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A B S T R A C T

Artemisia argyi H. Lév. & Vaniot is an important traditional Chinese medicinal plant known for its volatile oils, 
which are the main active components of A. argyi, including monoterpenes, sesquiterpenes and their derivatives. 
Despite its medicinal significance, the biosynthesis of sesquiterpenoids in A. argyi remains underexplored. In this 
study, we identified four β-caryophyllene synthases from A. argyi. A high-yield β-caryophyllene engineered 
Saccharomyces cerevisiae cell factory has been built in this study. By fusing ERG20 and AarTPS88 with a flexible 
linker (GGGS)2 and enhancing metabolic flux in the MVA pathway (HIF-1, tHMGR, and UPC2-1), we achieved a 
titer of β-caryophyllene reached 15.6 g/L by fed-batch fermentation in a 5 L bioreactor. To our knowledge, this 
represents the highest reported titer of β-caryophyllene in yeast to date. This study provides a valuable tool for 
the industrial-scale production of β-caryophyllene.

1. Introduction

Artemisia argyi H. Lév. & Vaniot, a perennial herb in the family 
Asteraceae, is used as a medical plant in folks for centuries [1,2]. A. argyi 
is abundant in volatile oils (mainly composed of monoterpenes, ses-
quiterpenes and their derivatives), flavonoids, and terpenoids, which 
possess pharmacological activities such as antioxidant, immunomodu-
latory, and anti-inflammatory effects [3,4]. Sesquiterpenoids, one of the 
key active components in A. argyi, are composed of three isoprene units 
and are synthesized by the action of sesquiterpene synthase using far-
nesyl pyrophosphate (FPP) as the substrate. Among these, β-car-
yophyllene, a bicyclic sesquiterpene, stands out due to its diverse 
physiological activities, such as anti-inflammatory and antioxidant 
properties [5,6]. It is also recognized by the FDA as a safe compound for 
use as a fragrance and flavoring agent. Additionally, β-caryophyllene is 
has garnered attention as a vital component in aviation fuels [7]. These 
sesquiterpenoids and other bioactive compounds from A. argyi are 
extensively utilized across pharmaceutical, food, and biofuel industries 
[8].

The content of terpenoids from plant sources is low and extraction is 
difficult. The synthetic biology of microorganisms is a promising way to 
produce terpenoids. Sesquiterpenes are mainly produced by plant 
extraction or chemical synthesis but are limited by long plant growth 
cycles, low content of sesquiterpenes and complex chemical structures 
[9]. In recent years, with the identification of more and more plant 
sesquiterpene synthases, it has become possible to biosynthesize many 
sesquiterpene compounds using microbial cells, such as artemisinic acid 
[10], β-elemene [11], and (− )-α-bisabolol [12]. However, the synthesis 
pathway of β-caryophyllene has not been elucidated, and the key en-
zymes involved in its synthesis have not been identified in A. argyi.

Currently, metabolic engineering for β-caryophyllene production has 
been previously investigated in E. coli and yeasts (Table 1), but the yield 
is far from reaching the level that can be commercialized. In microor-
ganisms, β-caryophyllene is produced by farnesyl pyrophosphate (FPP), 
an intermediate of the mevalonate pathway, catalyzed by β-car-
yophyllene synthase. Several metabolic engineering strategies have 
been established to enhance the production of terpene products in S. 
cerevisiae [13,14]. One common approach involves the fusion of 
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sesquiterpene synthase with FPP synthase (ERG20), which directs more 
FPP into the sesquiterpene synthesis pathway, thereby optimizing 
sesquiterpene synthesis [15]. Another crucial step in increasing pre-
cursor supply involves overexpressing the key rate-limiting enzyme 
tHMGR [16] and the transcription factor UPC2-1 [17]. In addition, 
“Warburg effect” is a metabolic trait that refers to the fact that most 
cancer cells rely on aerobic glycolysis for energy and tend to convert 
glucose to lactate even in the presence of aerobic support for mito-
chondrial oxidative phosphorylation [18]. Studies revealed that 
hypoxia-inducible factor-1 (HIF-1) complex (including HIF-1α and 
ARNT) could induce the Warburg effect in yeast to enhance glycolysis, 
thereby increasing acetyl-CoA flux, ultimately improving the production 
of downstream metabolites, and is a practical engineering strategy for 
the production of triterpenes in yeast [19]. Therefore, it is hypothesized 
that the optimization strategy of the complex was also applicable to the 
production of sesquiterpenes in yeast. Lu et al. heterologously produced 
β-caryophyllene in Saccharomyces cerevisiae at a titer of 594.05 mg/L 
[20]. The tobacco-derived β-caryophyllene synthase gene (TPS7) was 
overexpressed in Escherichia coli and optimized for the MVA pathway, 
with a final yield of 5142 mg/L [21].

In this study, four β-caryophyllene synthases (AarTPS88, AarTPS78, 
AarTPS54, and AarTPS61) were firstly cloned and characterized their 
biochemical functions from A. argyi. Based on the most catalytic efficient 
gene AarTPS88, we then constructed a S. cerevisiae cell factory with the 
titer of β-caryophyllene reaching 15.6 g/L in a 5 L bioreactor, which is 
the highest titer reported so far in yeast（Fig. 1). This study presents a 
valuable tool for the industrial-scale production of β-caryophyllene, also 
provides strategies to be used in increasing other terpenoid production 
and strain constructions.

2. Materials and methods

2.1. Plant materials

A. argyi was taken in the greenhouse of Guangzhou University of 
Chinese Medicine in July 2023. The plants were frozen in liquid nitrogen 
and stored at − 80 ◦C for later use.

2.2. Bioinformatic analysis

Through analyzing the transcriptome data of A. argyi sequenced by 
Qi Shen’s group at the Institute of Medicinal Plant Physiology and 
Ecology, School of Chinese Medicine, Guangzhou University of Chinese 
Medicine. The candidate terpene synthases genes were potentially 
screened out from the transcriptome data by the local blast method 
using the known sesquiterpene synthase protein sequences. Four 
candidate AarTPSs genes were then aligned and constructed a neighbor- 
joining (NJ) phylogenetic tree with characterized terpene synthase 
genes [25] (https://www.bioinformatics.nl/sesquiterpene/synthas 
edb/, Table S3) using the ClustalW program of MEGA11. Phylogenetic 
analysis was conducted using the neighbor-joining method (1000 
bootstrap replicates). The resulting phylogenetic trees were beautified 
using the ChiPlot website (ChiPlot). Additionally, the conserved regions 
were presented by the BioEdit software.

2.3. Quantitative real-time PCR

Total RNA was extracted from the roots, stems, and leaves of A. argyi 
using the Quick RNA Isolation Kit (Huayueyang, Beijing). Reverse 
transcription was carried out with the Evo M-MLV RT Kit with gDNA 
Clean for qPCR II (Accurate Biotechnology (Hunan) Co., Ltd.). qRT-PCR 
was performed following the instructions provided with the SYBR® 
Green Premix Pro Taq HS qPCR Kit, and primers were designed using 
Primer Premier 6 software (Table S4). Actin was selected as a reference 
gene [26]. The relative gene expression levels were determined using 
the 2− ΔΔCT method [27].

2.4. Cloning of AarTPSs and construction of yeast strains

Total RNA was extracted from roots, stems, and leaves of A. argyi 
using the Quick RNA Isolation Kit (Huayueyang Biotechnology Co., Ltd., 
Beijing, China, Product No. 0416-50). The total RNA was reverse tran-
scribed into first-strand cDNA strand using Evo M-MLV Plus 1st Strand 
cDNA Synthesis Kit, following the manufacturer’s protocol. The candi-
date AarTPSs genes were amplified from the A. argyi cDNA using high- 
fidelity DNA polymerase (Novagen) and gene-specific primers 
(Table S1). The amplified fragments were cloned into the BamHI and 
NheI sites of yeast expression vector pESC-URA using the ClonExpress II 
One Step Cloning Kit (Vazyme Biotech Co., Ltd) and verified by 
sequencing (Sangon Biotech (Shanghai) Co., Ltd.).

The constructed expression plasmids pESC-Ura-AarTPSs were het-
erologously expressed in the yeast strain SE00 (yYF601 with the GAL80 
gene knocked out) via the LiAc/SS carrier DNA/PEG method [28]. A 
fusion expression vector ERG20-(GGGS)2-AarTPS88 was built according 
to the literature [12]. ERG20 was fused with AarTPS88 by linker 
(GGGS)2, and the fusion fragment was into the BamHI and NheI sites of 
yeast expression vector pESC-URA. The transformed cells were then 
spread on plates of synthetic complete medium lacking uracil, incubated 
at 30 ◦C for 2–3 days and positively screened for single colonies by PCR. 
The plasmids and strains used in this study, as well as the amino acid 
sequences of the four AarTPSs are shown in Tables S2 and S5, 
respectively.

2.5. Shake flask culture and bioreactor fermentation

Yeast strains were cultured in YPD medium (10 g/L yeast extract, 20 

Table 1 
Production of β-caryophyllene in engineered strains.

Chassis β-caryophyllene 
synthases

Shake flask 
Culture 
(mg/L)

Fed-batch 
fermentation 
(mg/L)

References

S. cerevisiae AaQHS1E353D 70.45 594.05 [20]
E. coli AaQHS1 220 1520 [22]
S. cerevisiae AaQHS1 250.4 2949.1 [23]
E. coli NtTPS7 100.3 5142 [21]
S. cerevisiae HbBaS 206 8.47 g/L [24]
S. cerevisiae AarTPS88 828.4 15.6 g/L This study

Fig. 1. Schematic diagram of heterologous biosynthesis of β-caryophyllene in 
S. cerevisiae. Overexpressed genes are presented in red. IPP, isopentenyl pyro-
phosphate; DMAPP, dimethylallyl pyrophosphate; GPP, geranyl diphosphate; 
tHMGR, truncated HMG-CoA reductase gene; ERG20, farnesyl diphosphate 
synthase; FPP, farnesyl diphosphate; HIF-1, hypoxia-inducible factor 1; UPC2-1, 
mutant of sterol uptake control protein 2; AarTPS88, β-caryophyllene synthase.
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g/L peptone and 20 g/L glucose) or SD Medium (6.7 g/L yeast nitrogen 
base, 1.3 g/L of amino acid drop-out mix, 20 g/L glucose). Single- 
colonies were selected from the plates and incubated in a shaking tube 
with 3 mL culture medium for 12 h. The culture was then transferred to a 
250 mL shake flask containing 50 mL medium at an inoculum volume 1 
%. The culture conditions maintained at 30 ◦C, 200 rpm for 5 days. After 
12 h of incubation, 10 % n-dodecane was added to capture the product, 
which was subsequently used for subsequent qualitative or quantitative 
analysis. All cultivations were performed in triplicate.

Bioreactor fermentation was conducted in a 5 L bioreactor 
(BIOTECH, Bxbio, China).The fermentation medium was contained 15 
g/L (NH4)2SO4, 8 g/L KH2PO4, 6.14 g/L MgSO4•7H2O, 0.72 g/L 
ZnSO4•7H2O, 20 g/L glucose, 10 mL/L trace metals (2.8 g/L FeS-
O4•7H2O, 5.75 g/L ZnSO4•7H2O, 2.9 g/L CaCl2•2H2O, 0.32 g/L 
MnCl2•4H2O, 0.47 g/L CoCl2•6H2O, 0.32 g/L CuSO4, 0.48 g/L 
Na2MoO4•2H2O, 80 mg/L 0.5 M EDTA) and 12 mL/L vitamin solution 
(50 mg/L biotin, 1.0 g/L calcium pantothenate, 1.0 g/L thiamine hy-
drochloride, 1.0 g/L pyridoxal hydrochloride, 1.0 g/L nicotinic acid, 0.2 
g/L p-aminobenzoic acid, 25 g/L inositol). The single colony seeds were 
picked and inoculated into a tube containing 5 mL YPD medium, 
cultured at 30 ◦C, 200 rpm for 36 h. This culture was then transferred 
into a 100 mL shake flask containing 20 mL YPD medium for 24 h at 
30 ◦C and 200 rpm. Subsequently, the second seed culture was trans-
ferred into a 500 mL shake flask containing 200 mL YPD medium for 24 
h at 200 rpm and 30 ◦C. Finally, the seeds were inoculated into the 
bioreactor filled with 1.8 L medium. Fermentation was carried out at 
30 ◦C, with the pH adjusted at 5.5 using ammonia hydroxide. The 
agitation cascade (300–900 rpm) was coupled with dissolved oxygen 
saturation at 40 %, and the airflow rate was 1 vvm. Ethanol was fed as 
the carbon source. After fermenting for 120 h, the yield of β-car-
yophyllene was analyzed by GC-MS.

2.6. GC-MS analytical methods

The GC-MS analysis was performed on a Shimadzu QP2010SE in-
strument equipped with a Rxi-5HT column (30 m × 250 μm × 0.25 μm). 
The heating program was as follows: the initial temperature was 40 ◦C 
for 3 min, then raised to 130 ◦C at 10 ◦C/min, followed by an increase to 

160 ◦C at 3 ◦C/min, and finally to 250 ◦C at 40 ◦C/min. The electron 
energy was set at 70 eV, with the ion source and interface temperature at 
250 ◦C and 170 ◦C, respectively. The scanning range was 50–600 m/z. 
All products in this study were identified by comparison with the Na-
tional Institute of Standards and Technology (NIST)17 mass spectral 
library and authentic standards. α-Caryophyllene (CAS: 6753-98-6) and 
β-caryophyllene (CAS: 87-44-5) standards were purchased from 
Macklin.

3. Results and discussion

3.1. Phylogenetic and qRT-PCR analysis of TPSs from A. argyi

The full-length sequences of the four candidate genes, ranging from 
1635 to 1650 bp and encoding 545–550 amino acids, were obtained by 
PCR amplification using A. argyi cDNA as template. Phylogenetic anal-
ysis (Fig. 2A) showed that the four AarTPSs belonged to the TPS-a 
subfamily, AarTPS88, AarTPS78, AarTPS54, and AarTPS61 were 
closely related to β-caryophyllene synthase from Artemisia annua [29]. 
In contrast, AarTPS61 showed higher similarity to epi-cedrol synthase 
from Artemisia annua [30]. Like all characterized plant terpene syn-
thases, the four AarTPSs contain several motifs that are highly conserved 
among class I terpene synthases, such as the C-terminal structural 
domain containing two metal-binding motifs of aspartate-rich DDXXD 
and NSE/DTE, and the N-terminal RRX8W motif (Fig. S1) [31–33]. This 
motifs are critical for catalytic activity of terpene synthases and play 
essential roles in sesquiterpene synthases [34]. Therefore, we hypothe-
sized that the four AarTPSs may have similar functions to the β-car-
yophyllene and epi-cedrol synthases.

Furthermore, we extracted the RNA sample from the roots, stems and 
leaves of A. argyi, analyzed the expression levels of the four AarTPS 
candidate genes using qRT-PCR. The results (Fig. 2B) showed that 
AarTPS61 was highly expressed in roots, and lowly expressed in leaves 
and stems. The expression of the other three genes showed a similar 
trend, all of which were significantly highly expressed in leaves and 
almost not expressed in roots. Similar expression levels of four AarTPSs 
existed in qRT-PCR and transcriptome (Fig. S2).

Fig. 2. Analysis of the four candidate genes from A. argyi. A. Phylogenetic analysis of AarTPSs. The TPS family divided into six subfamilies, the TPS-a family to the 
TPS-e/f family, these are denoted by unusual colors. B. qRT-PCR expression analysis of AarTPSs in different tissues. The error bars represent the means ± SD (n = 3), 
**P < 0.01, ***P < 0.001, and ****P < 0.0001 in Student’s t-test.
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3.2. Functional characterization of AarTPSs in S. cerevisiae

The four AarTPSs genes were transformed into the heterologous host 
yeast strain SE00. The TIC plots of these transformations were compared 
with the empty vector to identify the catalytic products of AarTPSs. As 

shown in Fig. 3A and B, AarTPS88, AarTPS54, AarTPS78, and AarTPS61 
had a major product (P1) at 16.66 min. P1 was identified as β-car-
yophyllene by comparing the retention time and mass spectra with the 
β-caryophyllene standard. The retention time of the minor product (P2) 
at 17.09 min was identified as α-caryophyllene with the standard. 

Fig. 3. The products analyzed and identified by GC-MS. A. Total ion gas chromatogram of AarTPS88, AarTPS78, AarTPS54, and AarTPS61. B. Mass spectra of the 
product P1, P2 and standards.

Fig. 4. Proposed α-caryophyllene and β-caryophyllene biosynthetic pathways in A. argyi.
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Therefore, these four genes encode the β-caryophyllene synthase, pro-
ducing β-caryophyllene, consistent with their similarity to β-car-
yophyllene synthase in phylogenetic analysis (Fig. 2A). Thus, we 
identified four β-caryophyllene synthase genes from A. argyi (see Fig. 4).

3.3. Fusion expression of ERG20 and AarTPS88 to enhance 
β-caryophyllene production

To construct an engineered strain for the efficient biosynthesis of 
β-caryophyllene in S. cerevisiae, we transformed plasmids into strain 
SE00, resulting in strains SE01-04 (Table S2). Among these, strain SE01 
produced the highest rield of β-caryophyllene at 111.3 mg/L (Fig. 5A). 
Although this yield was relatively low, it indicates that the yield of 
β-caryophyllene can be further improved by optimizing the biosynthetic 
pathway.

Protein fusion technology can shorten the distance between two 
enzymes, increase the utilization rate of intermediate metabolites, and 
thereby improve the catalytic efficiency of the entire pathway, making it 
a crucial strategy in metabolic engineering [35]. It has been observed 
that different flexible linkers affect the catalytic activity of enzymes to 
varying degrees, with the most suitable flexible linker identified as 
(GGGS)2 [9,36]. FPP originating from the MVA pathway, is catalyzed by 
FPP synthase (ERG20) and serves as a direct precursor for the synthesis 
of β-caryophyllene. Therefore, we expressed ERG20 and AarTPS88 
individually to obtain strain SE05, and fused ERG20 with AarTPS88 
using flexible linker (GGGS)2 to obtain strain SE06 (Fig. 5B). The most 
significant increase in β-caryophyllene production was observed in 
strain SE06 at 213.9 mg/L, which was 92 % higher compared to strain 
SE01. These results indicate that the biosynthesis of β-caryophyllene 
benefits from enzyme fusion expression. Based on this, we integrated the 
ERG20 and AarTPS88 fusion expression cassette into the chromosome of 
strain SE00 for overexpression, generating strain SE07. The β-Car-
yophyllene titer in strain SE07 reached 320.6 mg/L, which was 49 % 
higher than that of strain SE06 (Fig. 5C).

3.4. Engineering the MVA synthesis pathway to further improve 
β-caryophyllene biosynthesis

To trigger the Warburg effect in yeast, which is similar to aerobic 
glycolysis in cancer cells. We integrated HIF-1 into the yeast chromo-
some of strain SE07 to derive strain SE08. The results showed that the 
titer of β-caryophyllene in the shake flask reached 713.6 mg/L, which 
increased the yield by 2.2 times (Fig. 5C). This indicates that the 
hypoxia-inducible factor-1 (HIF-1) is also suitable for increasing the 
production of sesquiterpenes in yeast.

In yeast, the FPP of the MVA pathway is the direct precursor for 
sesquiterpenes synthesis, and the limited supply of precursor is the 

Fig. 5. Construction of recombinant S. cerevisiae strains to produce β-car-
yophyllene. A. β-Caryophyllene yield of strains SE01, SE02, SE03, and SE04. B. 
Improving β-caryophyllene production by fusion expression of AarTPS88 and 
ERG20. C. β-Caryophyllene production by overexpression of a fusion expression 
cassette of ERG20 and AarTPS88 and genes such as HIF1, tHMGR and UPC2-1. 
Error bars represent the SD of triplicate samples.

Fig. 6. Efficient production of β-caryophyllene by fed-batch fermentation of 
strain SE09. Fed-batch fermentation was performed in a 5 L bioreactor. Titer of 
β-caryophyllene and biomass (OD600) are monitored during fermentation. The 
data shown are calculated from three biological replicates.
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major limitation and one of the focal points of microbial sesquiterpene 
synthesis. Therefore, overexpression of the key gene tHMGR in the MVA 
pathway can increase the biosynthesis of sesquiterpenes [37]. Addi-
tionally, UPC2-1, a single mutant (G888D) of the UPC2 transcriptional 
activator of the MVA pathway, similarly increases terpene synthesis 
[38]. Therefore, the expression vector containing tHMGR and UPC2-1 
was transformed into the chromosome of strain SE08, generating strain 
SE09. GC-MS analysis showed that the β-caryophyllene yield of strain 
SE09 was 828.4 mg/L, a 16 % increase (Fig. 5C). This indicates that the 
optimization of tHMGR and UPC2-1 was effective. A similar optimiza-
tion strategy (tHMGR and UPC2-1 overexpression) has also been re-
ported for squalene production in S. cerevisiae [39].

3.5. Fed-batch fermentation to produce high-level β-caryophyllene

Finally, we evaluated the performance of the engineered strain SE09 
as a β-caryophyllene cell factory using fed-batch fermentation in a 5 L 
bioreactor. To capture the product, 10 % n-dodecane was added at 12 h. 
As shown in Fig. 6, the growth of engineered strain SE09 was slight 
inhibited during the 24 h, but exhibited rapidly growth in the later 
stages. The cell density (OD600) reached 315 at 120 h, with the β-car-
yophyllene titer reaching 15.6 g/L, representing the highest reported 
β-caryophyllene titer in yeast to date.

Although β-caryophyllene production in S. cerevisiae has been 
significantly enhanced through metabolic pathway optimization and 
fed-batch fermentation, further improvements can be achieved in sub-
sequent studies. Potential strategies include altering the catalytic ac-
tivity of sesquiterpene synthases through site-directed mutagenesis 
[38]; inhibition of the competitive pathway by knockdown of the lipid 
phosphatase LPP1 and diacylglycerol pyrophosphate phosphatase DPP1 
[40]; and promoting extracellular secretion of sesquiterpenes by 
enhancing transmembrane transport to enhance β-caryophyllene pro-
duction [13].

4. Conclusions

In summary, this study functionally characterized four AarTPS 
candidate genes from A. argyi in S. cerevisiae, identifying them as 
β-caryophyllene synthase. Next, we constructed an engineered strain 
with a high titer of β-caryophyllene by using fusion expression and 
heterologous gene expression to increase MVA pathway flux. The engi-
neered strain achieved a β-caryophyllene titer of 15.6 g/L in a 5 L 
bioreactor, laying the foundation for developing an S. cerevisiae cell 
factory for industrial scale β-caryophyllene production.
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