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ABSTRACT Members of the bacterial phylum Gemmatimonadota are ubiquitous in
most natural environments and represent one of the top 10 most abundant bacterial
phyla in soil. Sequences affiliated with Gemmatimonadota were also reported from
diverse aquatic habitats; however, it remains unknown whether they are native organ-
isms or represent bacteria passively transported from sediment or soil. To address this
question, we analyzed metagenomes constructed from five freshwater lakes in central
Europe. Based on the 16S rRNA gene frequency, Gemmatimonadota represented from
0.02 to 0.6% of all bacteria in the epilimnion and between 0.1 and 1% in the hypo-
limnion. These proportions were independently confirmed using catalyzed reporter
deposition-fluorescence in situ hybridization (CARD-FISH). Some cells in the epilimnion
were attached to diatoms (Fragilaria sp.) or cyanobacteria (Microcystis sp.), which sug-
gests a close association with phytoplankton. In addition, we reconstructed 45 meta-
genome-assembled genomes (MAGs) related to Gemmatimonadota. They represent
several novel lineages, which persist in the studied lakes during the seasons. Three lin-
eages contained photosynthesis gene clusters. One of these lineages was related to
Gemmatimonas phototrophica and represented the majority of Gemmatimonadota
retrieved from the lakes’ epilimnion. The other two lineages came from hypolimnion
and probably represented novel photoheterotrophic genera. None of these phototro-
phic MAGs contained genes for carbon fixation. Since most of the identified MAGs
were present during the whole year and cells associated with phytoplankton were
observed, we conclude that they represent truly limnic Gemmatimonadota distinct
from the previously described species isolated from soils or sediments.

IMPORTANCE Photoheterotrophic bacterial phyla such as Gemmatimonadota are key
components of many natural environments. Its first photoheterotrophic cultured mem-
ber, Gemmatimonas phototrophica, was isolated in 2014 from a shallow lake in the Gobi
Desert. It contains a unique type of photosynthetic complex encoded by a set of genes
which were likely received via horizontal transfer from Proteobacteria. We were intrigued
to discover how widespread this group is in the natural environment. In the presented
study, we analyzed 45 metagenome-assembled genomes (MAGs) that were obtained
from five freshwater lakes in Switzerland and Czechia. Interestingly, it was found that
phototrophic Gemmatimonadota are relatively common in euphotic zones of the studied
lakes, whereas heterotrophic Gemmatimonadota prevail in deeper waters. Moreover, our
analysis of the MAGs documented that these freshwater species contain almost the
same set of photosynthesis genes identified before in Gemmatimonas phototrophica
originating from the Gobi Desert.
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Microorganisms conduct key biogeochemical processes involved in the main fluxes
of matter and energy on Earth. Most microbial diversity remains uncultured, and

only analyses of environmental DNA samples have made it possible to unravel existing
microbial diversity and to identify the main species involved (1). Indeed, out of 112
known bacterial phyla in the Genome Taxonomy Database (GTDB) (2), more than one
half are still recognized only from environmental sequences (3).

One of the phyla that was first identified using molecular phylogenetic methods
was Gemmatimonadota (also called Gemmatimonadetes [4]), which was originally
established as the so-called BD group based on five 16S rRNA gene sequences, which
originated from deep-sea sediments, soils, and reactor sludge (5, 6). Independently,
the group was also proposed as a candidate division KS-B based on three 16S rRNA
gene sequences retrieved from coastal sediment samples from French Guiana (7).

The first cultured strain T27 belonging to the BD/KS-B group was isolated from
a wastewater treatment plant in Japan. The isolate was named Gemmatimonas aur-
antiaca and established the new phylum Gemmatimonadota, along with its first
class Gemmatimonadetes and genus Gemmatimonas (8). Subsequently, three more
Gemmatimonadota genera (Gemmatirosa, Longimicrobium, and Roseisolibacter)
with type strains were described from various soil environments (9–11). Apart from
class Gemmatimonadetes, phylum Gemmatimonadota consists of four more class-
level groups which include class Longimicrobia, two terrestrial groups (BD2-11 and
S0134), and one marine benthic group (PAUC43f) (10, 12). The four cultured repre-
sentatives from the phyla were all chemo-organoheterotrophs that require oxygen
and grow under fully aerobic or semiaerobic conditions (8–11). An interesting met-
abolic potential and ecological role was reported for G. aurantiaca, as this species
has the ability to reduce the greenhouse gas N2O (13). However, with the discovery
of Gemmatimonas phototrophica, which contains photosynthetic reaction centers
(14, 15), Gemmatimonadota were added to several bacterial phyla containing
anoxygenic phototrophic species alongside Proteobacteria, Chlorobi (now included
as a class-level lineage in Bacteroidota [2]), Chloroflexota, Firmicutes (Bacillota),
Acidobacteriota, and the newly discovered phylum “Candidatus Eremiobacterota”
(WPS-2) (14, 16, 17). Anoxygenic phototrophs, such as G. phototrophica, are able to
support their metabolism by harvesting light using bacteriochlorophylls; however,
they require a supply of organic substrate for growth (18). Another characteristic
found in G. phototrophica is the organization of its photosynthesis genes into a
cluster called the photosynthesis gene cluster (PGC). Interestingly, the gene arrangement
in the PGC of G. phototrophica is very similar to the one found in Proteobacteria, so it has
been suggested that phototrophy in Gemmatimonadota originates from an ancient hori-
zontal gene transfer of the entire PGC from Proteobacteria (14). As yet, this is the only
known case of horizontal transfer of an entire set of photosynthesis genes between dis-
tant bacterial phyla (14, 19).

Information about the prevalence of Gemmatimonadota in different habitats is
continuously growing, although information about their ecology is scarce. Members
of this phylum were found in many natural environments (12, 20–22) and represent
the eighth most abundant phylum in soils, accounting for about 1 to 2% of bacteria
in soils worldwide (23). Their highest contributions are typically found in fertile agri-
cultural and forest soils (20) but are also present in more unique soil environments,
such as arid Antarctic Dry Valley soils (24, 25). It has been suggested that
Gemmatimonadota may be relatively more abundant in dry soils (26). On the other
hand, from the available data, it is known that they are also present in aquatic envi-
ronments, such as freshwater lakes (27), sediments (22, 28–30), and estuaries (31,
32). In addition, G. phototrophica was isolated from a freshwater lake in Inner
Mongolia (18). However, this organism does not grow in liquid culture and requires
microaerophilic conditions, which are more typical for sediment-dwelling species.
Thus, the data showing that Gemmatimonadota prefer dry environments does not
seem to be universal. There is probably a large ecological and functional diversity
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among the members of Gemmatimonadota. The question remains whether
Gemmatimonadota-related sequences identified in lakes originate from strictly
limnic species, or perhaps they are just a passive component that enters the lakes
along with runoff waters from surrounding soil.

Current progress in sequencing technologies and bioinformatics has circumvented
the necessity for cultivated representatives and allowed biological and ecological infer-
ences to be drawn by using genomic data recovered directly from microbial commun-
ities. Over the past few years, the usage of metagenome-assembled genomes (MAGs)
has allowed the description of many novel bacterial divisions and unearthed large radi-
ations in the prokaryotic tree of life (33). This approach has already led to the discovery
of new phototrophic organisms belonging to the yet uncultured candidate phylum
“Ca. Eremiobacterota” (16, 34). Also, two MAGs belonging to Gemmatimonadota were
recovered from Lake Baikal. One MAG was more similar to Gemmatirosa kalamazoonen-
sis found in soils and seemed more abundant at a depth of 5 m. The other MAG-
encoded rhodopsin gene and was closely related to the phototrophic species G. photo-
trophica and showed a higher abundance at 20 m (35).

Therefore, in order to address the question whether there are any truly limnic
Gemmatimonadota and to investigate their diversity, we analyzed metagenome data
from five freshwater lakes in Czechia and Switzerland. The lakes were chosen based on
their trophic status and included a representative mesoeutrophic �Rímov Reservoir, a
dystrophic Ji�rická pond, oligomesotrophic Lake Zurich and Lake Constance, and an
ultraoligotrophic Lake Thun (Table 1). The metagenome sequences were collected
over several years and seasons. The reconstructed MAGs were analyzed with the aim
to identify the most common freshwater and photoheterotrophic Gemmatimonadota
and to analyze their spatiotemporal variability. Using catalyzed reporter deposition-flu-
orescence in situ hybridization (CARD-FISH), cells of Gemmatimonadota were visualized
for the first time in their natural environment, and their association with other organ-
isms was observed.

RESULTS
Abundance of Gemmatimonadota. The presence of Gemmatimonadota in fresh-

water lakes was first assessed by using relative 16S rRNA abundances extracted from our
metagenomic data sets. In all studied lakes, Gemmatimonadota formed only a small part
of the bacterial community with relative abundances typically below 1%. The highest rela-
tive abundance was found in �Rímov Reservoir, where Gemmatimonadota sequences were
present over the entire sampling period (2015 to 2017). Interestingly, their relative abun-
dance was higher in the hypolimnion (0.58%6 0.23%; n=8) than in the epilimnion
(0.24%6 0.21%; n=10), with the highest numbers (1.03%) in August 2016. A similar pat-
tern of higher contribution in the hypolimnion (0.44%6 0.27%; n=4) than in the

TABLE 1 Basic characteristics of the lakes studied

Characteristic �Rímov Reservoir Ji�rická pond Lake Zurich Lake Constance Lake Thun
Countrya CZ CZ CH CH CH
Latitude 48.50°N 48°36'N 47°18'N 47°32'N 46°419N
Longitude 14.29°E 14°40'E 8°34’E 9°31'E 7°439E
Altitude (m) 470 892 406 395 558
Area (km2) 2.10 0.035 88.66 536 48.3
Volume (m3) 34.5� 106 6.59� 103 3.3� 109 48� 109 6.5� 109

Avg depth (m) 16.5 1.8 49 90 136
Maximum depth (m) 43 4.5 136 251 217
Mean hydraulic residence time 77 days 9 days 1.4 yrs 5 yrs 1.8 yrs
Trophic status Mesoeutrophic Dystrophic Oligomesotrophic Oligomesotrophic Ultraoligotrophic
Mixing type Dimictic Polymictic Monomictic Monomictic Monomictic
Sampling 201522017 201622017 201022019 2018 2018
No. of samplesb E = 10, H= 8 E = 5 E = 6, H = 4 E = 2, H= 2 E = 1, H = 1
aCZ, Czechia; CH, Switzerland.
bE refers to epilimnion, and H refers to hypolimnion. The exact depths for each of the lakes are provided in Materials and Methods.
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epilimnion (0.28%6 0.25%; n=6) was also observed in Lake Zurich, with the highest rela-
tive abundance occurring in spring (13 May 2013, 0.77%). The general pattern of higher
abundance in the hypolimnion was observed also in both Lake Constance and Lake Thun
and was recorded in summer with 0.81% and 0.58% relative abundance, respectively.
Finally, the lowest contribution of Gemmatimonadota was found in Ji�rická pond, where
they represented less than 0.1% of the prokaryotic community, with a maximum of 0.09%
recorded in summer, in August 2017.

Statistical analysis using distance-based linear models (DistLM) showed that the
only environmental factor driving the Gemmatimonadota community in �Rímov
Reservoir was water temperature, which explained 47% of the variability in the data
set (P = 0.0002, pseudo-F=13.303). A separate analysis of epilimnion and hypolimnion
samples showed that temperature was also important in epilimnion (P = 0.0079,
pseudo-F=5.7106, and 41.6% of the explained variability in data set) but not in
hypolimnion.

Metagenome-assembled genomes of Gemmatimonadetes and their distribution.
To explore the diversity of aquatic Gemmatimonadota, we performed genome-resolved
metagenomics analyses. The freshwater MAGs (n=45) obtained in our study were ana-
lyzed together with those publicly available (n=226) in March 2019 (see Table S1 in
the supplemental material for a complete list). Most of the MAGs assembled by us
were obtained from �Rímov Reservoir (n = 27), followed by Lake Zurich (n = 10), Lake
Constance (n = 5), Lake Thun (n = 2), and Ji�rická pond (n = 1). Publicly available MAGs
originated from various environments: mostly from marine habitats (n = 36) and soils
(n = 37), followed by sediments of soda lakes (n = 38), permafrost (n = 23), and other
(n = 11). Only three MAGs from freshwater environments were available in the data-
base at the time of the study.

Phylogenomically, based on Genome Taxonomy Database (GTDB) taxonomy (39),
all MAGs recovered in this study clustered within class Gemmatimonadetes (Fig. 1).
Although they were all recovered from a freshwater environment, six of them were
more closely related to publicly available MAGs from environments like soils and sedi-
ments. MAGs CH-Jul18-bin44, ZH-3nov15-207, and TH-Jun18-bin75 clustered with
MAGs from soils, and CH-Jul18-bin76, CH-Jul18-bin112, and ZH-3nov15-212 clustered
with MAGs from sediments. Similarly, in 16S rRNA phylogeny (see Fig. S1 in the supple-
mental material), all freshwater MAGs with recovered 16S rRNA genes clustered within
class Gemmatimonadetes, with the exception of two previously mentioned MAGs (CH-
Jul18-bin112 and ZH-3nov15-212) that clustered within the BD2-11 terrestrial group
based on SILVA SSU v138 database taxonomy (12).

16S rRNA gene diversity. The 16S rRNA gene fragments from metagenomes were
classified taxonomically. As most of the Gemmatimonadota phylum consists of envi-
ronmental sequences that remain uncultured, many of the fragments could not be
classified. Therefore, in order to increase taxonomic resolution of unclassified
Gemmatimonadota, we have used 16S rRNA gene sequences from our MAGs (Fig. S1)
to define six new clusters (five from class Gemmatimonadetes and one from BD2-11
terrestrial group). In �Rímov Reservoir, the Gemmatimonadota community was solely
composed of the class Gemmatimonadetes (Fig. 2). The genus Gemmatimonas was
present in all seasons and both depths, but it was more abundant in the epilimnion,
especially in summer (15-Aug-16). Epilimnion was dominated by the genus
Gemmatimonas and unclassified Gemmatimonadaceae, with the exception of three
samples (two in November and one in April) where other clusters were also present.
In contrast, hypolimnion samples contained several different clusters, including pho-
totrophic cluster PG1 that was one of the dominant clusters in every season.
Similarly, clusters GRI1 and GSR7 were predominantly present in the hypolimnion.
The presence of these three clusters in the epilimnion occurred only in November
and April, when the reservoir was mixed. In Ji�rícká pond, the Gemmatimonadota com-
munity was composed of three clusters from the class Gemmatimonadetes, i.e., genus
Gemmatimonas, cluster GSR7, and cluster PG1, the latter being mostly dominant in
summer. Additionally, the BD2-11 terrestrial group was also present in low
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proportions in summer. The highest taxonomic diversity within Gemmatimonadota
was observed in Swiss lakes, where three other class-level groups in addition to
Gemmatimonadetes were recovered, i.e., representatives of classes Longimicrobia,
BD2-11 and S0134, groups that were previously known only from terrestrial 16S rRNA
gene sequences (12). Here, genus Gemmatimonas was also predominantly present in
the epilimnion, whereas cluster GSR7 dominated the hypolimnion. In Lake Zurich, a
large contribution of class Longimicrobia was recorded in a spring sample (13-May-
13) in both the epilimnion and hypolimnion.

Photosynthesis genes in Gemmatimonadota. Further analyses of the assembled
genomes of Gemmatimonadota revealed that 19 out of 45 freshwater MAGs contained
phototrophic genes. In the phylogenetic tree, we could differentiate them into three
distinct phototrophic groups (Fig. 1). Phototrophic group 1 contained eight MAGs
from the hypolimnion of �Rímov Reservoir and one from Ji�rická pond. Phototrophic
group 2 was formed of nine MAGs (three from the epilimnion of Lake Zurich, five from
the epilimnion of �Rímov Reservoir, and one from the hypolimnion of �Rímov Reservoir).
Phototrophic group 2 also included the only cultured photoheterotrophic strain of the
phylum, G. phototrophica, as well as the only three MAGs from freshwater environ-
ments that were publicly available. Phototrophic group 3 contained two MAGs from
the hypolimnion of �Rímov Reservoir. All these MAGs were recovered from different
time points (several years and different seasons).

Using representatives from each of these groups, we reconstructed the photosyn-
thetic gene cluster and compared its structure and organization with the PGC found in
G. phototrophica (14). For phototrophic groups 1 and 2, we reconstructed the entire
PGC. In the case of phototrophic group 3, the PGC was missing several genes due to
the incompleteness of the genomes (MAGs had completeness of 71.07. and 83.16%).
From our findings, it appears that limnic Gemmatimonadetes have the same or very
similar organization of phototrophic genes as G. phototrophica AP64 (Fig. 3 and
Table S4). A distinct trait of G. phototrophica is a fragmented PGC divided by a set of
hypothetical genes. The same split PGC was observed in three out of nine MAGs from
phototrophic group 2, but it was absent in phototrophic groups 1 and 3. Furthermore,
we observed the presence of the gene frhB (coenzyme F420-reducing hydrogenase,
beta subunit) in the operon bchP2G, in the PGC of all members of phototrophic group
1, at the position where all other phototrophic Gemmatimonadetes have bch2. A full
list of phototrophic genes for each MAG, as well as their distribution on contigs, is pro-
vided as Table S4.

As the presence of ribulose 1,5-bisphosphate carboxylase enzyme (RuBisCO) genes
was previously reported in some sediment Gemmatimonadota MAGs, we also searched
for them in our freshwater MAGs. We identified type IV RubisCO-like genes in eight
phototrophic freshwater MAGs from �Rímov Reservoir (Fig. S3). Seven of these MAGs
belonged to phototrophic group 1 recovered from hypolimnion, and one to phototro-
phic group 2 recovered from the epilimnion of �Rímov Reservoir.

Average amino acid identities and 16S rRNA and photosynthetic gene similarities
of photoheterotrophicGemmatimonadetes.We calculated average amino acid identities
(AAI) between all the freshwater MAGs and the three genomes of cultured reference
strains (Gemmatimonas phototrophica, Gemmatimonas aurantiaca, and Gemmatirosa kala-
mazoonesis) (Fig. S4). All MAGs of the phototrophic group 1 represent the same species,
with AAI values of 99 and 100%, that was recovered in both �Rímov Reservoir and
Ji�rická pond, multiple times through different years and seasons. When phototrophic

FIG 1 Legend (Continued)
different environments are shown by different colors (left legend). The numbers shown at collapsed branches (i.e., 11 and 52) indicate the
numbers of genomes (not shown) comprising the respective taxonomic categories. Genomes belonging to Fibrobacterota were used as an
outgroup to root the tree. The annotations Pg1 to Pg3 define groups of photoheterotrophic Gemmatimonadota. Order, class-level, and phylum
taxonomic labels are indicated through vertical delimiters (right part of the figure). The strength of support for internal nodes (assessed by
ultrafast bootstrapping) is shown through colored circles (left legend). Details on all genomes can be found in Table S1 in the supplemental
material.
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group 1 was compared with phototrophic groups 2 and 3, AAI values were below
65%, suggesting that these groups represent different genera. Similarly, phototro-
phic group 1 showed AAI values below 65% (specifically 55 and 56%) compared with
cultured representatives. In phototrophic group 2, the three MAGs from Lake Zurich
represent the same species (AAI, 95 to 100%) recovered in different years, whereas
other MAGs from �Rímov Reservoir in this group seem to belong to the same genus
but are all different species (AAI, 77 to 82%). Phototrophic group 3 consists of two
MAGs that represent the same species (AAI, 96 and 100%). Both phototrophic groups
2 and 3 (AAI, 66 to 68%) belong to the same genus as the cultured representatives G.
phototrophica and G. aurantiaca (AAI 66%) but are different from Gemmatirosa kala-
mazoonensis (AAI, 56%).

From the phototrophic MAGs (phototrophic group 1), one MAG from the hypolimn-
ion of �Rímov Reservoir (RH-18aug17-102) contained a 16S rRNA gene, which showed
92.8% identity with G. phototrophica and 91.5% and 89.6% identity with G. aurantiaca
and Gemmatirosa kalamazoonensis, respectively (Fig. S1), and one MAG from Ji�rická
pond (Jr-7aug17-35) showed 92.1% 16S rRNA gene sequence identity with G.
phototrophica.

To further analyze the differences among the identified phototrophic groups, we
compared the pufM and acsF gene sequence identities between them and type species
G. phototrophica. Both of these genes are markers for anoxygenic photoheterotrophic
bacteria (22, 40). For the pufM gene (encoding the M subunit of the bacterial photosyn-
thetic reaction center), phototrophic group 2 showed only 80 to 85% identity with G.
phototrophica. Much lower identities were found for hypolimnion groups 3 and 1 (77
to 80% and 72%, respectively). The acsF gene (aerobic oxidative cyclase gene) gave
similar results with only 71% identity between phototrophic group 1 and G. photo-
trophica. MAGs from phototrophic groups 2 and 3 had 79 to 89% and 78% identity of
the acsF gene of G. phototrophica, respectively.

Relative abundance of MAGs of phototrophic and nonphototrophic Gemma-
timonadota. In order to compare the relative abundance of phototrophic and nonpho-
totrophic Gemmatimonadota, we used 28 metagenomes from �Rímov Reservoir from
which 27 MAGs were recovered for fragment recruitment (Fig. 4). Nonphotosynthetic
MAGs showed the highest contribution in the hypolimnion, especially in summer (15
August 2016); however, their abundance was not constant and changed over time.
Similarly, photosynthetic group 1 was also present mostly in the hypolimnion, and its

FIG 2 Legend (Continued)
Zurich, Lake Constance, and Lake Thun (c). The figure depicts the classification of 16S rRNA gene fragments (as unassembled
shotgun reads) retrieved from five freshwater data sets. The x axis shows the sampling dates, while the y axis indicates the
percentage of Gemmatimonadota within the prokaryotic communities. The sample collection time, following a four-season
breakdown, is indicated by the gray-scale-colored boxes arranged along the x axis.
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relative abundance varied during the season. The only occurrence of this group in the
epilimnion was in late autumn (9 November 2016), at times of deep mixing of the res-
ervoir (41). In contrast, photosynthetic groups 2 and 3 were present mostly in the epi-
limnion but remained at very low relative abundances in all seasons and at all depths.

CARD-FISH analyses. In order to visualize members of the class Gemmatimonadetes
and access more information on their distribution and potential associations within
freshwater environments, we designed the CARD-FISH probe Gemma_801 and applied
it to a set of samples obtained from �Rímov Reservoir, comprising eight longitudinal
transects collected during summer 2015. The hybridized cells were also counted; how-
ever, since the probe in silico matches only 35% of all Gemmatimonadetes, the pre-
sented numbers, while corresponding with 16S rRNA gene abundance from metage-
nomes, reflect only the detected, and not total Gemmatimonadetes, implying that the
observed numbers can underestimate the absolute abundance of Gemmatimonadetes
in the environments studied. The lowest relative (mean= 0.09%, minimum [min] = 0.00,
maximum [max] = 0.19%) and absolute (mean= 3.25� 103 cells ml21, min = 0.00,
max = 7.9� 103 cells ml21) abundances were observed at the river station of the reser-
voir (Fig. S2). However, at stations 2 and 3 (stations following the “river station” in the
longitudinal transect), the contribution of hybridized planktonic cells had already
reached up to 1.0% (4.3� 104 cells ml21) during a bloom of Fragilaria sp. at the end of
June. Besides free-living Gemmatimonadetes, we observed hybridized cells that
seemed to be attached to diatoms (Fig. 5a). On some Fragilaria sp. colonies, hybridized
Gemmatimonadetes contributed up to 22% of all bacterial cells detected on the diatom
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surface. In addition, Gemmatimonadetes seemed to be associated with cyanobacteria,
as higher densities were detected with agglomerations of Microcystis sp. colonies
(Fig. 5b and Fig. S5a). However, the highest numbers of hybridized cells were observed
in the hypolimnion ($10 m) of �Rímov Reservoir (up to 4.43% and 2.75� 104 cells ml21,

respectively; Fig. 5c, Fig. 6, and Fig. S5b). These cells displayed different shapes and
were smaller than those detected in the epilimnion.

DISCUSSION

In the presented work, we clearly demonstrated that Gemmatimonadota were per-
manently present in all of the studied lakes showing the ubiquitous nature of this phy-
lum in contrasting freshwater lakes ranging from ultraoligotrophic to mesoeutrophic.
The freshwater Gemmatimonadota community followed seasonal patterns with water
temperature as the main driving variable, especially in the epilimnion. This observation
further supports the idea that the studied Gemmatimonadota are truly limnic, since
abundances of passively transferred microorganisms correlate with water mass move-
ments rather than with temperature (42). The stratification of the lake also seemed to
have a significant effect on the Gemmatimonadota community, as clusters inhabiting
the epilimnion differed from those present in the hypolimnion, suggesting that they
can be metabolically diverse and be specialized in different ecological roles. While
Gemmatimonadota were relatively stable in the hypolimnion, their numbers in the epi-
limnion varied with higher numbers in late summer and autumn and lower numbers in
spring and early summer. The stratification effect was previously studied in Grand Lake
(OK, USA) where the Gemmatimonadota community was present in late summer in the
free-living fraction within the thermocline and hypolimnion. The highest abundance in

FIG 5 Overlay images of Gemmatimonadetes cells in �Rímov Reservoir visualized by CARD-FISH
with probe Gemma_801. (a) Gemmatimonadetes associated with a Microcystis sp. colony. (b)
Gemmatimonadetes observed on a colony of Fragilaria sp. (c) Free-living Gemmatimonadetes
observed in the hypolimnion of �Rímov Reservoir. The probe signal is displayed in green, DAPI
staining is displayed in blue, and autofluorescence of Cyanobacteria is displayed in red.
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the hypolimnion at this time seemed to be associated with the sedimentation of or-
ganic matter, turbidity, and a lack of oxygen that developed in the thermocline and
hypolimnion (43). The Gemmatimonadota community in Grand Lake was mostly com-
posed of the genus Gemmatimonas, which is suggested to participate in the degrada-
tion of organic matter after an algal bloom lysis (44). In contrast, we observed that the
genus Gemmatimonas was present in both the epilimnion and hypolimnion, but it
appeared with higher abundances in the epilimnion, while the hypolimnion commu-
nity was dominated by other clusters, including phototrophic group 1. However, we
could also correlate the highest abundance of the genus Gemmatimonas in the epi-
limnion (15-Aug-16) with the highest abundance of the cyanobacterial community in
the same metagenome sample (41). The prokaryotic community of metagenomes
from �Rímov Reservoir was analyzed previously (41) showing Actinobacteria as persis-
tently abundant in �Rímov Reservoir through all seasons and in both the epilimnion
and hypolimnion. Other more abundant groups in the epilimnion and the hypo-
limnion were Alphaproteobacteria, Bacteroidetes, and Burkholderiales (previously
Betaproteobacteriales). Instead, while Cyanobacteria were abundant in the epilimn-
ion, they were recovered in smaller numbers, which the authors attribute to the
method of sampling where most of the filamentous Cyanobacteria are removed.

The clear difference between samples from the epilimnion and hypolimnion was
also observed using epifluorescence microscopy. The highest number of small-sized
hybridized cells was detected in the hypolimnion of �Rímov Reservoir. In contrast, the
samples from the epilimnion contained many Gemmatimonadota cells attached or
associated with photosynthetic organisms: diatoms (Fragilaria sp.) or cyanobacteria
(Microcystis sp.) (Fig. 5a and b and Fig. 6). Since both phototrophic and heterotrophic
Gemmatimonadota require an organic source of carbon, they may benefit from the
input of organic carbon from algae and cyanobacteria, providing in exchange inor-
ganic nutrients acquired through mineralizing organic substances (45). Additionally,
cells from the epilimnion, where light is available, seemed to have a larger size. Some
previous studies showed that aerobic anoxygenic photoheterotrophic bacteria can
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FIG 6 Relative abundance of planktonic Gemmatimonadetes in the epi- and hypolimnion of �Rímov
Reservoir obtained by CARD-FISH analyses with the probe Gemma_801. Epilimnion samples where
Fragilaria sp. and Microcystis sp. were observed are colored in green. The difference between the
epilimnion and hypolimnion is significant (Mann-Whitney U test, [P = ,0.001]).
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often increase carbon assimilation in the presence of light, which allows them to have
larger cells (46, 47). Subsequently, the distribution of Gemmatimonadota in the epi-
limnion could be dependent upon the distribution and occurrence of diatoms like
Fragilaria sp. and cyanobacteria like Microcystis sp., as their blooms can influence and
alter bacterioplankton communities (45, 48). Likewise, this dependence is a plausible
explanation for the reason why photoheterotrophic members of this phylum are prov-
ing to be difficult to culture.

The presented 45 metagenome-assembled genomes of Gemmatimonadota in this
study represent the largest collection of freshwater metagenome-assembled genomes
(MAGs) of this phylum so far available. The obtained MAGs further confirmed the limnic
nature of Gemmatimonadota. With recovery of several MAGs that represent the same
species based on AAI (with 99 or 100% similarity), we show that Gemmatimonadota
MAGs are reassembled from metagenomes and recovered periodically from different
years as well as different seasons. This confirms the strong resilience of their microdiver-
sity in freshwater and cannot be taken as a random occurrence. Furthermore, 39 of the
obtained MAGs are different from soil species (Fig. 1; also see Fig. S1 and S4 in the sup-
plemental material) and form distinct phylogenetic groups (with AAI between 45 and
65%) with both photoheterotrophic and heterotrophic representatives (38). Six MAGs,
gained from the hypolimnion of deep lakes, three from Lake Constance (CH-Jul18-bin44,
CH-Jul18-bin76, and CH-Jul18-bin112), two from Lake Zurich (ZH-3nov15-207 and ZH-
3nov15-212), and one from Lake Thun (TH-Jun18-bin75), (Fig. 1 and Fig. S1) are more
closely related to genomes from soil and sediments. In the 16S rRNA phylogeny (Fig. S1),
two previously mentioned MAGs (CH-Jul18-bin112 and ZH-3nov15-212) clustered within
the BD2-11 terrestrial group based on SILVA SSU v138 database taxonomy (12). This is
consistent with 16S rRNA gene abundance in Swiss lakes where we could episodically
observe the occurrence of 16S rRNA sequences related with terrestrial groups, such as
Longimicrobia, BD2-11, and S0134 that has, as yet, been connected only with soil envi-
ronments (10). Environmental 16S rRNA gene sequences from freshwater have until now
been associated only with the class Gemmatimonadetes (10–12), and all other groups
were formed with soil and sediment representatives. While the six MAGs could represent
new freshwater members of the soil-connected groups, due to the close phylogenomic
similarity with soil representatives and not with other freshwater MAGs, it is more proba-
ble that they represent genomes recovered due to soil runoff. Nevertheless, the MAGs
present in these different phylogenetic groups were assembled from metagenomes
gained from different sampling times which shows Gemmatimonadota were recovered
repeatedly from freshwater environments. All this evidence shows that at least 39 of the
identified MAGs represent truly limnic and planktonic species that do not come from
soils. Furthermore, with the notable genomic diversity of limnic Gemmatimonadota,
we demonstrate the ecological relevance of this group, as different members are
clearly able to persist in the water column, occupying different ecological niches as
they occur both in the hypolimnion and in the epilimnion. Moreover, the distribution
of Gemmatimonadota in contrasting freshwater lakes showed they are adapted to dif-
ferent types of aquatic environments. The highest diversity in terms of different ge-
nus level groups or species of Gemmatimonadota, especially photoheterotrophic rep-
resentatives, was observed in �Rímov Reservoir. Despite this, we cannot associate the
higher diversity to mesoeutrophic lakes, as the data set obtained from �Rímov
Reservoir was substantially larger, allowing for an increased chance of recovering
higher diversity. A higher trophic status of any lake is connected with higher phyto-
plankton productivity; therefore, lakes and reservoirs often show variations of micro-
bial communities connected with phytoplankton productivity (49, 50). Specifically,
the connection of bacterial communities with changes in phytoplankton has already
been recorded in �Rímov Reservoir (51). Furthermore, anoxygenic phototrophic bacte-
ria are often found in close association with algae (45, 52, 53), and since they seem to
follow seasonal phytoplankton blooms in freshwater lakes (45, 48), it is suggested
that they represent an important functional group in freshwater environments (54).
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Phototrophic gene, phylogenomic, and AAI analyses have shown that phototro-
phy in the Gemmatimonadota spans multiple genera. The identified phototrophic
Gemmatimonadota represent three different groups but share the same set of photo-
trophic genes with G. phototrophica. All identified PGCs share a very similar gene inven-
tory (see Table S4 in the supplemental material) and organization (Fig. 3). It seems that
the convergent orientation (!  ) of superoperons bchFNBHLM and crtFbchCXYZ-puf is
conserved among all the phototrophic Gemmatimonadota, in contrast to phototrophic
Proteobacteria, where orientation of these superoperons may be divergent, convergent,
or colinear (55). Moreover, the split of the PGC with inserted genes in the type strain G.
phototrophica AP64 (14) is also present in several MAGs from the epilimnion. Previously,
the PGC of G. phototrophica was compared with two PGCs reconstructed from the
Odense wastewater metagenome (OdenseWW) and the Aalborg wastewater meta-
genome 2 (AalborgWW-2) which did not contain the insert of several hypothetical
genes between two operons. The explanation proposed for the difference in having
a split PGC or not was that it could represent different evolutionary history of photo-
trophic Gemmatimonadota originating from different environments (21). Apart from
the split PGC present in some of the MAGs, we observed that members of phototro-
phic group 1 have coenzyme F420-reducing hydrogenase (frhB gene) instead of bac-
teriochlorophyll synthase 4.5-kDa chain (bch2), as part of the bchP2G operon.
Coenzyme F420-reducing hydrogenase enzyme seems to have an important role in
energy conservation and methanogenesis from CO2 (56).

In support of the true photoheterotrophic nature of Gemmatimonadota, a previous
study conducted in �Rímov Reservoir, found active expression of their pufM genes (a
common molecular marker gene for aerobic anoxygenic phototrophs) (27). Expression
of the photosynthetic apparatus of Gemmatimonadota showed that they are an active
part of bacterial community and do not just passively contain the phototrophic genes
(27).

Recently, several Gemmatimonadota MAGs that originate from sediments of a soda
lake were reported to contain both phototrophic genes and genes related to the large
subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase enzyme (57), suggesting
that these soda lake MAGs represent the first photoautotrophic Gemmatimonadota
(58). In contrast, some of our freshwater Gemmatimonadota contain phototrophic
genes as well as type IV RuBisCO (Fig. S3), which is considered only a homologue of
RuBisCO, since it does not have any carboxylation activity (59, 60). Type IV RuBisCO
genes are present in many microorganisms, including both phototrophic and hetero-
trophic bacteria and Archaea and are thought to participate in some other metabolic
pathways different from the Calvin-Benson cycle (61, 62). Therefore, these freshwater
Gemmatimonadota MAGs are not photoautotrophs, rather have a photoheterotrophic
metabolism, typical for aerobic anoxygenic photoheterotrophic bacteria. These bacte-
ria do not fix inorganic carbon and need to rely on organic carbon produced by other
organisms, so the ability to harvest light is used to supply energy for their mostly orga-
noheterotrophic metabolism (40, 63, 64).

In conclusion, with MAGs from these contrasting freshwater lakes, we not only
reveal the existence of several new phototrophic species that differ phylogenetically
from the already cultured and characterized G. phototrophica but also show the consid-
erable diversity of both photoheterotrophic and heterotrophic Gemmatimonadota in
freshwater.

MATERIALS ANDMETHODS
Sampling for metagenomics analysis. Samples from five European freshwater lakes representing a

large range of size, depth, and/or trophic status (Table 1) were used to obtain genomic information from
Gemmatimonadota. Samples were taken from the surface mixed-sun exposed layer known as the epi-
limnion and the deeper, colder layer where typically there is reduced turbulence and a smaller amount
of light is present. This deeper layer is called the hypolimnion. �Rímov Reservoir is a mesoeutrophic, can-
yon-shaped dimictic water body that was built during 1970s by damming a 13.5-km-long section of the
River Malše (65). The sampling was performed between June 2015 and August 2017, above the deepest
point of the reservoir by using a Friedinger sampler. A volume of 20 liters of water was collected from
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both the epilimnion (0.5 m; n= 10) and hypolimnion (30m; n=8) and subjected to sequential peristaltic
filtration through a series of 20-, 5-, and 0.2-mm-pore-size polycarbonate membrane filters (142mm di-
ameter) (Sterlitech Corporation, USA). Characteristics of the water column, depth, temperature, oxygen
(GRYF XBQ4; Havlí�ckův Brod, Czechia) and chlorophyll a (FluoroProbe TS-16-12; bbe Moldaenke, Kiel,
Germany) were also measured. The sample collection and filtration steps were identical for the rest of
the lakes unless otherwise stated. Ji�rická pond is a dystrophic humic water body from which five epi-
limnion (0.5-m depth) water samples were collected between May 2016 and August 2017. Lake Zurich is
an oligomesotrophic, perialpine monomictic water body, from which nine water samples were collected
in a period between 2010 and 2018 from the epilimnion (5-m depth; n= 5) and hypolimnion (80/120-m
depth; n= 4) of the lake and processed as described above. Lake Thun is an ultraoligotrophic, alpine
water body. Two water samples were collected in June 2018 from 5-m and 180-m depth. Lake
Constance is a large oligomesotrophic, perialpine lake. Four samples, which were collected in July and
October 2018 from the epilimnion (5 m) and hypolimnion (200 m) were used for this study.

DNA extraction, sequencing, and assembly. DNA was extracted from the 0.22-mm filters (0.2- to 5-
mm fraction) using the ZR Soil Microbe DNA MiniPrep kit (Zymo Research, Irvine, CA, USA) in accordance
with the manufacturer’s instructions. The total quantity of DNA was estimated using the Qubit dsDNA
BR assay kit (Life Technologies, Foster City, CA, USA) on a Qubit 2.0 fluorometer (Life Technologies). DNA
integrity was assessed by agarose gel (2%) electrophoresis and SYBR green I staining. Shotgun sequenc-
ing was performed using the Novaseq 6000 sequencing platform (2� 150 bp) (Novogene, Hong Kong,
China). Raw Illumina metagenomic reads were quality filtered in order to remove low-quality bases/
reads and adapter sequences using bbmap package (66, 67). Briefly, the paired-end (PE) reads were
interleaved by reformat.sh and quality trimmed by bbduk.sh (qtri = rltrimq = 18) (68). Subsequently,
bbduk.sh (68) was used for adapter trimming and identification/removal of possible PhiX and p-Fosil2
contamination (k = 21 ref = vector file ordered cardinality). Additional checks (i.e., de novo adapter identi-
fication with bbmerge.sh [67]) were performed in order to ensure that the data sets met the quality
threshold necessary for assembly. The obtained quality-filtered data sets were then assembled inde-
pendently with MEGAHIT (v1.1.5) (69) using the k-mer sizes: 39, 49, 69, 89, 109, 129, 149, and default
parameters.

16S rRNA abundance-based taxonomic classification. The obtained quality-filtered data sets were
converted to FASTA format and randomly subsampled to 20 million reads by using reformat.sh (68).
These subsets (containing 20 million sequences each) were queried against the SILVA SSU database,
release 132 (70), in order to identify RNA-like sequences by using MMSeqs2 (71) and an E-value cutoff of
1e23. The bona fide 16S rRNA gene sequences (as identified by SSU-ALIGN [72]) were further compared
by blastn, in nucleotide space (using as cutoff the E value 1e25), against the SILVA SSU database
amended with 16S rRNA genes recovered from Gemmatimonadota MAGs (see below), and classified if
the sequence identity was $80% and the alignment length was$90bp (sequences failing these thresh-
olds were not used for downstream analyses). The taxonomic affiliation of each identified 16S rRNA read
was inferred based on its best blastn hit. The relative abundances of Gemmatimonadota taxonomic cate-
gories were calculated as a percentage of total 16S rRNA reads.

The statistical relationships between environmental data (oxygen, temperature, and chlorophyll a)
(41) and Gemmatimonadota abundance in �Rímov Reservoir was analyzed by distance-based linear mod-
els and nonmetric multidimensional scaling (nMDS) in the PERMANOVA1 add-on package of the
PRIMER7 software (Primer Ltd., Lutton, UK). Abundance data were square root transformed, and analysis
was done using a stepwise selection procedure. The best model was selected based on statistical signifi-
cance (9,999 permutations), and the value of the Akaike’s information criterion (AICc) (73, 74). The same
analysis was also done separately for the epilimnion and the hypolimnion.

Recovery of bacterial genomes. Quality-filtered metagenomics data sets were mapped using
bbwrap.sh (75) (kfilter = 31 subfilter = 15 maxindel = 80) against the assembled contigs (longer than 3 kb)
in a lake-dependent fashion. The resulting BAM files were used to generate contig abundance files with
jgi_summarize_bam_contig_depths (–percentIdentity 97) (76). The contigs and their abundance files
were used for binning with MetaBAT2 (default settings) (76). Bin completeness, contamination, and
strain heterogeneity were estimated using CheckM (with default parameters) (77). Bins with estimated
completeness above 40% and contamination below 5% were denominated as metagenome-assembled
genomes (MAGs). MAGs were taxonomically classified with GTDB-Tk (2) using default settings.

Phylogenomics. MAGs belonging to Gemmatimonadota (n= 45), together with reference genomes
(n= 226) recovered from public repositories (see Table S1 in the supplemental material) were annotated
using the TIGRFAMs database (78). A total of 121 conserved marker proteins (Table S2) were extracted
from the annotated Gemmatimonadota genomes. MAGs that had more than 40% markers present, to-
gether with reference genomes were used for phylogenetic reconstruction. Briefly, homologous proteins
were independently aligned with PRANK (default settings) (79), trimmed with BMGE (-t AA -g 0.5 -b 3 -m
BLOSUM30) (80), and concatenated. A maximum-likelihood phylogeny was constructed using IQ-TREE
(81) with the LG1F1R10 substitution model (chosen as the best-fitting model by ModelFinder [82]) and
1000 ultrafast bootstrap replicates. Genomes appertaining to Fibrobacterota were used as an outgroup
to root the tree.

The average amino acid identity (AAI) within coherent phylogenomic groups was determined by
performing whole-genome pairwise coding DNA sequence (CDS) comparison, using BLAST, as previ-
ously described (83). Taxonomic categories for the MAGs were defined using the suggested standards
(38).

The photosynthetic gene clusters within obtained phylogenomic groups were analyzed in Geneious
Prime 2019.2.3. For each group, MAGs with the most complete photosynthetic gene cluster were chosen
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as representatives. The alignment and identity matrix for nucleotide pufM and acsF gene sequences
from photoheterotrophic MAGs and G. photorophica was done with ClustalW 2.0.10 (84).

Phylogenetics. The 16S rRNA sequences present in the recovered MAGs were identified by SSU-
ALIGN (72). The ones with a length longer than 200 nucleotides (nt) were merged with a data set com-
prising Gemmatimonadota sequences recovered from SILVA SSU v138 database (reference NR 99; length,
1200 bp) (70). The sequences were aligned with PASTA v1.8.3 (85) and used to construct a maximum-
likelihood phylogeny with IQ-TREE v1.6.10 (-m GTR1F1R10; chosen as the best fitting model by
ModelFinder) (81, 82). Several sequences appertaining to Cyanobacteria and Fibrobacterota were used as
outgroup to root the tree.

Eighteen proteins belonging to the large subunit of the ribulose 1,5-bisphosphate carboxylase
enzyme (RuBisCO) were identified in the assembled MAGs (n= 106). These proteins, together with a data
set comprised of 146 RuBisCO (types I to III) and RuBisCO-like (type IV) proteins (86) were treated with
PREQUAL v1.02 (87) prior to alignment with PASTA v1.8.3 (85). The obtained alignment (854 aligned
positions) was used to construct a maximum-likelihood phylogeny with IQ-TREE v.1.6.10 and the
LG1F1R6 substitution model (chosen as the best-fitting model by ModelFinder) (81, 82).

Fragment recruitment. The obtained MAGs and the metagenomic data sets were used to compute
genome coverage per gigabase using RazerS 3 (using cutoffs of.95% identity and alignment lengths
of$50 bp) (88). All rRNA sequences (5S, 16S, and 23S) present in the MAGs were identified using
rrna_hmm (89) and were masked prior to comparisons with quality-filtered metagenomic sequences.
The quality-filtered data sets were used to compute abundance profiles for the Gemmatimonadota
MAGs. Raw data showing coverage per gigabase is shown in Table S3, and a heatmap (Fig. 4) was cre-
ated using http://heatmapper.ca.

Design of oligonucleotide probes.We designed a new oligonucleotide probe that targets a part of
the class Gemmatimonadetes (Fig. S1). Originally, the probe was designed as a Gemmatimonadetes-spe-
cific broad-range (degenerate) PCR primer. Gemmatimonadetes and non-Gemmatimonadetes 16S rRNA
gene sequences were retrieved from SSURef SILVA database (release 132 [70]), and aligned with the
MUSCLE60 algorithm in MEGA7 software (90). The primers were then designed manually to target con-
served regions specific for Gemmatimonadetes. The specificity of the primers was first tested in silico
with the SILVA database (70) and then with PCR using DNA from Gemmatimonas phototrophica which
was used as a positive control. Optimized PCR conditions were as follows: initial denaturation at 98°C for
3min; 26 cycles with 1 cycle consisting of 98°C for 10 s, 60°C for 20 s, and 72°C for 20 s; and final elonga-
tion for 3min. Primers were additionally tested with several other bacterial strains, which served as neg-
ative controls and showed no amplification. Finally, the primers were used on an environmental sample
where their specificity was confirmed with Illumina amplicon sequencing. Briefly, three different primer
sets were applied to an environmental sample collected at station DAM of �Rímov Reservoir. After
Illumina sequencing, read quality was evaluated using FastQC v0.11.7 (Babraham Bioinformatics,
Cambridge, UK). Primer sequences were trimmed using cutadapt v1.16 (91) and subsequently analyzed
in the R/Bioconductor environment using the dada2 v1.6 package (37). Taxonomic assignment was per-
formed using the SILVA 132 database (70). On the basis of these results, we opted to use the reverse
primer (59 TCG CTC CCC CAR RSA CCT AGT 39) as a CARD-FISH-probe Gemma_801. As the probe-binding
site was located within a hairpin loop and the accessibility of the binding site was low (92), we designed
two 18-bp-long helpers to open the loop and facilitate hybridization (93): Gemma_801 H1 (59-GCG CCG
GCA YYC GAG GGG-39) and Gemma_801 H2 (59-GGG GDA CTT AAT GCG TTA-39). The specificity of the
probe was tested in silico using the ARB Probe_Match function and the SILVA online ProbeCheck tool
against the ENA database (EMBL-EBI). The probe matches only six untargeted sequences and six more if
one weighted mismatch is allowed (,0.0021% of all bacterial sequences), and all of them originate from
soil or the rhizosphere. The coverage of the probe for class Gemmatimonadetes is 35%, so the usage of
this probe was primarily justified with the intent to visualize the Gemmatimonadetes cells in the natural
environment, and not to use it for absolute quantification. Hybridization conditions were optimized at
35°C and 46°C by a stepwise increase of formamide concentrations in the hybridization buffer (20% to
70% by 5%) using pure cultures of G. phototrophica AP64 and photoheterotrophic strain TET16 (36) as
positive controls, and Limnohabitans planktonicus (Gammaproteobacteria/Betaproteobacteriales) and
Sphingomonas sp. strain AAP5 (Alphaproteobacteria) as negative controls. The final protocol is described
below.

Sampling for catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH)
analysis. We applied the newly designed probe on a sample set collected between 14 May and 24
August 2015 at �Rímov Reservoir. Six permanent stations (river, stations 2, 3, 4, and 7, and dam) along the
longitudinal transect of the reservoir (94) (Fig. S2) were sampled with a Friedinger sampler at 3-week
intervals. Samples were taken from 0.5-m depth at all stations and at additional depths at lacustrine stations:
5 m and 10 m at stations 4 and 7; and 5 m, 10 m, 20 m, 30 m, and 40 m at the dam site. Water samples
were fixed on-site with formaldehyde (2% final concentration [vol/vol]) and transported to the laboratory
within 2 h. For the enumeration of bacterial densities,1 to 2ml was stained with 49,69-diamidino-2-phenylin-
dole (DAPI) and filtered onto black 0.2-mm-pore-size polycarbonate membranes (25mm diameter; SPI
Supplies, USA), and bacterial abundance was determined via epifluorescence microscopy (95).

CARD-FISH analysis. Fixed formaldehyde water samples containing 1� 106 to 2� 106 bacteria were
filtered onto polycarbonate membranes with a 0.2-mm pore size (47-mm diameter; Millipore, USA), and
filters were stored at 220°C. The catalyzed reporter deposition-fluorescence in situ hybridization (CARD-
FISH) analysis was conducted as in the previously described protocol (96) with slight modification in
digestion procedure, optimized for samples from �Rímov Reservoir. In brief, the microorganisms were im-
mobilized on the membranes with low-melting-point agarose and permeabilized with lysozyme (10mg
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ml21, 1 h) and achromopeptidase (60 U ml21, 20 to 25min). Digestion was followed by neutralization of
endogenous peroxidases and hybridization with the horseradish peroxidase-labeled probe Gemma_801
(biomers.net GmbH) and helpers in a hybridization buffer with 35% formamide concentration (vol/vol)
at 35°C for 3 h. After the subsequent washing steps, amplification of the hybridization signal was per-
formed with fluorescein-labeled tyramides (Invitrogen, Carlsbad, CA, USA) at 37°C for 30min. Washed
and dried filters were counterstained with DAPI (1mg ml21) and analyzed with epifluorescence micros-
copy (Olympus BX-53F) using UNWU, U-WB, and U-WG optical filter sets. Proportions of CARD-FISH
stained bacteria were determined by inspecting more than 1000 DAPI-stained cells per sample.

Data availability. Sequence data for all metagenomes generated in this work are archived at EBI
European Nucleotide Archive and can be accessed under the BioProject accession number PRJEB35770.
All metagenome-assembled genomes are also available at figshare (https://doi.org/10.6084/m9.figshare
.12662132.v2).
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