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Apoptosis is an important biological process required for the
removal of unwanted or damaged cells. Mounting evidence
implicates the actin cytoskeleton as both a sensor and
mediator of apoptosis. Studies also suggest that actin binding
proteins (ABPs) significantly contribute to apoptosis and that
actin dynamics play a key role in regulating apoptosis signal-
ing. Changes in the organization of the actin cytoskeleton has
been attributed to the process of malignant transformation
and it is hypothesized that remodeling of the actin cyto-
skeleton may enable tumor cells to evade normal apoptotic
signaling. This review aims to illuminate the role of the actin
cytoskeleton in apoptosis by systematically analyzing how
actin and ABPs regulate different apoptosis pathways and to
also highlight the potential for developing novel compounds
that target tumor-specific actin filaments.

Hallmarks of Apoptosis

Apoptosis or programmed cell death is an essential biological
function required during embryogenesis, tissue homeostasis,
organ development and immune system regulation.1-4 The impor-
tance of apoptosis in organism development is now recognized
by the myriad of pathologies associated with the de-regulation of
apoptotic signaling pathways leading to cancer, autoimmune
diseases and neurodegenerative diseases.5-7 Apoptosis can be
triggered by the reception of a death signal or by the removal of an
anti-apoptotic signal resulting in a cascade of distinct morpho-
logical changes. The “apoptotic” cell is isolated from surrounding
tissue (cell rounding), followed by chromatin condensation,
organelle compaction, membrane blebbing and the formation of
intact apoptotic bodies.8-10 Finally, the externalization of phospha-
tidyl serine to the outer membrane surface signals to the immune
system that the cell is destined for death by phagocytosis.11,12

Successful apoptosis is coordinated by the family of cysteine
proteases termed caspases. Caspases cleave numerous cellular
substrates by specifically targeting aspartate residues.13 Caspases
are synthesized as inactive zymogens or pro-caspases that are
activated in response to specific apoptotic stimuli.14,15 Activation
of the initiator caspases-8 and -9 occurs via the extrinsic and
intrinsic apoptosis pathways respectively.16 The extrinsic pathway
is triggered by the ligation of extracellular “death” ligands from
the tumor necrosis factor (TNF) family such as CD95/FasL and
TNFa with their cognate membrane receptor.17 Ligand binding
to the cell surface triggers the intra-cellular association of Fas
associated death domain (FADD) with pro-caspase-8 forming
the death-inducing signaling complex (DISC).18,19 The accu-
mulation of pro-caspase-8 molecules results in their dimerization
and auto-processing to produce active caspase-8.16,20 Caspase-8
can then activate the executioner caspases-3, -6 and -7 which are
responsible for widespread proteolytic activity leading to the
removal of the apoptotic cell by the immune system.21 (Fig. 1)

The intrinsic apoptosis pathway is chiefly mediated by the
Bcl-2 family of pro- and anti-apoptotic proteins (Fig. 1). The
Bcl-2 super family act as sentinels of cell well-being that detect
stress signals such as DNA damage, cytokine/growth factor
withdrawal and anoikis (detachment induced cell death).22 They
also ensure the completion of apoptosis by irreversible mitochon-
drial membrane damage.23 All members of the mammalian Bcl-2
super family contain conserved BH domains and their classifica-
tion into three functionally distinct groups is governed by the
number of BH domains present.24 The Bcl-2-like anti-apoptotic
proteins (Bcl-2, Bcl-xL, Bcl-w, Mcl-1 and A1) contain BH 3 and
4 domains and protect cells from apoptosis by guarding the outer
mitochondrial membrane (OMM).25,26 The BH3-only proteins
(Bim, Bad, Bid/tBid, Bmf, Bik, Hrk and Noxa Puma) which
contain a single BH domain, detect cell stress and when activated
engage with specific pro-survival Bcl-2 partners neutralizing their
pro-survival activity.27,28 Table 1 outlines the specific Bcl-2:BH3
interacting partnerships currently established in the apoptosis
field. Lastly, the BH1–3 group (Bax, Bak and Bok) regulate
mitochondrial membrane permeability and have a specialized
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capacity to homo-oligomerize upon activation.29,30 In healthy cells
Bak is located at the surface of the OMM in complex with Mcl-1
and Bax resides within the cytosol.31 Inactivation of Bcl-2 activity
at the OMM via BH3 ligation releases Bak and activates Bax
translocation to the mitochondria.32 Bax and Bak oligomerization
at the OMM induces the loss of the mitochondrial membrane
potential (mtDY) leading to the formation of the mitochondrial
permeability transition pore (mPTP).29,33 Formation of the
mPTP induces the release of apoptogenic factors such as cyto-
chrome c, smac/Diablo and apoptosis inducing factor, AIF-1.34,35

Cytochrome c release is particularly important as it activates
the conformational change in Apaf-1 (apoptotic protease activat-
ing factor) required for the activation of the second initiator
caspase-9.36,37 Caspase- 9 can also activate caspases-3, -6 and -7 to
further provoke the apoptosis response. The actin cytoskeleton
has been implicated in regulating apoptosis at multiple stages
both upstream and downstream of caspase activation. Knowledge
of the nature of actin filament dynamics reveals how actin can
both initiate and mediate an apoptotic signal.

Actin Filament Dynamics

The actin cytoskeleton is a structural network of proteins that
are essential for multiple biological functions including cell

contraction, cell motility, vesicle trafficking, intracellular organ-
ization, cytokinesis, endocytosis and apoptosis.38-41 Actin, the
major component of the cytoskeleton, is a 42 kDa globular
protein (G-actin) that reversibly polymerizes to form filaments
(F-actin). In muscle cells actin is a core component of the
sarcomere and interacts with myosin filaments to enable force
generation required during muscle contraction.42 In non-muscle
cells, actin isoforms (β and c) perform a diverse range of func-
tions that enable cell survival and adaptation to a changing
environment.43-46 For a comprehensive review of actin structure
and function see reference 47

To cope with the dynamic cellular environment F-actin
assembly is in a constant state of flux with G-actin association
occurring at the barbed end (+) and dissociation at the pointed
end (-).48,49 Actin filament dynamics are regulated by the action
of a large group of proteins termed the actin binding proteins
(ABPs). ABPs undertake a range of functions including actin
severing, depolymerizing, capping, stabilizing and de novo actin
polymerization which enables the actin cytoskeleton to constantly
adapt to a changing environment.39 The Rho GTPases are an
important signaling protein family that regulate ABP function to
achieve the formation of higher order structures such as stress
fibers (actin/myosin bundles), lammelipodia (membrane ruffles
at the leading edge) and filopodia (membrane protrusions).50

Figure 1. Schematic of the extrinsic and intrinsic apoptosis pathways. (1) The extrinsic pathway is mediated by the ligation of TNF/CD95/Fas ligands to
the membrane. This triggers the formation of the death-inducing signaling complex (DISC) composed of FADD and pro-caspase 8. Caspase 8 activation
occurs due to the induced proximity of pro-enzyme molecules. Caspase-8 also activates the pro-apoptotic protein Bid which feeds into the intrinsic
pathway. (2) The intrinsic pathway is mediated primarily by the Bcl-2 super family. BH3 pro-apoptotic proteins inactivate Bcl-2 pro-survival partners
releasing Bax and Bak. Homo-oligomerization of Bax and Bak at the OMM results in the release of cytochrome c and the downstream activation of
caspase-9 via a conformational change. Both pathways converge to activate the executioner caspases leading to cell death.
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Biochemical reactions such as phosphorylation and calcium ion
(Ca2+) binding are also essential to the regulation of ABP func-
tion as most ABPs exist in an active and inactive form.51

Furthermore phosphoinositides such as PtdIns(4,5)P2 play a
pivotal role in regulating actin functions at the plasma membrane
by accumulating within lipid rafts and facilitating F-actin poly-
merization.52 It is clear that actin filament dynamics are tightly
regulated at numerous stages which is warranted considering the
vast array of functions mediated by the actin cytoskeleton.
Studying the role of actin and ABPs in apoptosis demonstrates the
importance of regulated actin filament organization.

Actin Filament Dynamics and Apoptosis

The actin cytoskeleton has been demonstrated as essential during
multiple hallmarks of apoptosis with dramatic changes in actin
filament organization accompanying different stages of apopto-
sis.10,53 Cell rounding, which involves the loss of focal contacts
with the extra-cellular environment, requires the formation of
a contractile cortex of myosin II decorated actin filaments.54

Retraction of the actin-myosin II cortex significantly alters
membrane dynamics resulting in the formation of membrane
blebs.54,55 Actin-dependent membrane blebbing is reliant upon
Rho GTPase signaling56 with Rho inhibition preventing bleb
formation in PC12 cells.57 However, in Jurkat cells, caspases
cleave and activate the Rho effector ROCK1, which can regulate
actin-mediated membrane blebbing in a Rho-independent

manner.58 At the final stages of apoptosis the actin cytoskeleton
is degraded and phagocytosis of the apoptotic bodies ensues.55

In vitro microfilament disruption assays utilizing U-937 and
HL-60 cells highlighted the importance of actin filament
dynamics at the final stages of apoptosis with actin targeting
drugs inhibiting apoptotic body formation.59 The important role
of actin in the morphological hallmarks of apoptosis is coupled
with mounting evidence demonstrating actin as a mediator and
initiator of apoptosis signaling.

Actin as a Mediator of Apoptosis

Actin has been demonstrated as a substrate for cleavage by
caspases in mammalian cells, resulting in the formation of actin
fragments that are 31 kDa (Fractin) and 14 kDa (tActin).60,61

Transient transfection of 293 T cells with the expression vector
of tActin, but not Fractin, resulted in the appearance of
morphological hallmarks of apoptosis such as cell rounding and
chromatin condensation.61 Furthermore, ectopic expression of
tActin induced these morphological changes without activating
caspases, indicating that actin fragment-mediated cellular shrink-
age is an event downstream of the caspase signaling cascade.61

Manipulating the actin cytoskeleton via drug intervention has
further revealed that changes in actin dynamics can also mediate
apoptosis. Jasplakinolide is a potent F-actin stabilizing drug, that
is derived from the marine sponge Jaspis johnstoni.62 Treatment
of Jurkat cells with jasplakinolide resulted in the appearance of

Table 1. Detailed description of the functions of Bcl-2 pro-survival and pro-apoptotic proteins

Bcl-2 pro-survival group Function References

Bcl-2, Bcl-w Inhibits the activity of BH3-only proteins 27

Bcl-xL, Mcl-1, A1 Inhibits the activity of Bak and BH3-only proteins 30

Pro-apoptotic
proteins

Activated by... Sub-cellular changes upon activation Function References

Bim Cytokine withdrawal Release from the microtubule-associated
dynein motor complex and localization

to the mitochondria

Known as a potent killer since it binds to
all Bcl-2 pro-survival proteins allowing Bax

and Bak activation

27,85

Bad Growth factor
withdrawal

De-phosphorylated and released from the
Scaffold protein 14–3-3

Displaces Bcl-xL from Bax and Bak allowing
homo-oligomerization

28,30

Bmf Anoikis Release from myosin V actin motor complex
and localization to the mitochondria

Displaces Bcl-2 allowing Bak
homo-oligomerization

86

Bid Caspase-8 Cleavage to form 15kDa tBid Binds directly to Bax and Bak stimulating pore
formation and the release of cytochrome c

90

Noxa DNA damage p53 expression induces its translocation
to the mitochondria

Displaces Mcl-1 from Bak allowing the activation
of homo-oligomerization

28,30

Puma DNA damage p53 expression induces its translocation
to the mitochondria

Displaces Bcl-xL from Bax allowing the activation
of homo-oligomerization

28,32

Hrk/DP5 Constitutively active Upregulation of expression in response
to death stimuli

Binds to Bcl-xL and Bcl-2 pro-survival proteins
allowing the activation of Bax

177

Bax Multiple BH3 only
proteins (see above)

Translocates to the outer mitochondrial
membrane and undergoes

homo-oligomerization to from a pore
due to conformation change

Pore formation enables the release of
cytochrome c from the inter-membrane

space of the mitochondria

28

Bak Multiple BH3 only
proteins (see above)

Conformational change in Bak enables
homo-oligomerization of Bak molecules

forming a pore

Pore formation enables the release of
cytochrome c from the inter-membrane

space of the mitochondria

28
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distinct morphological and biochemical hallmarks of apoptosis
including DNA fragmentation, chromatin condensation and
caspase activation, suggesting that actin stabilization elicits an
apoptotic response.63 Treatment of leukemic HL-60 cells with
jasplakinolide similarly induced distinct nuclear and membrane
changes that resembled apoptosis.64 Jasplakinolide also increased
the activity of DNase I, which is responsible for the degradation
of nuclear DNA strands during apoptosis.65 DNase I binds with
high affinity to G-actin monomers simultaneously promoting
actin depolymerization and DNase I inhibition.66 The actin
polymerizing activity of jasplakinolide may be triggering the
release of DNase 1 from G-actin once it has been added to the
barbed end resulting in activation of DNase I activity. This
hypothesis remains to be investigated. Actin depolymerization has
been shown to induce an apoptotic response in numerous cell
types. Cytochalasin D belongs to a family of fungal metabolites
that binds to the barbed end of F-actin preventing further
polymerization.67 Cytochalasin D was shown to induce caspase-3
mediated apoptosis in T lymphocytes68 and enhanced the
commitment of Jurkat T cells to apoptosis after cytokine
withdrawal.69 Given that cytochalasin D binds to the barbed
end of the actin filament, the effects of cytochlasin D are through
its disruption of actin filament dynamics and not through a shift
in G:F-actin levels. The importance of actin dynamics thus
explains why both actin polymerizing and depolymerizing can
affect cell survival. Given the profound response of the actin
cytoskeleton to changes in dynamics, actin may also play a role
in initiating an apoptotic signaling cascade.

Actin as an Initiator of Apoptosis Pathways

A number of studies have demonstrated a role for the actin
cytoskeleton in triggering apoptosis upstream of caspases both in
the extrinsic and intrinsic pathways. CD95 or FasL is a major
ligand of the extrinsic apoptosis pathway. In CD4+ T lympho-
cytes activation of CD95-mediated apoptosis resulted in the
polarization of CD95 at the cell surface. CD95-mediated
apoptosis was found to be dependent upon the interaction of
actin with CD95 via the actin-associated protein ezrin.70 Ezrin
interacts with membrane associated proteins via the FERM
domain located within the N-terminus and is tethered to the
actin cytoskeleton at the C-terminus.71,72 Thus ezrin, which is
anchored to CD95 at the cell membrane of T lymphocytes is
thought to transduce an extracellular signal to the actin cyto-
skeleton initiating an apoptosis cascade (Fig. 2).73,74 A reduction
in ezrin expression has been correlated with the stimulation of
CD95-mediated apoptosis in H9 stem cells and normal T
lymphocytes which contradicts with aforementioned studies.75

The role of ezrin in CD95 mediated apoptosis thus remains in-
conclusive. What is known is that ezrin activity is phospo-
regulated and its phophorylated status may govern its’ function in
apoptosis.75

Actin has also been implicated in the initiation of intrinsic
mitochondrial-dependent apoptosis spanning yeast, mammals
and plants.40,76,77 Studying the role of actin in mitochondrial-
dependent apoptosis in yeast has been very advantageous due to

the presence of a single actin isoform, ACT1.78 Yeast strains
bearing point mutations in ACT1 clearly demonstrated altered
susceptibility to mitochondrial damage. Expression of a mutant
allele with decreased actin dynamics (act1-159) resulted in F-actin
aggregation and increased susceptibility to apoptosis due to the
accumulation of reactive oxygen species (ROS) and mitochondrial
membrane depolarization. Expression of a yeast mutant with
increased actin filament dynamics (act1-157) did not accumulate
ROS and survived in long-term culture.76,79 This suggests that a
dynamic actin cytoskeleton is essential to the maintenance of the
mtDY in yeast and that modulation of actin dynamics contributes
to oxidative stress. The capacity for actin to regulate the open-
ing of voltage dependent anion channels (VDACs) has been
postulated as a mechanism by which actin regulates mitochondrial
integrity. In Neurospora crassa actin stabilization via phalloidin
treatment led to the prolonged opening of VDAC pores resulting
in the accumulation of ROS and a loss of mtDY.80

In mammalian HeLa cells, cytochalasin D treatment induced
caspase-mediated cytochrome c release suggesting that actin has a
role in regulating mitochondrial membrane permeability in both
yeast79 and mammalian cells.81 Overexpression of the pro-survival
protein Bcl-xL inhibited apoptosis in jasplakinolide treated
CTLL-20 cells82 and partially attenuated apoptosis in Jurkat cells
treated with cytochalasin D69 implicating the Bcl-2 family in
the apoptotic action of cytochalasin D and jasplakinolide. The
latrunculins are a group of actin depolymerizing agents that are
derived from the Red Sea sponge Latrunculia magnificans and
sequester G-actin monomers and prevent polymerization via a
mechanism that differs from cytochalasin D.83 Latrunculin A
was shown to induce caspase-mediated apoptosis in MCF10A
epithelial cells84 whereas latrunculin B induced apoptosis in re-
perfused rat kidney tissue.85 Latrunculin A treatment of MCF-7
cells was also shown to induce the translocation of Bax to the
mitochondrial membrane where it was postulated to undergo
oligomerization and mitochondrial membrane pore formation.84

Therefore the mechanism of action of distinct actin targeting
drugs may involve the Bcl-2 family of apoptosis proteins. These
reports however do not define the specific signaling pathways
linking actin filament changes to Bcl-2 activation. Puthalakath
and colleagues have demonstrated a direct link between the Bcl-2
family and actin-mediated apoptosis.86 Pro-apoptotic Bmf was
found to be sequestered with actin-associated myosin V motors
and upon cell detachment or cytochalasin D treatment is released
from the cytoskeleton resulting in a mitochondrial-dependent
apoptotic cascade (Fig. 2).86 The translocation of G-actin to the
nucleus has been demonstrated in Latrunculin B treated mast
cells87 and hepatocytes treated with protein synthesis inhibitors.88

Given the apoptotic effects of Latrunculin B in rat kidney tissue85

nuclear actin translocation could induce an apoptotic response.
However a significant increase in apoptotic cells could not be
detected in both studies suggesting that nuclear actin translocation
was unable to induce apoptosis. As noted by Utsumi et al.,89 a role
for tActin upstream of caspases has also been identified whereby
tActin was subjected to post-translational N-myristoylation,
targeting it to the mitochondria during apoptosis (Fig. 2).89 A
possible explanation for the presence of actin in both the initial
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and final stages of apoptosis may involve a positive feedback
loop. Initial disruption of the actin cytoskeleton may lead to
downstream caspase activation which causes permanent actin
filament fragmentation (t-Actin). N-myristolyated tActin may
then be responsible for the amplification of apoptosis by inducing
irreversible mitochondrial membrane damage. Slee and colleagues
have demonstrated that feedback amplification can occur after
apoptosis induction via the downstream cleavage of the pro-
apoptotic protein Bid.90 Thus downstream events may play an
important role in sustaining an apoptotic cascade and tActin may
be a crucial player in this process. Actin filament dynamics are
greatly dependent upon ABP regulation suggesting that ABPs may
also play a role in actin-mediated apoptosis.

The Role of Actin Binding Proteins in Apoptosis

Several ABPs have been postulated as biomarkers of apoptosis
due to alterations in their expression leading to cell death signal-
ing pathways. The ABPs that have been studied in relation to
apoptosis are ADF/Cofilin (actin dynamizing), thymosin β (actin
sequestering), coronin-1 (actin branching), filamin (actin branch-
ing), gelsolin (actin severing and capping), tropomyosin (actin
stabilizing) and myosin II (actin filament contraction or
bundling).

The ADF/cofilin family regulate actin filament turnover by
severing and depolymerizing existing actin filaments thus may
increase the G:F-actin ratio.91 LIM and testicular kinases (LIMK

Figure 2. Reception of an apoptotic stimulus induces significant changes in the actin cytoskeleton resulting in the following biochemical and
morphological events. (1) The actin-membrane linker protein ezrin has been implicated as a mediator of CD95-mediated apoptosis, however other
studies suggest ezrin is a mediator of tumor invasion and metastasis. Thus ezrin may have multiple roles in cellular functioning including apoptosis.
(2) Changes in the expression of ABPs (upregulation of thmyosin b10 and Tm1 plus downregulation of coronin 1 and filamin) induce an apoptotic
response. Translocation of oxidized cofilin to the mitochondria induces the release of cytochrome c due to mitochondrial membrane permeabilization.
(3) Disruption of the microfilament system by cytochalasin D or cell detachment induces the translocation of pro-apoptotic Bmf from the actin
cytoskeleton to the mitochondria during apoptosis. (4) Caspase cleavage of actin (tActin) and gelsolin (N-Gelsolin) triggers their N-myristoylation with
tActin being translocated to the mitochondria. (5) Actin-myosin II contraction mediates morphological hallmarks of apoptosis including membrane
blebbing and cell rounding.
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and TESK I and II) phosphorylate ADF/cofilin at the Ser 3
residue inhibiting G- and F-actin binding92 whereas slingshot
homolog (SSH) and chronophin (CIN) de-phosporylate ADF/
cofilin activating cofilin.93 In relation to apoptosis, cofilin has
been demonstrated to be translocated to the mitochondrial
membrane in response to the kinase inhibitor staurosporin
resulting in the release of cytochrome c and morphological
hallmarks of apoptosis. Expression of a phophorylated (inactive)
cofilin mutant abolished this mitochondrial targeting of cofilin
emphasizing the requirement for active de-phosphorylated cofilin
in apoptosis.94 Oxidation of cofilin by taurine chloramine
similarly induced mitochondrial translocation of cofilin resulting
in the opening of the mPTP and cytochrome c release.95

Mutations that removed any of the cysteine residues within
cofilin inhibited mitochondrial targeting of cofilin and oxidant-
induced apoptosis.95 Since oxidation of cysteine residues in cofilin
resulted in the formation of intermolecular disulphide bonds96

intermolecular cysteine oxidation may be essential for the mito-
chondrial targeting of cofilin. Recent studies have identified
novel cofilin residues that drive F-actin stabilization induced by
nutritional depletion resulting in the accumulation of ROS,
mitochondrial fragmentation and Ras hyperactivation.97 This
supports the hypothesis that the actin cytoskeleton is an impor-
tant biosensor of environmental stresses such as oxidative stress.
Second, conserved positively charged residues on cofilin that are
not actin binding were shown to be essential for respiratory
function further highlighting the potential role of cofilin in
sensing oxidative stress.97 The formation of actin-cofilin rods is a
second apoptosis-related role for cofilin whereby ATP depletion
resulted in the formation of short actin/cofilin rods.98,99 Actin-
cofilin rods were able to prevent apoptosis by slowing mtDY
depletion in hippocampal neurons over a short period of time.100

However over an extended period of time, this protective
mechanism was abolished resulting in rapid loss of mtDY and
subsequent apoptosis. Thus persistent actin-cofilin rods con-
tribute to the loss of synapse activity in the neurons of patients
suffering from neurodegenerative conditions. The short-term
pro-survival role for cofilin in neurons specifically may be a
biological conditioning mechanism to reduce the mitochondrial
damage experienced by neurons affected by oxidation, micro-
ischemia or glutamate excitotoxicity.98 Whether this short-term
pro-survival role for cofilin exists in other cell types remains
elusive. Cofilin has also been demonstrated to mediate the
apoptosis of hippocampal neurons due to its activation by the
scaffold protein RanBP9. Elevated levels of RanBP9 have been
implicated in the production of amyloid β peptide which is
known to cause neurodegeneration with cofilin expression being
essential to RanBP9-mediated apoptosis.101

Thymosin β prevents polymerization by attaching to and
sequestering G-actin.102 Elevated expression of thymosin β10
in ovarian tumor cells has been correlated with an increase in
sensitivity to apoptosis. The presence of a second ABP,
E-tropomodulin, inhibited apoptosis by competing with thymo-
sin β10 for actin binding highlighting the inter-related depen-
dency of ABPs in regulating actin-mediated apoptosis.103

Thymosin β10 was also shown to accelerate the apoptosis of

fibroblasts by disrupting stress fiber formation which further
supports the pro-apoptotic role of thymosin β10.104

Filamin promotes orthogonal actin branching which
strengthens the cell membrane during cellular movement.105

Filamin cleavage by the T lymphocyte enzyme granzyme B
induced an apoptotic response in Jurkat cells that was caspase-
independent.106 In a separate study, filamin-mediated apoptosis
of platelet cells was shown to be dependent upon caspase-3
activation in vivo.107 This contradictory result in regards to
caspase dependency may reflect alternative effects based upon
the type of apoptotic stress induced. The former study specifi-
cally looked at the physiological process of granzyme B activity
whereas in the latter study exogenously expressed caspase-3 was
utilized (non-physiological process). The utilization of physio-
logically relevant conditions is therefore important when studying
apoptosis pathways.

Coronin-1 regulates the function of the actin nucleating and
branching ABP Arp2/3 and is involved with lammelipodial
formation required for cell motility.108 Knockout mouse studies
demonstrated that coronin-12/2 cells show an impairment of
T lymphocyte migration to the thymus due to an elevated level
of apoptosis detected by annexin V staining.109 Elevated cyto-
chrome c levels were also detected in coronin-12/2 T cells,
suggesting that coronin-1 may regulate the survival of migrating
cells such as T lymphocytes. A proteomics approach employed
by Moriceau and colleagues further identified the presence of a
cleavage product of coronin-1 after apoptosis induction suggest-
ing that coronin-1 cleavage may be a downstream response to
apoptosis signaling similar to actin.110 Expression of full length
coronin-1 inhibited mitochondrial-mediated apoptosis of mature
neutrophils further supporting the pro-survival role of coronin-1
in hematopoietic cells.110

Myosin II is an ATP-dependent non-muscle motor that
interacts with actin filaments producing a contractile force that
is essential during cell rounding and migration.111 Maintenance
of myosin II tension is also crucial to the formation of the
contractile ring during cytokinesis.112 Myosin II activity is
regulated by the phosphorylation proteins such as myosin light
chain kinase (MLCK) and Rho kinase.111 Studies have demon-
strated a non-redundant role for myosin II phosphorylation in
regulating apoptosis in endothelial and epithelial cells. TNFa, a
regulator of extrinsic apoptosis, is also responsible for vascular
endothelial barrier dysfunction. TNFa triggered the apoptosis of
endothelial cells accompanied by the phosphorylation of myosin
II leading to an increase in stress fiber formation and the
appearance of para-cellular gaps indicative of endothelial barrier
dysfunction.113 Inhibition of myosin II phosphorylation reduced
TNFa-induced stress fiber formation and attenuated caspase-8
levels in vitro.113 As noted by Jin et al.114 myosin II may regulate
TNFa mediated endothelial apoptosis by translocating TNF-
receptor to the membrane surface. Further analysis of 3D micro-
vessels revealed that vascular endothelial permeability occurred
independently of Rho kinase activity implicating other regulatory
elements (e.g., phosphoinositides and Ca2+) in actin/myosin II-
dependent vascular permeability in vivo.115 Myosin II phospho-
rylation is also essential for the extrusion of apoptotic epithelial
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cells from the epithelial barrier during embryonic tissue develop-
ment. UV irradiation of monolayer MDCK epithelial cells
induced the formation of an actin-myosin ring around the edge
of apoptotic cells indicative of cell rounding. As this ring of actin
and myosin contracted, neighboring live cells moved into the
space surrounding the dying cell thus closing the epithelial gap
and extruding the apoptotic cell simultaneously. Rho kinase
inhibition prevented the extrusion of the apoptotic cell high-
lighting the importance of myosin II phosphorylation to epithelial
cell apoptosis and implicating cross-talk signaling between the
actin cytoskeleton of the dying cell and the live neighboring
cells.116

Gelsolin is a potent actin severing protein that caps the barbed-
end of F-actin in the presence of Ca2+ preventing further barbed-
end polymerization.117 Gelsolin has been implicated in apoptosis
with caspase-3 activation producing an N-terminal gelsolin
fragment (N-Gelsolin) with un-regulated actin filament severing
capacity.118 As noted by Chhabra et al., N-Gelsolin specifically
induced apoptosis by severing the G-actin:DNase I complex
resulting in the nuclear localization and activation of DNase I.119

The mechanism by which N-Gelsolin releases G-actin bound
DNase I remains unknown. N-Gelsolin has also been demon-
strated as a pro-survival protein upstream of the mitochondria
with its N-myristoylation preventing etoposide induced apopto-
sis.120 Elevated expression of gelsolin protected Jurkat cells from
apoptosis induced by a variety of mitochondrial targeting
agents121,122 and also prevented apoptosis in neuronal cells with
enhanced actin stabilization abolishing this pro-survival effect.123

Silencing of gelsolin expression in Ras-mutated HCT116 colon
cancer cells induced butyric-mediated apoptosis, via caspase
activation further supporting the pro-survival role of gelsolin.124

Resistance to apoptosis was found to be driven by the capacity
of gelsolin to inhibit the opening of VDACs, thus preventing
mtDY loss and downstream cytochrome c release.125 It is there-
fore hypothesized that gelsolin may protect against apoptosis in
certain cell types (i.e., neurons, cancer cells), however this
hypothesis has not been further explored. What remains certain is
that caspase-3 activation releases a pro-apoptotic fragment of
gelsolin which completely abolishes its pro-survival role at the
mitochondrion and results in the release of DNase-1 from
G-actin, but not in the presence of cofilin.119 Given that gelsolin
regulation may involve other ABPs such as tropomyosin, the role
of gelsolin in apoptosis may also depend on other proteins within
the actin cytoskeleton.126

Tropomyosin is a dimerized helical polymer that winds around
actin filaments providing structural stability and diverse function-
ing of actin filaments.127,128 Tropomyosin isoforms can be
classified as high molecular weight (HMW) or low molecular
weight (LMW) depending on the gene promoter utilized.129

Muscle tropomyosins specifically regulate myofibril contraction
whereas non-muscle or cytoskeletal tropomyosins are known to
regulate numerous cytoskeletal functions due to their spatial and
temporal regulation.127,130 Cytoskeletal tropomyosins have been
demonstrated to modulate the activity of other ABPs that are
previously mentioned to be involved in apoptosis. Tm5NM1
expression in neuroepithelial cells was found to induce the

recruitment of myosin IIA to stress fibers131 and simultaneously
displacing ADF interaction with the actin filament.132 Con-
versely elevated levels of the HMW isoforms TmBr3 and Tm3
in neuroepithelial cells promoted ADF interaction with actin
filaments resulting in the formation of filopodia which promote
cell migration.131,132 This suggests that certain tropomyosin
containing filaments are marked by specific ABP interactions
which may be important in apoptosis. Anoikis is a specialized
form of apoptosis that is activated when cells dependent on
anchorage for survival (e.g., epithelial and endothelial cells) are
placed in an anchorage-independent environment.133 Anoikis
represents an important homeostatic function that prevents the
migration of detached cells to a foreign location. Studies in
mammary epithelial carcinomas have demonstrated that a signi-
ficant downregulation in the HMW isoform Tm1 correlated
with an increased resistance to anoikis perpetuating the survival
of mammary carcinoma tissue in vitro.134 Restoring Tm1
expression in cultured mammary carcinoma cell lines (MCF-7
and MBA-MB231) led to the generation of distinct actin stress
fibers and re-sensitized cells to anoikis.135 The reversion of Tm1
expression was Rho-kinase dependent and resulted in the
appearance of more distinct cadheren/catenin containing cell-cell
junctions thus enabling the cell to communicate with the extra-
cellular environment.135,136 Tm1 can therefore act as an impor-
tant sensor of the extra-cellular environment with unfavorable
conditions leading to Tm1-mediated anoikis.

In summary ABPs are essential in regulating numerous key
apoptotic processes such as cell rounding, membrane blebbing,
caspase activation and mitochondrial membrane permeabiliza-
tion. ABPs are also important in regulating specialized death
pathways such as anoikis and epithelial cell extrusion. This further
highlights the importance of actin filament dynamics in regulating
apoptosis signaling via modulation of ABP function. As tumor
cells have developed mechanisms to evade apoptosis, the trans-
formed phenotype has been used extensively to further charac-
terize the role of actin and ABPs in apoptosis signaling pathways.

Changes in the Actin Cytoskeleton
upon Transformation

The actin cytoskeleton is dramatically re-modeled upon cellular
transformation permitting metastatic properties such as anchorage-
independent growth and enhanced cell migration.137 A stabilized
actin cytoskeleton has been demonstrated as an activator of Ras
signaling resulting in apoptosis driven by the production of ROS
and loss of the mtDY.138 This discovery highlights the actin
cytoskeleton as a trigger of Ras signaling and given the impor-
tance of Ras in tumorogenesis, actin may mediate tumor-
associated processes such as cell migration via Ras signaling.138

ABPs such as tropomyosin, gelsolin and cofilin show varied
expression profiles in both malignant cell types and in virally
transformed cells implicating these proteins as potential bio-
markers of malignancy. The exact phenotypic changes in ABPs
associated with transformation remains complex. The expression
of gelsolin in breast, urothelial and oral carcinomas has been
described as biphasic with an early downregulation in gelsolin
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followed by a substantial elevation in gelsolin with prolonged
metastasis.126,139,140 Cofilin overexpression has been confirmed in
numerous tumor cell types with elevated cofilin levels potentially
correlating with tumor cell migration.141,142 However a down-
regulation in cofilin was found in the highly metastatic hepato-
cellular carcinoma143 contradicting previous studies. A more
defined role for cofilin in metastasis may be achieved by
examining the entire output from the cofilin pathway which
includes inhibitors such as LIMK I and II and stimulators such
SSH and CIN phophatase.144,145 Several studies have demon-
strated that increased expression of LIMK I contributed to the
invasive capacity of prostate and breast cancer cells highlighting
LIMK I as a potential malignant biomarker.146,147 Varying the
local concentration of cofilin can significantly alters its function
with high levels of active cofilin enhancing F-actin stability by
stimulating actin nucleation rather than enhancing turnover and
lower levels of cofilin favoring actin severing.148 This novel
paradigm may also influence the role of the cofilin system in
tumorogenesis. Downregulation of multiple HMW tropomyo-
sins (Tm1, 2 and 3) has been detected in virally transformed
chicken and rat fibroblasts,149,150 cultured human tumor
cells136,151 and in tumor derived patient samples.134 Restoration
of Tm2 and Tm3 increased the appearance of distinct micro-
filament bundles and adhesion proteins with Tm2 expression
also restoring anchorage-dependent growth.152 This correlated
with reports highlighting a role for Tm1 in anoikis.134,136

Further studies have demonstrated an increased reliance on
LMW Tm5NM1 in transformed cells153 with reduced
TM5NM1 expression leading to a reduction in melanoma cell
motility.154 Together these studies suggest that certain ABPs
(such as gelsolin, cofilin and Tm5NM1) have an important role
in permitting tumorogenic hallmarks such as enhanced motility
and anchorage independent growth. It is now well established
that the evasion of apoptosis contributes to the prolonged
survival and metastasis of tumor cells.155 Given that the actin
cytoskeleton changes dramatically upon cellular transformation
investigating apoptosis pathways in tumor cells may further
elucidate a direct link between the actin cytoskeleton, apoptosis
signaling and tumor cell survival.

Targeting the Actin Cytoskeleton for Chemotherapy

De-regulation of apoptosis by oncogenic transformation is partly
responsible for the ability of tumor cells to evade normal apop-
totic signaling pathways.155 Overexpression of Bcl-2 and other
pro-survival proteins has been detected in multiple tumor cell
types (androgen independent prostate cancer cells, B pancreatic
cancer cells, B cell lymphoma) and correlated with the prolonged
survival of B lymphoid tumors.156 Furthermore, synergistic
activation of the proto-oncogene cMyc and Bcl-2 accelerated
lymphoma tumorogenesis.157 In contrast the loss of pro-apoptotic
factors such as Bim and Puma has been correlated with the
survival of tumor cells, with re-expression of Bim suppressing
the activity of cMyc in leukemic cells158 and Puma re-expression
increasing the sensitivity of melanoma cells to apoptosis.159

The generation of specific BH3-only mimetic compounds thus

represents a potential anti-tumor therapy that could restore
sensitivity of tumor cells to apoptosis. This type of therapy has
been proven successful in vivo with the high affinity BH3
mimicking compound ABT-737 triggering Bax/Bak dependent
apoptosis in a mouse lymphoma model.160 Indeed many cyto-
toxic therapies including DNA damaging agents exert their anti-
tumor effects by inducing either extrinsic CD95 or Bcl-2
mediated apoptosis.161 However, in a panel of apoptosis resistant
tumor cells, the activation of CD95 apoptosis permitted tumoro-
genic hallmarks such as cell invasion and migration through
cellular barriers.162 This highlighted a novel anti-apoptotic role
for CD95 in metastasis.163 Furthermore, Rac1 stimulated CD95
activity in developing neurons suggesting that Rho GTPases may
regulate the invasive potential of CD95.164 Rac activation was
found to be dependent upon association with ezrin suggesting
that cellular transformation may convey a tumorogenic role for
ezrin in actin-mediated tumor cell invasion.165 Thus ezrin may
have a more global role in transducing extracellular signals to the
actin cytoskeleton and that transformation alters this signaling
pathway to promote tumor cell survival. Given the mounting
evidence implicating the actin cytoskeleton in both apoptosis and
tumorogenesis, targeting actin filaments represents an attractive
anti-cancer therapy. Studies have demonstrated the anti-tumor
effects of numerous actin targeting drugs both in vitro and in vivo.
The cytochalasins were shown to inhibit cytokine stimulated
melanoma cell motility in vitro166 and conferred an anti-proliferative
effect in an in vivo mouse melanoma model.167 Jasplakinolide
(actin stabilizing drug) has also been shown to possess a potent
anti-proliferative capacity in a panel of prostate cancer cells
accompanied by distinct apoptotic changes such as multi-nucleated
cells and actin filament disruption.168 This study utilized phalloidin
as its marker of actin filaments, however phalloidin F-actin bind-
ing is out-competed by the binding of Jasplaknolide.62 Therefore
the observed actin filament disruption may be incorrect if
filaments are already saturated with Jasplakinloide leading to the
inhibition of phalloidin binding. More recently, latrunculin A
has been demonstrated as an effective anti-tumor agent in both
in vitro and in vivo models of gastric cancer.169 Due to the high
sequence similarity between all actin isoforms indiscriminate
targeting of the global actin filament population has hampered
the success of these compounds in pre-clinical trials.170 To
circumvent this problem, an ideal approach would be to target a
sub-population of actin filaments involved in distinct functions
such as cytokinesis or proliferation.171 Given the dramatic
changes in ABP expression discussed previously, ABPs could be
utilized as novel targets for chemotherapeutic drug design.172

More specifically tumor cells downregulate their HMW tropomyo-
sins and show an increased reliance upon the LMW isoforms such as
Tm5NM1/2. A novel strategy would be to target actin filaments
containing Tm5NM1 to improve the specificity toward tumor
cells.171 Inhibitors of LIMK I have also been postulated as a second
target for actin-based chemotherapy because elevated expression
of LIMK I was associated with the malignant phenotype.173

Given the high regulatory nature of the ADF/cofilin family and
the conflicting expression patterns of cofilin in tumor cells,
upstream targeting of LIMK may be a more effective strategy.
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In the realm of chemotherapy, multi-drug resistance (MDR)
is an emerging issue and changes in the actin cytoskeleton have
been identified in MDR-specific cell lines. An altered actin
cytoskeleton has been detected in a specific sub-population of
MDR osteosarcoma cells with increased resistance correlating to
the appearance of cells with distinct actin filament bundles.174

Furthermore, drug resistance in leukemic cells treated with the
anti-microtubule drug vincristine produced fragments of actin
that were identified via proteomic analysis.175 Reduced expression
of the c-actin isoform was specifically detected in leukemic cells
that were resistant to another anti-microtubule drug vinblastine.
Consequently a lower level of c-actin in vinblastine-resistant cells
correlated with a worse prognosis in relapse patients diagnosed
with acute lymphoblastic leukemia.176 In relation to ABPs,
mutational analysis of cofilin revealed the existence of positively
charged surfaces that can regulate the activity of the drug
transporter PDR1 without compromising mitochondrial func-
tion.97 This implicates cofilin as a potential player in the acquisi-
tion of multi-drug resistance with human cofilin CFL-2 being
identified as a prognostic marker for non-small cell lung cancer
drug resistance. Collectively, these reports suggest that changes
in the organization of the actin cytoskeleton facilitate the survival
of drug resistant cells resulting in a worse prognosis for cancer
patients. Thus actin filament changes in MDR-specific tumor
cells may represent a point of vulnerability in the actin
cytoskeleton that could be treated by drug intervention.

Summary

Given the important role of the actin cytoskeleton in cellular
homeostasis, it is not surprising that actin also has an important

role in apoptosis. In the yeast system, the role of actin and cofilin
in sensing oxidative stress has been well established. However
in mammalian cells apoptotic mechanisms are more complex
and defining a global role for actin in mammalian apoptosis
remains challenging. It is clear that actin initiates and mediates
mammalian apoptosis via the intrinsic and extrinsic pathways and
final degradation of actin filaments amplifies the apoptosis
signaling cascade. Actin dynamics is the crucial determinant
of whether a cell succumbs to insult or resists with ABPs such
as gelsolin, cofilin and tropomyosin conveying an important
regulatory function in apoptosis. Given that the actin cyto-
skeleton significantly changes upon cellular transformation and
the correlative changes in actin filament architecture in drug
resistant cells, drugs that target MDR tumor-specific actin
filaments could be utilized in combination with routine therapies
to enhance their effectiveness in patients.
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