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The role of glia in epilepsy, intellectual
disability, and other neurodevelopmental
disorders in tuberous sclerosis complex
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Abstract

Background: Tuberous sclerosis complex (TSC) is a genetic disorder characterized by severe neurological
manifestations, including epilepsy, intellectual disability, autism, and a range of other behavioral and psychiatric
symptoms, collectively referred to as TSC-associated neuropsychiatric disorders (TAND). Various tumors and
hamartomas affecting different organs are the pathological hallmarks of the disease, especially cortical tubers of the
brain, but specific cellular and molecular abnormalities, such as involving the mechanistic target of rapamycin
(mTOR) pathway, have been identified that also cause or contribute to neurological manifestations of TSC
independent of gross structural lesions. In particular, while neurons are immediate mediators of neurological
symptoms, different types of glial cells have been increasingly recognized to play important roles in the
phenotypes of TSC.

Main body: This review summarizes the literature supporting glial dysfunction from both mouse models and
clinical studies of TSC. In particular, evidence for the role of astrocytes, microglia, and oligodendrocytes in the
pathophysiology of epilepsy and TAND in TSC is analyzed. Therapeutic implications of targeting glia cells in
developing novel treatments for the neurological manifestations of TSC are also considered.

Conclusions: Different types of glial cells have both cell autonomous effects and interactions with neurons and
other cells that are involved in the pathophysiology of the neurological phenotype of TSC. Targeting glial-mediated
mechanisms may represent a novel therapeutic approach for epilepsy and TAND in TSC patients.

Keywords: TAND, Intellectual disability, Autism spectrum disorder, Epilepsy, Tuberous sclerosis, Glia, Astrocyte,
Microglia, Oligodendrocyte, White matter

Background
Tuberous sclerosis complex (TSC) is one of the classic
neurocutaneous syndromes, featuring characteristic
pathological brain and skin lesions, as well as tumors in
a number of other organs [1, 2]. With brain involvement,
TSC is often characterized by a severe neurodevelop-
mental disorder, aptly named TSC-associated neuro-
psychiatric disorders (TAND), including intellectual
disability, autism, and other behavioral and psychiatric
symptoms [3, 4]. Some degree of cognitive dysfunction,
ranging from mild learning disabilities to severe intellec-
tual disability, affects at least 50% of TSC patients.

Similarly, autism spectrum disorder or other behavioral
disorders also occur in about half of TSC patients. In
addition, epilepsy is extremely common affecting up to
80% of TSC patients, with seizures usually being severe
and intractable to treatment and often exacerbating the
cognitive and behavioral comorbidities [5].
TSC is caused by mutations in one of two genes, the

TSC1 and TSC2 genes [1, 2]. These genes encode for
two proteins, hamartin (TSC1) and tuberin (TSC2),
which bind together to form a protein dimer complex
that inhibits the mechanistic target of rapamycin
(mTOR) pathway. mTOR is a protein kinase, which
serves as a central regulator of a number of important
physiological functions, such as cell growth and prolifer-
ation, metabolism, and protein synthesis [6, 7]. In TSC,
mutation of TSC1 or TSC2 leads to a disinhibition or
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hyperactivation of the mTOR pathway, which promotes
increased cell growth and proliferation and tumor for-
mation. This cellular growth dysregulation leads to the
variety of tumors seen in TSC, including subependymal
giant cell astrocytomas (SEGA) in the ventricles of the
brain, renal angiomyolipomas of the kidneys, lymphan-
gioleiomyomatosis in the lungs, and facial angiofibromas
of the skin. mTOR inhibitors are now FDA approved
treatments for these brain, kidney, and lung tumors in
TSC [8–10] and is also effective against the facial angio-
fibromas [11]. While mTOR inhibitors, such as rapamy-
cin or everolimus, are clearly effective against different
tumor types in TSC, their efficacy against neurological
symptoms of TSC is more limited. Adjunctive treatment
with everolimus has been shown to have efficacy for
focal seizures in TSC patients with drug-resistant epi-
lepsy [12, 13], but the majority of TSC patients continue
to have seizures (i.e., do not become seizure-free) and
many patients showed minimal benefit from treatment.
Furthermore, everolimus was found to have no efficacy
against TAND in a battery of neurocognitive and behav-
ioral tests in one recent placebo controlled-trial [14].
Thus, more effective treatments are needed for both
TAND and epilepsy in TSC.
Compared with the mechanisms of tumorigenesis in

TSC, the pathophysiology of TAND and epilepsy in TSC
is poorly understood. Independent of the SEGAs, the
classic pathological brain lesion in TSC is the cortical
tuber, which gives the disease its name, based on the
potato-like appearance on gross pathology. Unlike
SEGAs, cortical tubers are focal malformations of cor-
tical development, consisting of localized areas of dis-
rupted cortical lamination and a variety of cellular
abnormalities, including astrogliosis, dysmorphic neu-
rons, and giant cells, which are enlarged undifferentiated
cells with immature glial and neuronal markers. Cortical
tubers are traditionally thought to cause or contribute to
neurological manifestations of TSC. There is a correl-
ation between the number of tubers or “tuber load” and
the severity of intellectual disability [15]. Furthermore,
some studies suggest that the risk of autism may relate
to tubers localized to the temporal lobes [16]. However,
the correlation between tubers and TAND is non-
specific and controversial, not being demonstrated in all
studies [17, 18]. There is increasing evidence that cogni-
tive dysfunction and autism are more directly related to
tuber-independent abnormalities in the brain, such as
disrupted functional connectivity of white matter. There
is stronger evidence that epilepsy may be caused by tu-
bers, at least in some cases, as surgical removal of tubers
can sometimes eliminate seizures in some TSC patients
[19]. However, even when tubers cause seizures, it is still
controversial as to whether the seizures start within the
tubers themselves or in the surrounding perituberal

region [20, 21]. Regardless of whether seizures start in,
around, or independent of tubers, there is increasing evi-
dence that dysregulated cellular and molecular processes
also drive epileptogenesis [22]. On the cellular level,
while neurons clearly are centrally involved in the brain
phenotype of TSC, an attractive novel hypothesis is that
abnormalities in glial cells may contribute to the neuro-
logical manifestations of TSC (Fig. 1). In this review, we
will examine the evidence for different types of glial ab-
normalities in TSC and their potential role in promoting
TAND and epilepsy in TSC.

Main text
Astrocytes
While traditionally astrocytes have been viewed as pas-
sive, supportive cells for neurons in the brain, the mod-
ern concept of astrocytes entails a more active role in a
variety of brain functions [23]. The list of physiological
functions of astrocytes continues to grow, including me-
tabolism, structural support, blood-brain barrier main-
tenance, neurotransmitter regulation and turnover, and
direct intercellular communication with other astrocytes
and neurons (“gliotransmission”). Astrocytes are critical
for maintaining proper energetic balance within the
brain, supplying lactate and other nutrients to neurons.
Astrocytic processes and endfeet form a component of
the blood-brain barrier in conjunction with endothelial
cells of the cerebral vasculature. Neurotransmitter trans-
porters on astrocytes, such as for glutamate, absorb glu-
tamate released into synapses by neurons, helping to
terminate the synaptic signal and to prevent excitotoxi-
city. Similarly, astrocytes regulate extracellular potassium
homeostasis, which affects neuronal excitability. Perhaps
most emblematic of the active role of astrocytes in brain
physiology, astrocytes can release gliotransmitters and
participate directly in cellular signaling with other astro-
cytes and neurons through gliotransmission. The diver-
sity of astrocyte functions is paralleled by the
heterogeneity of astrocytes, including at least protoplas-
mic and fibrillary subtypes [24]. Corresponding to the
variety of physiological functions in the brain, astrocyte
dysfunction can potentially contribute to the pathophysi-
ology of neurological disorders.
The role of astrocytes in TSC was first implicated in

pathological brain specimens from TSC patients. Astro-
gliosis as generally reflected by a change in morphology
and increased glial-fibrillary acidic protein (GFAP) stain-
ing is a prominent feature of cortical tubers [25–27]. At
least two types of morphologically abnormal astrocytes
have been described within tubers: “gliotic” astrocytes
with elongated radial processes and abundant intermedi-
ate filaments and occasional “reactive” astrocytes with
increased cell size and vimentin expression often adja-
cent to giant cells [27]. The cause of astrogliosis in TSC
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is not known, but could be a primary cell-autonomous
effect of TSC gene inactivation directly within astrocytes
or result secondarily from neuronal abnormalities or sei-
zures that indirectly affect astrocytes. Supporting the
former possibility, biochemical evidence of mTOR acti-
vation can be detected at least within reactive astrocytes,
indicating that the increased cell size is directly caused
by TSC gene mutation and resulting mTOR hyperactiv-
ity [27].
As it is difficult to determine the functional effects of

astrocyte abnormalities in human studies, animal models
of TSC can more directly examine the role of astrocytes
in the pathophysiology of the neurological manifesta-
tions of TSC. A variety of knockout or transgenic mouse
models of TSC target the brain, involving Tsc1 or Tsc2
gene inactivation in different cell types, including both
neurons and glia (Table 1). The TSC mouse model that
has most extensively investigated astrocytic mechanisms
is a conditional knockout mouse, Tsc1GFAPCKO mice, in
which a glial fibrillary acidic protein (GFAP) promoter
has been used to drive Tsc1 gene inactivation in

astrocytes [28]. On a behavioral level, these mice exhibit
cognitive deficits in spatial learning [29], as well as se-
vere epilepsy [30]; thus, Tsc1GFAPCKO mice appear to
recapitulate some of the key neurological manifestations
of TSC.
A number of structural and functional abnormalities

have been identified in astrocytes that may contribute
to the cognitive deficits and epilepsy in Tsc1GFAPCKO
mice. On the pathological level, Tsc1GFAPCKO mice
exhibit widespread astrocyte proliferation due to
mTOR hyperactivation, leading to diffuse megalence-
phaly of the brain [28, 31]. Also directly related to
mTOR activation, astrocyte cell size is increased in
the Tsc1GFAPCKO mice [32]. The specific functional
consequences of the increased astrocyte proliferation
and size are not entirely clear, but it is reasonable to
hypothesize that the gross megalencephaly and dis-
ruption of neuronal networks from astroproliferation
and astrogliosis could adversely affect neuronal func-
tion and excitability, leading to the behavioral deficits
and seizures.

Fig. 1 Schematic overview of the potential role of glia in the neurological phenotypes of TSC. TSC1 or TSC2 gene mutations lead to abnormal
hyperactivation of the mechanistic target of rapamycin (mTOR) pathway, which can directly (through cell autonomous effects) or indirectly
(through interactions with other cells) cause astrogliosis, microglial activation, and decreased oligodendrocytes. These glial abnormalities can then
affect neuronal function through multiple mechanisms, such as impaired glutamate and potassium homeostasis, synaptic remodeling,
inflammatory processes, and hypomyelination, which ultimately lead to epilepsy, intellectual disability, autism, and other TSC-associated
neuropsychiatric disorders (TAND)
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In addition to these histological and morphological ab-
normalities, Tsc1-knock out astrocytes exhibit a number of
molecular defects that interfere with their functional prop-
erties. Astrocytes normally contain glutamate transporters,
such as glutamate transporter 1 (Glt-1), which remove glu-
tamate from synapses and terminate the synaptic signal.
Tsc1GFAPCKO mice have decreased Glt-1 expression and a
corresponding reduction in astrocyte glutamate transporter
function [33], which leads to elevated extracellular glutam-
ate levels and excitotoxic neuronal death [29]. Somewhat
paradoxically, excessive synaptic glutamate results in im-
paired synaptic plasticity of long-term potentiation (LTP), a
mechanism of learning and memory [29]. Increased glu-
tamate may logically also promote neuronal hyperexcitabil-
ity that causes seizures. Thus, astrocyte dysfunction related
to glutamate homeostasis may lead to the behavioral learn-
ing deficits and epilepsy seen in Tsc1GFAPCKO mice.
A number of other astrocyte defects have been found

in Tsc1GFAPCKO mice, including decreased potassium
channel functioning and impaired gap junctions. Similar
to glutamate uptake, astrocytes normally play a signifi-
cant role in buffering extracellular potassium through
inward-rectifying potassium channels, which absorb po-
tassium. Networks of astrocytes communicate with each
other through gap junctions, which allow redistribution
and further buffering of potassium. Tsc1GFAPCKO mice
have decreased potassium channel expression and a re-
duction in potassium buffering capability [34, 35]. The
decreased potassium buffering by Tsc1 KO astrocytes

leads to neuronal hyperexcitability, which may promote
seizures and cognitive dysfunction.
If astrocyte abnormalities are necessary for the neuro-

logical manifestations, treatments that reverse these ab-
normalities should prevent or improve the neurological
symptoms. Ceftriaxone, an antibiotic drug that also in-
crease astrocyte glutamate transporter expression, can
reduce seizures in Tsc1GFAPCKO mice, providing evi-
dence that impaired astrocyte glutamate transport con-
tributes to the epilepsy phenotype [36]. Furthermore, the
mTOR inhibitor, rapamycin reverses the astrocyte prolif-
eration and associated megalencephaly in Tsc1GFAPCKO
mice and can prevent epilepsy in these mice. Given that
GFAP is also expressed in neuroprogenitor cells, the
simultaneous contribution of neuronal abnormalities is
difficult to rule out in Tsc1GFAPCKO mice and the effect
of specific Tsc1 inactivation in astrocytes independent of
neurons is more limited [41]. However, overall, these
studies suggest that astrocyte abnormalities contribute
to epileptogenesis and cognitive dysfunction in
Tsc1GFAPCKO mice and support novel treatment ap-
proaches for neurological manifestations of TSC target-
ing astrocytes.

Microglia
Microglia represent the resident macrophages of the
central nervous system, primarily mediating innate and
adaptive immune responses in the brain, such as in reac-
tion to CNS infections, neurodegenerative diseases, or

Table 1 Mouse models of TSC targeting glia

Cognitive

Mouse Model Glial pathology Epilepsy Deficits Other/comment References

Astrocytes

Gfap-Tsc1 CKO mice Astrogliosis/proliferation Increased astrocyte size
Impaired glutamate transport, potassium channels,
and gap junctions.

+ + Not specific for astrocytes, some
neuronal involvement

[28–36]

Gfap-Tsc2 CKO mice Astrogliosis/proliferation Increased astrocyte size
Impaired glutamate transport

+ n/a Not specific for astrocytes, some
neuronal involvement

[37]

Gfap2-Tsc1 CKO mice Astrogliosis/proliferation
Decreased myelination

+ n/a Not specific for astrocytes, some
neuronal involvement

[38]

Gfap2-Tsc2 CKO mice Astrogliosis/proliferation
Decreased myelination

+ n/a Not specific for astrocytes, some
neuronal involvement

[39, 40]

Inducible GFAP-Tsc1
CKO mice

Astrogliosis/proliferation +/− n/a Postnatal Tsc1 inactivation more
specific for astrocytes

[41]

Microglia

Cx3cr1-Tsc1 CKO
mice

Microglia activation
Increased microglia size and number.

+ n/a Controversial as to specificity for
microglia

[42, 43]

Inducible Cxcr1-Tsc1
CKO mice

Microglia activation
Increased microglia size and number

+/− n/a Postnatal Tsc1 inactivation more
specific for microglia

[42, 43]

Oligodendrocytes

Olig2-Tsc2 CKO mice Hypomyelination
Decreased oligodendrocyte number

– – [44]

n/a not reported
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other brain injury [45]. Microglia differ from other glia
in originating outside of the brain from myeloid, rather
than neuroectoderm, progenitors, and migrating into the
brain during embryogenesis. Microglia may exist in two
morphologically and functionally distinct states: a resting
and activated state. In their activated state, microglia
function to clear cellular debris and produce cytokines
and chemokines which coordinate other cellular im-
mune responses from astrocytes, neurons, and lympho-
cytes. In addition to their central role in immune
responses in the brain, microglia have also been found
to modulate brain development by regulating neurogen-
esis, neuronal migration, and synaptic maturation, wir-
ing, and pruning [45]. In contrast to the beneficial
functions of microglia, in disease states microglia activa-
tion may contribute to pathological processes that are
detrimental to the brain.
In TSC, there is pathological evidence of microglial ac-

tivation within tubers from TSC patients [46, 47]. In cor-
tical tuber specimens resected from TSC patients
undergoing epilepsy surgery for intractable epilepsy,
prominent activated microglia are identified based on
their characteristic morphology and positive staining for
markers of microglia activation, HLA-DR and CD68.
Microglia are often clustered around dysmorphic neu-
rons and giant cells and are also associated with other
immune mediators, including CD8-positive T lympho-
cytes and components of the complement cascade.
These pathological findings suggest that microglia can
play a role in the pathophysiology of neurological mani-
festations of TSC. However, as seizures themselves may
cause microglia activation [48], it is difficult to deter-
mine whether the microglia activation in tuber speci-
mens from TSC patients with epilepsy is a primary
pathophysiological mechanism or is simply secondary to
seizures.
Although it is not clear to what degree TSC gene inacti-

vation and associated mTOR hyperactivation occur dir-
ectly in microglia in the human pathological studies,
targeted Tsc gene inactivation in mouse models can help
address the question of whether microglia abnormalities
may play a primary role in the pathogenesis of TSC. First
of all, Tsc1GFAPCKO mice exhibit elevated Iba1 staining, a
marker of microglia activation, and increased microglia
size and number [49]. Minocycline, a drug that can inhibit
microglia activation, is able to prevent the morphological
changes in microglia, but has no effect on seizures, sug-
gesting that the microglia activation is a secondary effect
that does not cause epilepsy in Tsc1GFAPCKO mice. This
result is perhaps not surprising, given that GFAP-driven
Tsc1 inactivation is expected to affect astrocytes and neu-
rons, but not microglia directly.
Recent studies have attempted to inactivate Tsc genes

directly in microglia, such as using a Cx3 chemokine

receptor 1 (Cx3cr1) driver, which is a chemokine recep-
tor that is traditionally thought to be specifically
expressed in microglia. Tsc1Cx3Cr1CKO mice exhibit
mTOR hyperactivation in microglia and resulting in-
creased microglia size and number, indicating that Tsc1i-
nactivation has cell autonomous effects in microglia [42,
43]. Tsc1Cx3Cr1CKO mice have severe epilepsy, as well as
megalencephaly, reduced synaptic density, and neuronal
degeneration, although a neurocognitive or behavioral
phenotype has not been reported. This suggests that in-
trinsic microglia abnormalities may be sufficient to at
least cause epilepsy in TSC. However, there is some con-
troversy as to the specificity of Tsc1 inactivation in
Tsc1Cx3Cr1CKO mice, which may not be limited to
microglia but likely also affects neurons, and whether
more specific postnatal Tsc1 inactivation in microglia
causes epilepsy [42]. Thus, microglia may contribute to
or modulate the neurological manifestations of TSC, but
might also require concurrent neuronal abnormalities.
Future animal model studies with more selective target-
ing of microglia may help resolve the specific role of
microglia in epilepsy in TSC more definitively, as well as
examine their effects on cognitive function.

Oligodendrocytes
Oligodendrocytes are the third major type of glia cell
in the central nervous system and are most directly
involved in development and maintenance of the
white matter of the brain [50]. Akin to Schwann cells
in the peripheral nervous system, the primary func-
tion of oligodendrocytes is to form the myelin
insulation of axons, allowing for efficient and rapid
conduction of action potential signaling along white
matter tracts between brain regions. Oligodendrocytes
and myelin exhibit significant heterogeneity and are
not uniformly distributed throughout the brain, sug-
gesting that oligodendrocytes play a differential role
in regulating brain function and neuronal networks
[51, 52]. Dysfunction or degeneration of oligodendro-
cytes are the cardinal feature of demyelinating or dys-
myelinating diseases, such as multiple sclerosis, which
often feature cognitive impairment, in addition to
more classic focal neurological deficits.
Although cortical tubers have classically been the

pathological hallmark of the neurological phenotype of
TSC, white matter abnormalities have emerged as an
equally important and distinctive mechanism for brain
dysfunction in TSC. Pathological studies have found de-
creased myelin content and oligodendrocyte number in
and around cortical tuber specimens [53]. This decrease
in myelin and oligodendrocytes within tubers has been
linked to a deficiency in oligodendrocyte progenitor cells
and elevated mTOR activity [53], suggesting that TSC
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involves a primary defect in oligodendrocytes related to
TSC gene inactivation.
A plethora of MRI studies have further documented

abnormalities in white matter that are much more ex-
tensive and diffuse than just tubers. In particular, diffu-
sion tensor imaging (DTI) has been used to evaluate
microstructural changes in white matter, based on the
general principle that water diffusion in normal white
matter is directionally restricted primarily to parallel to
the orientation of axons (anisotropy), whereas disruption
of the normal organization of white matter leads to in-
creased diffusion in other directions. Multiple MRI stud-
ies using DTI have documented increased mean
diffusivity and decreased anisotropy in white matter of
TSC patients in the corpus callosum, subcortical white
matter, internal capsule, and other white matter tracts
that appear grossly normal on MRI and are remote from
tubers [54–56], indicating disruption in microstructural
organization and abnormal myelination of white matter
in TSC.
In terms of the functional significance of these white

matter abnormalities, TSC patients with autism spectrum
disorder have more severe abnormalities in DTI parame-
ters compared with TSC patients without ASD and con-
trol patients, whereas there is no significant difference
between TSC patient without ASD and controls [57].
When examining white matter pathways involved in lan-
guage processing, particularly the arcuate fasciculus, TSC
patients with ASD have abnormalities in diffusivity and
anisotropy compared with TSC patients without ASD, al-
though there are also additional differences between TSC
patients without ASD and controls [58]. These white mat-
ter abnormalities are associated with an overall decrease
in measures of functional connectivity between different
regions of the brain, including reduced interhemispheric
synchrony [59]. Furthermore, the degree of white matter
abnormalities is also correlated with the presence of sei-
zures [60]. Overall, epilepsy, intellectual disability, and
ASD individually seem to have additive effects on the ab-
normal DTI measures [61].
From a therapeutic standpoint, an important question

is whether these white matter abnormalities may be re-
versible. Interestingly, the mTOR inhibitor everolimus
produces decreases in diffusivity and increases in anisot-
ropy in serial DTI studies of TSC patients [62]. Longitu-
dinal studies have found that longer periods of
treatment with everolimus results in greater effects [63].
The mechanism of this effect of everolimus on these
DTI parameters is not known, but could be related dir-
ectly to structural or metabolic effects on oligodendro-
cytes or axons, such as decreases in extracellular fluid or
cellular volume and improved myelination or myelin
leakiness, or indirectly to a decrease in seizures. In any
case, these exciting findings suggest that white matter

abnormalities in TSC can be reversed by treatment,
which provides a potential mechanistic avenue for thera-
peutic interventions for cognitive dysfunction and ASD
in TSC patients.
Animal models and other reduced systems have delved

further into the mechanistic basis of white matter abnormal-
ities in TSC, which could result either from cell autonomous
effects of TSC gene inactivation in oligodendrocytes or ab-
normal signaling from TSC-deficient neurons or astrocytes
that indirectly affect oligodendrocytes. Inactivation of Tsc2
directly in oligodendrocytes in mice using a Olig2 promoter
leads to a marked hypomyelination phenotype, supporting a
cell autonomous effect of oligodendrocytes directly [44].
This hypomyelination is related to decreased oligodendro-
cyte number from a shift in oligodendrocyte precursor dif-
ferentiation from oligodendrocytes to astrocytes, as well as
to decreased myelin thickness. In addition, mice with
neuron-specific inactivation of Tsc1 also demonstrate a
hypomyelination phenotype, supporting that abnormal com-
munication from neurons to oligodendrocytes can cause
white matter abnormalities [64]. This neuronal regulation of
oligodendrocyte-mediated myelination is mediated by con-
nective tissue growth factor secreted by neurons, which then
negatively regulates oligodendrocyte development [65]. Con-
versely, TSC-deficient oligodendrocytes, derived from hu-
man induced pleuripotent stem cells (iPSCs) from TSC
patients, can affect the morphological and physiological
properties of neurons, suggesting a bi-directional regulation
between oligodendrocytes and neurons [66]. So, overall,
there is evidence of both cell-autonomous effects of oligo-
dendrocytes and interactions between neurons and oligo-
dendrocytes in causing white matter abnormalities in TSC.

Conclusions and future directions
Glia cells of different types have emerged as major
players in causing or contributing to TAND and other
neurological phenotypes of the genetic disorder, TSC.
While neurons remain the cardinal cell of the brain dir-
ectly mediating neurological manifestations, both cell
autonomous actions of glia and interactions of glia and
neurons appear critical for a variety of brain symptoms
of TSC, including intellectual disability, autism, epilepsy,
and other psychiatric and behavioral disorders. However,
there are a number of outstanding issues that need to be
resolved in further defining the role of glia in TSC.
As neurons and glia work together in complex, inter-

dependent networks, it is difficult to isolate and disentangle
the relative contribution and role of glia in neurological
manifestations. Knockout mice specifically targeting glia
cells have clearly established cell autonomous effects of Tsc
gene inactivation directly within glia. However, proving that
these effects by themselves are sufficient to cause neuro-
logical manifestations or are co-dependent on Tsc gene in-
activation in neurons has been difficult. In addition, it is
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not clearly resolved whether germline mutation of a
single TSC allele in the heterozygous state is sufficient
to cause neurological symptoms or a “second hit” in-
volving an additional somatic mutation and resulting in
a homozygous mutant state is required, especially in
the human disease. Simplified systems, such as induced
pleuripotent stem cell (iPSC)-derived neurons and glia,
can be utilized to better address these questions of cell-
autonomous versus interdependent effects and hetero-
zygous versus homozygous states.
Another long-standing controversy within the TSC

field is the role of tubers in causing neurological mani-
festations. Tubers have traditionally been thought of as
being the critical pathological substrate, with tubers dir-
ectly causing seizures and with tuber load correlating
with intellectual disability and autism. However, micro-
structural defects in non-tuber parts of the brain have
received increasing attention as contributing to the
neurological phenotype of TSC. Glial cells, in particular,
provide an obvious cellular platform for mediating brain
dysfunction independent of gross structural lesions, such
as in the case of oligodendrocytes and white matter ab-
normalities in TSC. Ultimately, there may be a con-
tinuum of glial defects between tubers, perituberal
regions, and remote structurally “normal” areas of the
brain. Increasingly sophisticated imaging studies examin-
ing brain connectivity and correlating with pathological
and neurophysiological parameters can further deter-
mine the interrelationship between tuber and non-tuber
areas of the brain in causing neurological manifestations
of TSC in general, as well as in relation to glia.
The wide range of neurological symptoms of TSC,

encompassed by the term TAND, as well as epilepsy,
raises mechanistic and therapeutic questions as to the
causal or correlative relationship between different
symptoms. In particular, do overlapping networks and
cellular elements cause diverse neurological manifesta-
tions or are there independent, distinctive mechanisms
for each symptom? Furthermore, do some manifesta-
tions, particularly seizures, directly exacerbate other
symptoms, such as intellectual disability? Again, omni-
present, highly interconnected glial cells throughout the
brain represent a natural substrate for mediating interac-
tions between the different neurological phenotypes of
TSC. Understanding and targeting these overlapping
glial features may provide opportunities for therapeutic
interventions that simultaneously and synergistically
benefit multiple neurological manifestations of TSC.
Finally, glial cells do represent a potential novel thera-

peutic target for neurological symptoms of TSC. Current
treatments for epilepsy primarily regulate neuronal
mechanisms, such as by directly controlling neuronal ex-
citability via modulation of ion channels or neurotrans-
mitter systems, and there are essentially no specific

pharmacological treatments for most of the manifesta-
tions of TAND. One of the major limitations of current
neuroactive medications is sedation and cognitive slow-
ing due to depression of normal neuronal activity. Tar-
geting glial cells has the potential to modulate neuronal
networks without directly causing neuronal depression.
While the emergence of mTOR inhibitors as a treatment
for TSC has revolutionized the targeted therapeutic ap-
proach to TSC in general, limitations in efficacy for
neurological symptoms of TSC and systemic side effects
of mTOR inhibitors indicate that additional directed
strategies to treating neurological manifestations of TSC.
Given the prevalence of glial abnormalities in TSC, TSC
has the potential to be a model disease for investigating
and targeting glia as novel therapeutic approaches to
neurodevelopmental disorders in general.
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