Student −6.966257 −6.923978 3181.130
GED −6.967443 −6.925164 3181.670

ARCH(7)
Gaussian −6.970504 −6.922940 3184.065
Student −6.984941 −6.932092 3191.641
GED −6.985553 −6.932704 3191.919

GARCH(1,1)
Gaussian −7.029560 −7.008420 3205.964
Student −7.032833 −7.006409 3208.456
GED −7.034504 −7.008779 3209.216

EGARCH(1,1,1)
Gaussian −7.025497 −6.999073 3205.114
Student −7.028507 −6.996797 3207.485
GED −7.030426 −6.998717 3208.359

PGARCH(1,1,1)
Gaussian −7.026622 −6.994912 3206.626
Student −7.029612 −6.992618 3208.988
GED −7.031268 −6.994274 3209.743

TGARCH(1,1,1)
Gaussian −7.028705 −7.002281 3206.575
Student −7.031598 −6.999888 3208.893
GED −7.033244 −7.001535 3209.643

GED: generalized error.
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Figure 7: USD/CAD (original series and differences of the original series).
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Autocorrelation Partial correlation AC PAC Q-statistic Probability
1 −0.014 −0.014 0.1798 0.672
2 −0.010 −0.010 0.2714 0.873

0.6403 −0.039 −0.040 1.6846
4 −0.012 −0.013 1.8116 0.770
5 −0.072 −0.073 6.5686 0.255
6 0.056 0.052 9.4618 0.149
7 −0.036 −0.038 10.653 0.154
8 −0.038 −0.044 11.989 0.152
9 −0.048 −0.048 14.090 0.119
10 −0.034 −0.044 15.180 0.126

Figure 8: ACF and PACF of USD/CAD returns.
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Figure 9: Quantiles of USD/CAD residuals versus the normal
distribution quantiles.
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Figure 10: Scatter plot of USD/CAD residuals variations.

Table 9: Comparison of predictive qualities (out-of-sample predic-
tions, 1-day horizon).

Model Error distribution MSE MAPE

AR(0)-ARCH(5)
Gaussian 0.00001709 0.319356
Student 0.00001720 0.320744
GED 0.00001718 0.320459

AR(0)-ARCH(7)
Gaussian 0.00001708 0.319096
Student 0.00001717 0.320443
GED 0.00001714 0.320122

AR(0)-GARCH(1,1)
Gaussian 0.00001709 0.319374
Student 0.00001715 0.320223
GED 0.00001714 0.320117

AR(0)-EGARCH(1,1,1)
Gaussian 0.00001706 0.318886
Student 0.00001714 0.320108
GED 0.00001711 0.319692

AR(0)-PGARCH(1,1,1)
Gaussian 0.00001706 0.318916
Student 0.00001711 0.319660
GED 0.00001712 0.319719

AR(0)-TGARCH(1,1,1)
Gaussian 0.00001706 0.318897
Student 0.00001712 0.319767
GED 0.00001712 0.319699

in residuals of these models. Figure 13 states these results for
GARCH(1, 1) GED model.

To compare the forecasting performance of the tested
models two criteria were used: the mean squared error
(MSE) and the mean absolute percentage error (MAPE). We
primarily tested the forecasting accuracy on the validation
set, that is, out-of-sample predictions, and we used one-step-
ahead predictions.

The best results for out-of-sample prediction were
achieved with EGARCH(1, 1, 1) model with Gaussian error
distribution (Table 9). Therefore, this model will be later
compared with the neural networkmodels and our suggested
model. This volatility is defined as follows:

log (ℎ
𝑡
) = −0.172109 + 0.117148

󵄨󵄨󵄨󵄨𝜀𝑡−1
󵄨󵄨󵄨󵄨

√ℎ
𝑡

+ 0.037398

󵄨󵄨󵄨󵄨𝜀𝑡−1
󵄨󵄨󵄨󵄨

√ℎ
𝑡

+ 0.992135 log (ℎ
𝑡−1
) .

(A.1)
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Figure 11: Evolution of residuals.

Autocorrelation AC Q-statistic Probability
1 0.096 8.4277 0.004
2 0.220 52.850 0.000
3 0.186 84.531 0.000
4 0.094 92.714 0.000
5 0.169 118.89 0.000
6 0.236 170.00 0.000
7 0.118 182.92 0.000
8 0.212 224.24 0.000
9 0.050 226.57 0.000
10 0.208 266.42 0.000

Figure 12: Correlogram of squared residuals.

Autocorrelation Partial correlation AC PAC Q-statistic Probability
1 −0.033 −0.033 0.9663 0.326
2 −0.007 −0.008 1.0087 0.604
3 −0.025 −0.026 1.5847 0.663
4 −0.041 −0.043 3.1585 0.532
5 −0.051 −0.055 5.5879 0.348
6 0.053 0.049 8.2029 0.224
7 −0.010 −0.009 8.2864 0.308
8 −0.004 −0.008 8.2992 0.405
9 −0.058 −0.061 11.361 0.252
10 −0.047 −0.051 13.413 0.202

Figure 13: ACF and PACF of AR(0)-GARCH(1, 1) GED residuals.
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