Received: 4 March 2020 Revised: 31 March 2020 Accepted: 31 March 2020 Published online: 30 April 2020

DOI: 10.1002/ctm2.25

CLINICAL AND TRANSLATIONAL MEDICINE
% ‘OpenAccess’

WILEY

RESEARCH ARTICLE

Identification of potential candidate genes and pathways in
atrioventricular nodal reentry tachycardia by whole-exome
sequencing

Rong Luo PhD! | Chenqing Zheng MD?> | Hao Yang MD? | Xuepin Chen MD® |
Panpan Jiang PhD* | Xiushan Wu PhD® | Zhenglin Yang PhD® | Xia Shen PhD*%7 |
Xiaoping Li MD, PhD?

!nstitute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, People’s Republic of China
2State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China

3Department of Cardiology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital, Chengdu,
Sichuan, China

4Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen, China
5The Center of Heart Development, College of Life Sciences, Hunan Norma University, Changsha, China
6Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom

7Deparlmem of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

Correspondence

Xiaoping Li, MD, PhD, Institute of Geriatric Abstract

Cardiovascular Disease, Chengdu Medical Background: Atrioventricular nodal reentry tachycardia (AVNRT) is the most com-

C;él;:ge, Chengdu 610500, People’s Republic | 1oy manifestation of paroxysmal supraventricular tachycardia (PSVT). Increasing

O ma.

Email: lixiaoping0119@163.com data have indicated familial clustering and participation of genetic factors in AVNRT,
and no pathogenic genes related to AVNRT have been reported.

Funding information

National Natural Science Foundation of China. Methods: Whole-exome sequencing (WES) was performed in 82 patients with
Grant/Award Numbers: 81770379, 81500297, | AVNRT and 100 controls. Reference genes, genome-wide association analysis, gene-
81470521, 81670290 based collapsing, and pathway enrichment analysis were performed. A protein-protein
interaction (PPI) network was then established; WES database in the UK Biobank and
one only genetic study of AVNRT in Denmark were used for external data validation.
Results: Among 95 reference genes, 126 rare variants in 48 genes were identified in
the cases (minor allele frequency < 0.001). Gene-based collapsing analysis and path-
way enrichment analysis revealed six functional pathways related to AVNRT as with
neuronal system/neurotransmitter release cycles and ion channel/cardiac conduction
among the top 30 enriched pathways, and then 36 candidate pathogenic genes were
selected. By combining with PPI analysis, 10 candidate genes were identified, includ-
ing RYR2, NOS1, SCNIA, CFTR, EPHB4, ROBO1, PRKAG2, MMP2, ASPH, and
ABCCS. From the UK Biobank database, 18 genes from candidate genes including

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
© 2020 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics

238 wileyonlinelibrary.com/journal/ctm2 Clin. Transl. Med. 2020;10:238-257.


https://orcid.org/0000-0001-5580-5605
http://creativecommons.org/licenses/by/4.0/

L ST AL. CLINICAL AND TRANSLATIONAL MEDICINE
UO ET AL 1

3

SCNIA, PRKAG2, NOSI, and CFTR had rare variants in arrhythmias, and the rare
variants in PIK3CB, GAD2, and HIPIR were in patients with PSVT. Moreover, one
rare variant of RYR2 (c.4652A > G, p.Asnl1551Ser) in our study was also detected
in the Danish study. Considering the gene functional roles and external data valida-
tion, the most likely candidate genes were SCNIA, PRKAG2, RYR2, CFTR, NOSI,
PIK3CB, GAD2, and HIPIR.

Conclusion: The preliminary results first revealed potential candidate genes such as
SCNIA, PRKAG2, RYR2, CFTR, NOSI, PIK3CB, GAD2, and HIPIR, and the path-

ways mediated by these genes, including neuronal system/neurotransmitter release

KEYWORDS

1 | BACKGROUND

Atrioventricular nodal reentrant tachycardia (AVNRT) is one
of the most common types of paroxysmal supraventricular
tachycardia (PSVT), which caused by a reentry circuit
involving fast and slow atrioventricular nodal pathways.'
Although radiofrequency ablation has a satisfactory success
rate in AVNRT, the precise anatomic structures that con-
stitute the reentrant circuit are unresolved, and the specific
pathogenesis has remained the subject of study over several
decades.”? Because most patients with AVNRT experience
the onset of their symptoms in early adulthood and lack
other structural heart disease, AVNRT was once believed a
congenital functional abnormality developed during cardiac
development.?

However, there are some reports of AVNRT occurring in
twins and members in the same family,*” and first-degree
relatives of patients with AVNRT present a hazard ratio of at
least 3.6 for manifesting AVNRT compared with the general
population,” indicating that genetic factors are involved
in the etiology and mechanism of this disease. Familial
Wolff-Parkinson-White syndrome, another type of PSVT,
has been well recognized as a disease that is partly caused
by gene mutations, and a couple of responsible mutations
in the PRKAG2 gene have been confirmed.®® However,
little is known on the potential hereditary contribution to
AVNRT, and no related pathogenic genes have been reported
to date.

Exome sequencing is an efficient approach to iden-
tify pathogenic genes involved in Mendelian and/or non-
Mendelian hereditary diseases. However, factors such as
lack of large multiplex families, locus heterogeneity, and
incomplete penetrance have hampered such efforts to iden-

cycles or ion channels/cardiac conduction, might be involved in AVNRT.

atrioventricular nodal reentry tachycardia, whole-exome sequencing, gene-based collapsing analysis, neu-
rotransmitter release cycles pathway, ion channels—related pathway, ion channel genes

tify pathogenic genes in many diseases. Recent advances in
gene-based collapsing analysis might overcome some of these
limitations.'” In addition, rather than investigating associa-
tions between single genetic variant and a phenotype, pathway
analysis of exome sequencing data interrogates alterations
in biological pathways and helps us identify the underlying
genes that cause disease. Therefore, we hypothesize that the
application of this more integrated approach may help eluci-
date the genetic etiology of AVNRT.

To our knowledge, there are no published studies identi-
fying the pathogenic genes in AVNRT. In the current pilot
study, we examined AVNRT using whole-exome sequenc-
ing (WES) to verify possible pathogenic genes by gene-base
burden, pathway enrichment, and protein-protein interaction
(PPI) analyses.

2 | SUBJECTS AND METHODS

The study participators were identified among patients treated
with radiofrequency catheter ablation at the Department of
Cardiology of the Sichuan Academy of Medical Sciences and
the Sichuan Provincial People’s Hospital in the period from
2014 to 2017. A total of 100 unrelated ethnically matched
healthy control subjects were enlisted from the visitors to
the Health Evaluation and Promotion Center of the Sichuan
Academy of Medical Sciences and the Sichuan Provincial
People’s Hospital. Upon inclusion, blood sample tests, 12
lead electrocardiograms, echocardiography, and cardiac his-
tory were recorded. The control subjects were free of any
cardiovascular diseases, arrhythmia, chronic anemia, diabetes
mellitus, thyroid disorders, electrolyte disturbance, systemic
immune diseases, malignant tumors, or any other diseases
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known to cause arrhythmias. A written informed consent for
genetic screening was obtained from all participants. Ethical
approval for this study was acquired from the ethics com-
mittee of the Sichuan Academy of Medical Sciences and the
Sichuan Provincial People’s Hospital.

2.1 | Intracardiac electrophysiological study

Baseline intracardiac electrophysiological studies included
atrial stimulation (burst or extra stimulus pacing) and ven-
tricular stimulation in cases. AVNRT diagnosis was set up
according to published criteria and pacing maneuvers as
applicable.!! Dual atrial ventricular (AV) node physiol-
ogy was defined as a >50-ms increment in the atrial-His
(AH) interval after a 10-ms decrement interval during
single-atrial extra stimulation or a >50-ms increment in
the AH interval after shortening the pacing cycle length by
10 ms. If persistent AVNRT (lasting >30 seconds) was not
induced, the same pacing maneuvers were repeated under
isoproterenol administration and withdrawal as previously
described.'?

2.2 | Next-generation DNA sequencing, variant
calling, and annotation

DNA samples were extracted from peripheral blood using the
QIAamp DNA Blood Mini and Maxi Kits (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions.
Entire exon sequences were enriched by using a SureSelect
Human All Exon kit V6 (Agilent Technologies, Santa Clara,
CA, USA), and the libraries were sequenced on the Illumina
HiSeq NovaSeq platform (Illumina, San Diego, CA, USA).
The average read depth was 123, and on average 96.4, 98.6,
and 99.4% of exons were covered by at least 20 reads, 10
reads, and 4 reads, respectively (Supplement Figure 1, S14).
Qualified sequence reads were arrayed to the human refer-
ence genome (NCBI GRCh37) using the Burrows-Wheeler
Aligner(version 0.5.17; http://bio-bwa.sourceforge.net/).
SAMtools (version 0.1.18, http://samtools.sourceforge.net/),
Picard (http://picard.sourceforge.net/), and GATK (http://
www.broadinstitute.org/gsa/wiki/index.php/Home_Page)

were used for removing duplicated reads, realignment, and
recalibration. Potential single nucleotide variants (SNVs) and
small insertions and deletions (indel) were called and filtered
by using GATKS3.7. Then, high-confidence SNV and indel
variants were noted using snpEff (Version 4.2; http://snpeff.
sourceforge.net/). Furthermore, all variants were annotated
according to the control population of the 1000 Genomes
Project (2014 Oct release, http://www.1000genomes.org),
ExAC (http://exac.broadinstitute.org), EVS (http://evs.gs.
washington.edu/EVS), the disease databases of ClinVar

(http://www.ncbi.nlm.nih.gov/clinvar), and OMIM (http://
WWW.0mim.org).

2.3 | Rare variants in reference genes

A total of 95 reference AVNRT genes were selected to detect
rare variants in AVNRT cases and controls. The genes were
elected based on the following criteria according to another
pioneering study on gene rare variants in AVNRT!3: (1) genes
involved in PR interval in electrocardiogram identified by
genome-wide association studies,'* (2) genes selected based
on expression levels in human atrioventricular conduction
axis,'® (3) plausible genes based on protein function, and
association with other cardiac diseases, especially arrhythmic
diseases.!>10-18 Selected genes are listed in Supplementary
Table S1.

2.4 | Single-marker association analysis

We used GATK v3.7 CombineGVCFs to combine the WES
dataset with ethnically matched and unrelated subjects in
the AVNRT cohort and the control group, followed by fil-
tering with VQSR and PLINK1.9 (-geno 0.1 —hwe 0.0001)
to obtain high-confidence variant datasets.!® Furthermore,
PLINK1.9 was applied to check the multidimensional scal-
ing dataset based on raw Hamming distances for population
stratification, identity by descent calculation for sample pairs,
and Hardy-Weinberg equilibrium deviation for all markers.
Genome-wide association analysis (GWAS) for the qualified
high-confidence datasets was performed to compute the odds
ratios (ORs) and P values in PLINK using Fisher’s exact test
for dichotomous phenotypes (cases vs controls for AVNRT).
Finally, we used a genome-wide threshold for significance of
P<1x107% A quantile-quantile (Q-Q) plot was used to eval-
uate the resulting P values.

2.5 | Gene-based collapsing analysis and
pathway enrichment

We performed gene-based collapsing to combine the infor-
mation on multiple deleterious rare variants into a single
value per gene, with ethnically matched and unrelated
subjects in the AVNRT cohort (n = 82) and the control
group (n = 100). We defined deleterious rare (minor allele
frequency [MAF] < 0.01) variants as nonsense, missense,
splice-site, indel, and frameshift mutations. For statistical
considerations, Fisher’s exact test methods were preferred to
calculate the gene-based collapsing. Two groups with MAFs
below 0.1% and 1% in the Exome Aggregation Consortium
(ExAC) and 1000 Genomes Project databases were calcu-
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lated separately. A statistical significance was determined
by P < 0.05. The significant genes were submitted to the
KOBAS3.0 web server (http://kobas.cbi.pku.edu.cn/kobas3)
to obtain the functional gene set Reactome Pathway enrich-
ment. Then, the rich factor was calculated, and the top
30 enriched pathways are shown based on the corrected
P value.

2.6 | Construction of the PPI network

The Search Tool for the Retrieval of Interacting Genes
database (STRING) (Version 10.0, http://string-db.org) was
used to predict the relationships among the screened genes
and identify the most relevant genes.?’ Based on experimen-
tal data, database entries, and coexpression, PPI node pairs
with a score of combination > 0.4 (medium confidence) were
considered to be significant. Then, Cytoscape software (ver-
sion 3.7.1) was used to visualize the resulting PPI network.

A Variants and carriers in reference genes (MAF<0.01)

ADRB2 = Variants
e cases

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0

TABLE 1 Demographic baseline of patients
Variables
Sex, male (%)
Age at onset, year
BMI, kg/m?

Disease course, year

Total patients (n = 82)
25 (30.5)

441171

23.8 (22.4-25.9)

6.7 +84

5(6.0)

Synicope/approximate syncope, n
(%)

Chest distress, n (%) 10 (12.2)

33.7)

172.7 £ 20.5

2(24)

6(7.3)

Familial history, n (%)
Heart rate at onset, bpm
Atypical of AVNRT, n (%)

Use of isoproterenol during
operation, n (%)

9 (11.0)
332.8 +58.3

Cases without AH jump, n (%)

Antegrade Wenckebach’s point of
atrioventricular node (ms)

B Variants and carriers in reference genes (MAF<0.001)

KCNJ12
RYR3
RYR2
ZFHX3
ANK2
AKAP9
GNB3
SYNE2

TRPM4

CACNALI
SCNS5A
CACNALD
MYH6
SCN3A
KCNH2
SCN1A
HCN4
NUP155
GJD3
SCN10A
CACNB2
SCN4A
CACNALG
SYNPO2L
CAV3

Genes

mm Variants
I cases

0 2 4 6 8 10

FIGURE 1 The number of rare variants and cases in referential genes (A, MAF < 0.01; B, MAF < 0.001). The blue box represented the
number of the rare variants of the referential gene, and the red box represented the numbers of the patients who carried the rare variants
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3 | RESULTS
3.1 | Clinical data of the cases

Our analysis included WES data from 82 cases and 100 con-
trols. All AVNRT patients were diagnosed by electrophysi-
ologic examination and underwent radiofrequency ablation.
Among the 82 cases recruited in our analyses, the mean age at
onset was 54.1 + 17.1 years old, and the ratio of females/males
was 2.28:1. The median disease course was 4.0 years. Five
patients had a history of syncope or approximate syncope,
three had a familial history or suspected familial history of
AVNRT, and no patients exhibited any structural heart dis-
ease. In the electrophysiological study, nine patients presented
no AH jump, isoproterenol infusion was used in six cases to
induce the onset of AVNRT. Except for one patient who exhib-
ited slow-slow and one with slow-fast, all other cases exhib-
ited typical slow-fast AVNRT, and all cases were treated suc-
cessfully with radiofrequency ablation during the operation,
with only one case relapsing in 6 months after operation; for
more details, see Table 1.

3.2 | Rare variants in reference genes

Among the 95 reference genes, 126 deleterious rare variants in
48 genes were detected according to the definition of rare vari-
ants with an MAF < 0.001 in the EXAC and 1000 Genomes
Project databases: 11 rare variants in KCNJI2 (n = 11), nine
in RYR3 (n = 9), eight in RYR2 (n = 8), seven in ZFHX3
(n="17), six in ANK2 (n = 6); five in AKAP9 (n = 5), SYNE2
(n=15), TRPM4 (n =5); fourin CACNAID (n=4), CACNAII
(n=4), GNB3 (n =5), MYH6 (n = 4), SCN5A (n = 4); three
in HCN4 (n = 3), KCNH2 (n = 3), SCNIA (n = 3), SCN3A
(n = 3); two in CACNAIG (n = 2), CACNB2 (n = 2), GJID3
(n =2), NUPI55 (n=2), SCN4A (n = 2), SCNI0OA (n = 2),
SYNPO2L (n = 2); one rare variant in one case in following
genes: ADRB2, C9orf3, CASQ2, CAVI, CAV3, ERG, HCN2,
HCN3, ITPRI, KCNA4, KCNAS5, KCND3, KCNN3, LMNA,
PITX2, PKP2, PRKAG2, SCNI1B, SCN4B, SCN9A, SLC8AI,
SNTA1, SOX5, and TBX3 (Supplementary Table S2; Figure 1).
Among the above rare variants in the listed genes, only two
controls exhibited two rare variants in KCNJ12 and one rare
variant was found in one control subject in each of HCN4,
ANK?2, and RYR2.

As PSVT has a prevalence of 22.5/10 000 persons and
an incidence of 35/100 000 person-years,?! and the sample
examined in the current study was relatively small, we chose
another definition of rare variants with an MAF < 0.01 in the
ExAC and 1000 Genomes Project databases, and a total of
227 rare variants in 64 genes were detected. The details of the
rare variants are presented in Supplementary Table S3.
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FIGURE 2 Manhattan plot (A) and pathway enrichment analysis
of KEGG (B) and Reactome (C). A, The Manhattan plot showed the
significant locus along the genome (P < 107%); B, The bubble chart of

top30 pathways enriched by KEGG database; C, The bubble chart of
top 30 pathways enriched by Reactome database
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TABLE 2 SNPsin genes from the pathway enrichment analysis according to both KEGG and Reactome

Genes Al F A F U A2 P OR Functions Hgv.c Hgv.p

SEMA6D G 0414 0225 T 1.10E-4 244 Intron variant ~ ¢.1646+105G > T

ROBO2 G 0.207 0.075 C 3.18E—4 3.23 Intron variant ~ ¢.109+121G > C

MYLI12A C 0.161 0.041 CGT 348E-4 451 Intron variant ~ ¢.1994+192_199+

193delGT

ABLIM2 T 0.177 0345 C 349E-4 041 Intron variant ~ ¢.838-131G > A

ATP2B2 G 0.000 0.060 A 7.05E-4  0.00 Intron variant ~ ¢.3974+71C > T

ATP2B2 A 0.110 0.025 G 1.02E-3 4.8l Synonymous c.1626C > T p.lle542Ile
variant

ATP2B2 T 0.110 0.025 C 1.02E-3 4.8l Intron variant ~ ¢.16594+102G > A

UNCSB T 0.120 0.027 C 1.05SE-3  4.89 Intron variant ~ ¢.305-277C > T

NEO1 C 0342 0195 T 1.80E-3 2.14 Intron variant ~ ¢.1511490T > C

NEO1 TA 0.348 0200 T 1.90E-3 2.13 3-prime UTR  c¢.*52_*53insA
variant

ATP2B2 T 0.183 0325 G 2.62E-3 047 Intron variant ~ ¢.1417-186C > A

NEO1 G 0342 0200 A 277E-3  2.07 Synonymous c.1779A > G p.-Lys593Lys
variant

ASPH C 0518 0359 A 2.80E-3 193 Intron variant ~ ¢.1108-121T > G

ABLIM2 A 0232 0380 G 3.07E-3  0.49 Intron variant ~ ¢.9154+26C > T

PLXNB1 A 0.043 0.000 G 3.51E-3 Non-coding n.5120C > T
transcript
exon variant

DPYSL2 T 0.108 0.028 C 3.56E-3 422 Intron variant ~ ¢.9364+251C > T

PLXNC1 T 0.043 0.000 C 3.65E-3 Intron variant ~ ¢.1062+161C > T

CACNA1IG  CTGTGTGT 0.049 0.140 C 441E-3 0.32 Intron variant ~ ¢.5782-165_5782-

GTGTTT 164insTGTGTGTG
GTG TGTTTGTG

ASPH C 0488 0340 G 526E-3 1.85 Intron variant ~ ¢.1346-79C > G

UNCSB T 0.134 0.050 C 531E-3 294 Splice region c.732C>T p.Tyr244Tyr
variant

UNC5B A 0.134 0.050 G 531E-3 294 Intron variant ~ ¢.734-173G > A

UNCS5B G 0.134 0.050 A 531E-3 294 Missense c.724A > G p.1le242Val
variant

UNC5B CTG 0.134 0.050 C 531E-3 294 Intron variant ~ ¢.1100-35_1100-34insTG

UNCS5B T 0.134 0.050 C 531E-3 294 Intron variant ~ ¢.9014+33C > T

ASPH T 0512 0365 C 5.67E-3 1.83 Intron variant ~ ¢.1195-57G > A

UNCSB A 0.128 0.045 G 6.47E-3 3.12 Intron variant ~ ¢.80-87G > A

EPHA2 CAG 0.041 0.000 C 6.82E-3 Intron variant  ¢.86-344_86-343dupCT

RYR3 C 0.073 0.015 G 6.92E-3 5.18 Synonymous €.2403G > C p-Leu801Leu
variant

RYR3 G 0.073 0.015 A 6.92E-3 5.18 Intron variant ~ ¢.35564+34A > G

RYR2 A 0.061 0.010 G 7.78E-3 643 Intron variant ~ ¢.13317+48G > A

RYR3 C 0370 0240 G 795E-3 1.86 Intron variant ~ ¢.5861-174C > G

PLXNA4 CACACACA 0.024 0.095 C 8.05E-3 0.24 Intron variant ~ ¢.3874+275_38744276

AACAT insATGTTTGTGTGT

SEMASA C 0352 0223 T 8.65E-3  1.89 Intron variant  ¢.1599+327G > A
RYR1 G 0.012 0.070 A 8.74E-3 0.17 Intron variant  ¢.11689+68A > G
SLIT3 G 0253 0383 A 9.35E-3  0.55 Intron variant ~ ¢.1459+4296C > T
RYR2 G 0.438 0299 A 9.66E-3 1.82 Intron variant ~ ¢.9128+133A > G

(Continues)
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TABLE 2 (Continued)
Genes Al FA FU A2 P
FES T 0.037 0.11 C 9.71E-3
FES A 0.037 0.11 G 9.71E-3

OR Functions
0.31 Non coding

0.31 Intron variant

Hgv.c
n.616T > C

Hgv.p

transcript
exon variant

c.388-212A > G

Notes: F_A, frequency of the affected; F_U, frequency of the unaffected; hgv.c, human genome variation c.DNA; hgv.p, human genome variation protein.

3.3 | GWAS study for common variants

Single-nucleotide polymorphisms (SNPs) were removed from
the preimputation dataset if they exhibited an MAF < 0.01 or a
P value for Hardy-Weinberg equilibrium < 1 x 10~* (Supple-
mentary Figure 2, S15). Association P values from the GWAS
were reported in Q-Q plots and Manhattan plots (Figure 2,
Supplementary Figure 2, S15). In the limited number of sam-
ples, SNPs with P values (Fish test) of less than 107 are
shown in Supplementary Table S4.

Then, pathway enrichment was performed under the con-
dition of including SNPs with P < 0.01 according to Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Reactome
databases. As shown in Figure 2, the following four related
traits were among the top 30 pathways in the two databases:
(1) vesicle-mediated transport, (2) axon guidance, (3) the
Ca* signaling pathway, and (4) ion channel transport, and
there were 20 genes in both the KEGG and Reactome database
analyses, including ABLIM?2, ASPH, ATP2B4, CACNAIG,
DPYSL2, EPHA2, FES, MYLI2A, NEOI, PLXNA4, PLXNBI,
PLXNCI, ROBO2, RYRI, RYR2, RYR3, SEMA5A, SEMAGD,
SLIT3, and UNC5B (Table 2).

3.4 | Gene-based collapsing analysis and
pathway enrichment for rare variants

We carried out gene-based collapsing tests under two fre-
quency categories (MAF < 0.01 and MAF < 0.001) with
P values of less than 0.05 were included. The Q-Q plots,
Manhattan figures, and rare variants of the genes are shown
in Supplemental Figure-3 S16 and Supplemental Tables S5
and S6.

In pathway analysis, rare variants are associated with genes,
and genes are placed into sets. The pathway enrichment anal-
ysis was performed using the Reactome database, and there
were 517 and 343 pathways enriched with an MAF < 0.01
and MAF < 0.001, respectively (Supplementary Tables S7
and S8). Among the top 30 enriched pathways, there were six
related pathways (MAF < 0.01) and two pathways related to
AVNRT (MAF P < 0.001) (Figure 3). In addition, 14 path-
ways other than the top 30 pathways exhibited potential func-
tions associated with AVNRT with either an MAF < 0.01 or
MAF < 0.001 (Tables 3 and 4).

From the above-related pathways, 36 candidate pathogenic
genes were selected: ABCCS, APIG2, ASPH, ATP2C2,
BEGAIN, CDI163, CFTR, COG4, COL5AI, COILA4A3,
CSF2RB, DOK4, EPHB4, EVL, GAD2, HEPH, HIPK2,
HIPIR, KCNV2, LAMCI, LRFN4, MMP2, NOSI, PIK3CB,
PPFIAI, PRKAG2, PSMBII, ROBOI, SCNIA, SFTPA2,
SLCY9BI, SLC26A4, SLCI2A4, SYTI10, TCF7LI, and
TSPOAPI (Table 5). The variant information for these
candidate genes is listed in Supplemental Tables S9 and
S10. Among the candidate genes, SCNIA and PRKAG2 were
identified in arrhythmia diseases as reference genes.

3.5 | PPI network construction and analysis

To determine the most relevant genes among the above 36
candidate genes from gene-based collapsing analysis, the PPI
network was constructed with STRING, which combined
64 reference genes with rare variants from the present
study and 20 selected genes among the top 30 enriched
pathways according to both the KEGG and Reactome
databases in a GWAS. The nine most significant genes
according to scores and nodes were NOSI (score = 6.795,
nodes = 8.5), SCNIA (score = 6.071, nodes = 10.5), CFTR
(score = 4.673, nodes = 6.5), EPHB4 (score = 4.483,
nodes = 7.5), PRKAG2 (score = 4.335, nodes = 8), ROBO1
(score = 4.241, nodes = 6.5), ASPH (score = 3.001,
nodes = 3.5), MMP2 (score = 2.665, nodes = 4), and
ABCCS8 (score = 2.387, nodes = 4.5). Remarkably, RYR2
(score = 14.88, nodes = 23.5) was ranked as the first PPI node
among the reference genes with rare variants in the present
study, and the P value of the burden gene test was nearly 0.05
(P =0.55) with frequency categories (MAF < 0.001). Consid-
ering the functional roles of the genes and previous studies,
the most likely candidate genes were SCNIA, PRKAG?2,
RYR2, CFTR, and NOSI (Figure 4 and Table 6), and the
rare variants information for the selected top five genes is
illustrated in Figure 5 and listed in Supplementary Table S11.

3.6 | External data validation

To verify the candidate pathogenic genes that we screened,
we selected the UK Biobank resource for external data
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FIGURE 3 The top 30 pathways in Reactome pathway enrichment. A, The bubble chart of top30 pathways enriched by Reactome database
(MAF < 0.001); B, The bubble chart of top30 pathways enriched by Reactome database (MAF < 0.001)
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TABLE 3 Gene-based pathway enrichment according to Reactome (MAF < 0.01)

Pathways

Neuronal system

Neurotransmitter release cycle

Acetylcholine neurotransmitter release cycle
Serotonin neurotransmitter release cycle
Norepinephrine neurotransmitter release cycle
Dopamine neurotransmitter release cycle

Glutamate neurotransmitter release cycle

Axon guidance

Cation-coupled chloride cotransporters

Interactions of neurexins and neuroligins at

synapses

Protein-protein interactions at synapses

SLAM protein interactions at the synapses

Potassium channels

Metal ion SLC transporters

Transmission across chemical synapses

Inwardly rectifying K™ channels

Vesicle-mediated transport

Voltage gated potassium channels

Cardiac conduction
Ton homeostasis

Ca’* pathway

ID
R-HSA-112316

R-HSA-112310
R-HSA-264642
R-HSA-181429
R-HSA-181430
R-HSA-212676
R-HSA-210500
R-HSA-422475

R-HSA-426117
R-HSA-6794361

R-HSA-6794362
R-HSA-8849932
R-HSA-1296071
R-HSA-425410

R-HSA-112315

R-HSA-1296065
R-HSA-5653656

R-HSA-1296072
R-HSA-5576891
R-HSA-5578775
R-HSA-4086398

SLAM, signaling lymphocytic activation; SLC, solute carrier.

Input

number

8

O N NN N W

—_— N =N [\

AN = W

— = N =

Background
number

339

50
16
17
17
22
23
549

57

57
21
99
25
208
31
573

43
141
56
61

TABLE 4 Gene-based pathway enrichment according to Reactome (MAF < 0.001)

Pathways
Cardiac conduction
Ton homeostasis

Axon guidance

Ion channel transport

SLAM protein interactions at the
synapses
Ion transport by P-type ATPases

Transport of inorganic
cations/anions and amino
acids/oligopeptides

Neuronal System

Vesicle-mediated transport

SLAM, signaling lymphocytic activation.

Input
ID

R-HSA-5576891 3
R-HSA-5578775 2
R-HSA-422475 6

R-HSA-983712 3

R-HSA-8849932 1

R-HSA-936837 1
R-HSA-425393 1
R-HSA-112316 1

R-HSA-5653656 1

number

Background
number

141

56

549

211

21

57

100

339
573

Corrected

P-Value P-Value

0.004

0.007
0.008
0.008
0.008
0.013
0.014
0.023

0.057
0.070

0.070
0.149
0.169
0.174
0.201
0.209
0.251

0.276
0.281
0.342
0.366

P-Value
0.0246
0.026
0.034

0.066

0.091

0.222

0.354

0.771
0.918

0.048

0.064
0.068
0.072
0.072
0.096
0.100
0.133

0.197
0.212

0.212
0.284
0.300
0.304
0.329
0.334
0.369

0.389
0.393
0.439
0.456

Corrected
P-Value

0.177
0.179
0.191

0.229

0.261

0.379

0.486

0.800
0.9236

Genes

ABCCS, PPFIAI, LRFN4,
TSPOAPI, BEGAIN,
GAD2, SYT10, KCNV2

TSPOAPI, PPFIAI, GAD2
TSPOAPI, PPFIAI
TSPOAPI, PPFIAI
TSPOAPI, PPFIAI
TSPOAPI, PPFIAI
TSPOAPI, PPFIAI

EPHB4, LAMCI, MMP2,
DOK4, CSF2RB, SCNIA,
EVL, ROBOI, PIK3CB

SLCI2A4
BEGAIN, SYTI0

BEGAIN, SYTI0

LRFN4

ABCCS, KCNV2

HEPH

TSPOAPI, PPFIAI, GAD2
ABCC8

APIG2, CD163, CF1R,
PRKAG2, HIPIR,COG4

KCNV2
SCNIA, NOSI
NOSI
TCF7LI1

Genes
HIPK2, NOS1, ASPH
NOSI1, ASPH

COLA4A3, EPHB4,
PSMBI11, COL5A1,
EVL, ROBOI

SLC9BI1, ATP2C2,
ASPH

LRFN4
ATP2C2

SLC26A4

LRFN4
CD163
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TABLE 5 Gene-based burden results for candidate genes

3

Gene MAF < 0.01 MATF < 0.001
OR P value Cases Controls OR P value Cases Controls

CFTR 4.67 4.546E—-6 68 51 1.89 2.570E-1 6 4
EVL NAx 4.352E-5 12 0 NA 4.352E-05 12 0
HIPIR NA 3.256E-3 7 0 NA 2.016E-1 2 0
ABCCS NA 7.539E-3 6 0 NA 8.961E—-2 3 0
COG4 9.24 1.629E-2 7 1 NA 8.961E-2 3 0
LAMC1 9.24 1.629E-2 7 1 1.22 6.995E—1 1 1
AP1G2 9.24 1.629E-2 7 1 NA 4.505E—-1 1 0
GAD2 NA 1.733E-2 5 0 NA 4.505E—-1 1 0
CSF2RB NA 1.733E-2 5 0 NA 2.016E—1 2 0
BEGAIN NA 1.733E-2 5 0 NA 8.961E-2 3 0
SYT10 NA 1.733E-2 5 0 NA 4.505E—1 1 0
LRFN4 NA 1.733E-2 5 0 NA 1.733E-2 5 0
NOS1 1.95 2.000E-2 42 35 1.93 2.337E-2 39 32
SLCI12A4 5. 2.433E-2 8 2 3.18 1.489E—1 5 2
ROBO1 5.30 2.433E-2 8 2 9.24 1.628E-2 7 1
SFTPA2 3.26 2.447E-2 12 5 5.01 9.055E-3 11 3
TSPOAPI1 3.99 3.123E-2 9 3 1.66 3.9110E-1 4 3
KCNV2 7.82 3.324E-2 6 1 2.48 4.257E—-1 2 1
PIK3CB 7.82 3.324E-2 6 1 2.48 4.257E-1 2 1
CD163 NA 3.955E-2 4 0 NA 3.955E-2 4 0
PRKAG2 NA 3.955E-2 4 0 NA 4.505E—1 1 0
DOK4 NA 3.955E-2 4 0 NA 2.016E—1 2 0
HEPH NA 3.955E-2 4 0 NA 2.016E—1 2 0
SCN1A NA 3.955E-2 4 0 NA 8.961E-2 3 0
PPFIA1 NA 3.955E-2 4 0 NA 8.961E-2 3 0
EPHB4 4.57 4.592E-2 7 2 7.82 3.324E-2 6 1
MMP2 4.57 4.592E-2 7 2 5.08 1.284E—1 4 1
TCF3 4.57 4.592E-2 7 2 3.76 2.398E—1 3 1
COL5A1 3.50 5.570E-2 8 3 4.57 4.592E-2 7 2
ATP2C2 2.59 1.046E-1 8 4 7.82 3.324E-2 6 1
SLC26A4 2.55 1.606E-1 6 3 NA 3.955E-2 4 0
ASPH 2.55 1.606E—1 6 3 NA 3.955E-2 4 0
PSMBI11 2.24 1.673E—1 7 4 NA 3.955E-2 4 0
RYR2 1.60 2.433E-1 10 8 3.50 5.570E-2 8 3
COL4A3 1.89 2.570E—1 6 4 NA 1.733E-2 5 0
HIPK2 0.94 6.424E—1 7 9 NA 1.733E-2 5 0
SLCY9BI 1.00E0 82 100 293 3.021E-2 77 84

Note: * NA, not available as the number of cases or controls is zero; MAF, minor allele frequency.

validation. The database was the most recent upload of the
total exome sequencing data from 49 960 participators.>>
We searched for rare variants in our candidate genes that
were associated with arrhythmias in UK Biobank summary
statistics database. Among these 37 candidate genes (36
genes from the gene-based collapsing analysis and RYR2), we
obtained information about 33 rare variants in 18 genes in this

database of arrhythmia patients; these genes were SCNIA,
PRKAG2, CFTR, NOSI, PIK3CB, GAD2, HIPIR, ASPH,
CDI163, SLC9BI1, ROBOI, EPHB4, KCNV2, PPFIAI, SYTIO0,
COG4, MMP2, and CSF2RB. In particular, rare variants in
three genes, PIK3CB, GAD2 and HIPIR, were present even
in patients with PSVT (Figure 6, Table 7, and supplementary
Table S12). Moreover, we applied enrichment analysis to
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explore the correlation between phenotypes and burden gene.
Consequently, PIK3CB, GAD2, and HIPIR genes showed
the most significant enrichment in PSVT (P = 0.000174)
among 791 phenotypes in UK Biobank (Figure 6, Table 8,
Supplementary Table S13).

Because the disease information of UK Biobank was
not specific enough, we chose the only known AVNRT

genetic sequencing study to further validate our candidate
pathogenic genes. The study, published in 2018, was carried
out in Denmark, and 67 known arrhythmia target genes were
detected in AVNRT cases by next-generation sequencing.'3
Among our candidate genes, SCNIA, RYR2, and PRKAG2,
there were 11 rare variants in SCNIA and three rare vari-
ants in RYR2 detected in AVNRT patients in the Danish
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TABLE 6 PPI network combined scores

3

Number of Total Mean Number of Total Mean Combined mean Combined mean
Genes nodes in group 1  scores scores nodes in group 2  scores scores total scores number of nodes
RYR2 37 23.226 0.628 10 6.533 0.653 14.880 23.5
NOS1 12 9.121 0.760 4.469 0.894 6.795 8.5
SCN1A 18 10.844 0.602 3 1.297 0.432 6.071 10.5
CFTR 8 5.596 0.700 5 3.750 0.75 4.673 6.5
EPHB4 4 2.463 0.616 11 6.508 0.592 4.483 7.5
PRKAG2 14 7.370 0.526 2 1.299 0.650 4.335 8
ROBO1 3 1.958 0.653 10 6.524 0.652 4.241 6.5
ASPH 4 3.105 0.776 3 2.897 0.966 3.001 3.5
MMP2 4 2.741 0.685 4 2.589 0.647 2.665 4
ABCC8 8 4278 0.535 1 0.496 0.496 2.387 4.5
ATP2C2 4 2.077 0.519 5 2.687 0.537 2.382 4.5
COL5A1 3 2.28 0.760 3 2.280 0.760 2.280 3
CSF2RB 2 1.819 0.910 3 2.340 0.780 2.080 2.5
PIK3CB 3 1.977 0.659 2 1.361 0.681 1.669 2.5
COL4A3 3 1.782 0.594 2 1.356 0.678 1.569 2.5
HIPK2 3 2.433 0.811 1 0.625 0.625 1.529 2
SFTPA2 2 1.841 0.921 1 0.917 0.917 1.379 1.5
HIPIR 2 1.800 0.900 1 0.900 0.900 1.350 1.5
EVL 1 0.925 0.925 2 1.503 0.752 1.214 1.5
SLC26A4 2 1.143 0.572 2 1.186 0.593 1.165 2
PPFIAI 1 0.933 0.933 1 0.933 0.933 0.933 1
GAD2 2 0.929 0.465 2 0.929 0.465 0.929 2
PSMBI11 1 0.905 0.905 1 0.905 0.905 0.905 1
TCF7L1 1 0.625 0.625 1 0.625 0.625 0.625 1
LAMCI1 1 0.553 0.553 1 0.553 0.553 0.553 1
KCNV2 1 0.926 0.926 NA NA NA 0.463 0.5
COG4 1 0.902 0.902 NA NA NA 0.451 0.5
SLC12A4 1 0.591 0.591 NA NA NA 0.296 0.5
SYTI10 1 0.400 0.400 NA NA NA 0.200 0.5

Notes: Group 1 means the PPI network was constructed with 36 candidate genes from gene-based collapsing analysis and 64 referential target genes with mutations in the
present study; group 2 means the PPI network was constructed with 37 candidate genes (including RYR2) from gene-based collapsing analysis and 20 selected genes in
the top 30 enrichment pathways with both KEGG and Reactome databases in GWAS analysis; NA, not available.

study, especially, a rare variant in RYR2 (c.4652A > G,
p-Asnl1551Ser, rs185237690) in our present study was also
found in one Danish AVNRT case, which supports SCN/A
and RYR2 gene as candidate pathogenic genes in our study.
The detail rare variants information is shown in Table 9.

4 | DISCUSSION

To our knowledge, this is the first study with the primary
aim of investigating the genetic contribution of AVNRT using
a WES approach. In the present study and an external data
validation, genes such as SCNIA, PRKAG2, RYR2, CFTR,
NOSI, PIK3CB, GAD2, and HIPIR, responsible for neuronal

system/neurotransmitter release or ion channel/cardiac con-
duction, are likely to be candidate genes and pathways for
AVNRT. As this is only a pilot study of the genetic investiga-
tion of AVNRT, further genetic functional studies are needed.

Recently, an increasing number of clinical reports have
suggested that there may be a hereditary contribution to
AVNRT.#7 However, little is known about the hereditary
role in AVNRT compared with that for Wolff-Parkinson-
White syndrome.®® A recent study involving the sequenc-
ing of 67 selected genes associated with arrhythmia in 298
AVNRT patients found the greatest number of variants in
sodium and calcium channels, indicating that AVNRT might
be an arrhythmic disease with abnormal sodium and cal-
cium handling.'> Among the reference genes from the present
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FIGURE 5 The rare variants in the five candidate genes such as SCNIA, PRKAG2, RYR2, CFTR, and NOSI

study, many rare variants were detected in KCNJ12, RYR3,
RYR2, ZFHX3, ANK2, AKAP9, GNB3, SYNE2, CACNAID,
CACNAI1I, GNB3, MYH6, SCN5A, SCNIA, SCN3A, HCN4,
and KCNH2. Most of these genes, such as KCNJI2, RYR3,
RYR2, CACNAID, CACNAII, SCN5A, SCNIA, SCN3A,
HCN4, and KCNH2, encode ion channels, indicating that
AVNRT was associated with ion channels. Interestingly, the
causal gene of Wolff-Parkinson-White syndrome, PRKAG2,
was also identified in our AVNRT cases.

The autonomic nervous system is known to take part
in the triggering and termination of AVNRT.?>2® There
are extrinsic and intrinsic components of the cardiac auto-
nomic nervous system, and the extrinsic component is divided
into sympathetic and parasympathetic systems, involving the

main neurotransmitters of norepinephrine and acetylcholine,
respectively.”’?® The intrinsic cardiac autonomic nervous
system of the ganglionated plexi contains both sympathetic
and parasympathetic fibers and is connected with a wide
range of neurotransmitters.”>>" The AV node exhibits dense
parasympathetic innervation, and changes in the cardiac auto-
nomic nervous system could lead to arrhythmias.3! Usually,
sympathetic stimulation is used to facilitate the induction of
AVNRT.?324 However, the onset of AVNRT occurs at times
of increased vagal tone, as the vagal tone increases the refrac-
tory period of the fast pathway and a premature atrial complex
may be conducted antegrade via the slow pathway with sub-
sequent retrograde conduction, thus initiating AVNRT.?>-2
In our present study, many rare variants in genes involved in
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FIGURE 6 Verification of candidate 37 genes in UK Biobank (A); the three of candidate burden genes, PIK3CB, GAD2, and HIPIR, showed
the most significant enrichment in PSVT (P = 0.000174) among 791 phenotypes in UK Biobank (B)
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TABLE 8 Candidate Genes Enrichment Analysis for Phenotype Category in UK Biobank (p < 0.05)

Phenotype category name Enrichment P value
Paroxysmal supraventricular tachycardia 0.000174146
Paroxysmal tachycardia, unspecified 0.009124029
Aneurysm and dissection of heart 0.01165878
Other hypertrophic and atrophic 0.007023506
conditions of skin
Nephritis; nephrosis; renal sclerosis 0.010817149
Intestinal infection due to C. difficile 0.0137383
Anaphylactic shock NOS 0.014210121
Opiates and related narcotics causing 0.01073407
adverse effects in therapeutic use
Bacterial pneumonia 0.008187189

the neurotransmitter release cycle and neuronal system path-
ways, such as the neurotransmitter release cycle, serotonin
neurotransmitter release cycle, acetylcholine neurotransmit-
ter release cycle, and norepinephrine neurotransmitter release
cycle, were present among the top 30 enriched pathways; the
similar outcomes were also presented in GWAS analysis, indi-
cating that neurotransmitter release affects the sympathetic or
parasympathetic system and then induces AVNRT.

The autonomic nervous system also shows a close rela-
tionship with cardiac ionic conductance. Vagal nerve endings
release acetylcholine, activate the ACh-activated K* current
(I._acp)» and inhibit the funny current (/;) and the L-type Ca’*
current.>? In contrast, sympathetic nerve endings release nora-
drenaline to increase the /; and the L-type Ca’* current and
induce changes in intracellular Ca?* handling.?® In addition,
many arrhythmias occur due to genetic mutations in ion chan-
nels themselves, and the mutations will affect the sodium,
potassium, and calcium channels responsible for ion transport
across the myocardial cell membrane, then, the action poten-
tial is altered and induces arrhythmias.!®!® In the present
study, the pathways of ion channels and cardiac conduction
were among the top 30 enriched pathways, and genes such
as those encoding sodium channels (SCN/A) and potassium
channels (KCNV2) were selected as candidate genes; in par-
ticular, SCNIA is regarded as one of the most likely candidate
pathogenic genes. Mutations in ion channel genes might affect
the conduction of AV nodes, and differences in conduction
velocity will lead to dual AV node physiology and AVNRT.

There were three genes with rare variants reported to
be associated with arrhythmia among the candidate genes
in the present study. The first was the PRKAG2 gene,
encoding the gamma2 regulatory subunit of adenosine
monophosphate-activated protein kinase, which was iden-
tified as the pathogenic gene of Wolff-Parkinson-White
syndrome.? PRKAG2 mutations induce the slowing of
sodium channel inactivation and increase the likelihood of
channel activation at more negative potentials.>* The inte-

—Logl0(P value) Category name Phenotype code
3.759 Circulatory system 427.11

2.040 Circulatory system 427.1

1.933 Circulatory system 411.41

2.153 Dermatologic 701

1.966 Genitourinary 580

1.862 Infectious diseases 008.52

1.847 Injuries and poisonings 946

1.969 Injuries and poisonings 965.1

2.087 Respiratory 480.1

gral of the sodium current (total inward current) is a major
determiner of conduction velocity, and this process can be
speeded up by increasing in inward sodium current, result-
ing in a conduction velocity change in the AV node.?> The
second gene was SCNIA, which is primarily a neuronal gene.
Navl1.1, a product of SCNIA, is present in various regions of
the heart.’¢3SCNIA mutations are found in up to 80% of
patients with Dravet syndrome, a type of epilepsy observed
in infancy, and sudden unexpected death results in 38% of
all deaths in patients with a childhood onset.>® Although the
mechanism remains poorly understood, the sodium channel-
dependent cardiac current is increased in SCNIA-RI407X
knock-in mice,?® and autonomic dysfunctions such as abnor-
malities in heart rate variability, QT and P wave dispersion
are observed in patients with Dravet syndrome,*’ suggest-
ing that some SCNIA variants might cause sudden death
or lethal arrhythmia through neurocardiac or solely cardiac
mechanisms. The third gene was RYR2, encoding cardiac
ryanodine receptors (RYR2s), which are large intracellular
Ca’* channels that regulate the release of Ca®* from the sar-
coplasmic reticulum in cardiomyocytes.*! Mutations in RYR2
can increase the probability of channel open during dias-
tole, resulting in excess diastolic SR Ca’* release, and the
increased SR Ca”* leak during diastole can increase the fre-
quency of spontaneous Ca>* sparks, resulting in an untimely
depolarizing inward current that triggers delayed after depo-
larization and ventricular arrhythmia or atrial fibrillation.*!
As mutations in these three genes have been proven to cause
arrhythmia by experimental and clinical data, and were veri-
fied by the external data of UK Biobank and the genetic study
from Denmark, it is reasonable for us to assume that the gene
rare variants identified in the present study could also cause
AVNRT.

Among the other two candidate genes, the first was
CFTR. It encodes a cAMP-activated chloride channel (cystic
fibrosis transmembrane conductance regulator, CFTR) and
is presented mainly in epithelial cells of the respiratory and
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digestive tracts; mutations in this gene cause cystic fibrosis.*?

Subsequent studies demonstrated that CFTR acts not only as
an ATP-gated chloride channel but also as a regulator of other
ion channels, such as amiloride-sensitive Na* channels, ATP
channels, and inward rectifier K* channels.*3*> Recently, in
cardiac CFTR-overexpressing mice, intracardiac electrophys-
iological studies showed remarkable slowing of conduction
parameters, including high-grade AV block, with easily
inducible nonsustained ventricular tachycardia following iso-
proterenol administration.*® The second of these genes was
NOSI. It encodes neuronal nitric oxide synthase (nNOS) and
is a major isoform within the brain.*’ nNOS, together with its
chaperone protein (CAPON), is also found in both postgan-
glionic sympathetic neurons of the stellate ganglia and intrin-
sic cardiac vagal neurons.*3** Moreover, the overexpression
of nNOS increases acetylcholine release,”” and CAPON over-
expression in myocytes attenuates the L-type calcium current,
slightly increases the rapid delayed rectifier current (/y,),
and shortens action potential,>! which causes arrhythmia
susceptibility. Thus, although the two candidate genes CFTR
and NOSI have not been proven to directly cause arrhythmia,
all the potential evidence listed above shows that these gene
mutations can change some characteristics of atrioventricular
node conduction by affecting the autonomic nervous sys-
tem/neurotransmitter release or ion channels, which can lead
to changes in cardiac depolarization, action potentials, car-
diac conduction velocity, the refractory period, etc., and such
changes will lead to dual AV node physiology and AVNRT.

As for the three candidate genes, PIK3CB, GAD2, and
HIPIR, were present even in patients with PSVT in the UK
Biobank resource. However, there was no data indicating the
three genes play any role in cardiac arrhythmia. PIK3CB
encodes an isoform of the catalytic subunit of phosphoinosi-
tide 3-kinase beta (PI3Kp), recent data showed PI3K sig-
naling activation affected currents of multiple ion channels,
including calcium and sodium channels, and suppression of
PI3K activation displayed a prolonged QT interval >2GAD?2 is
a glutamate decarboxylase 2 coding gene, diseases associated
with GAD?2 include autoimmune polyendocrine syndrome and
stiff-person syndrome, among its related pathways are neu-
rotransmitter release cycle and database. Diseases associ-
ated with HIPIR (Huntingtin interacting protein 1 related)
include expressive language disorder and cataract. At present,
there is a lack of data about mutations of the three candi-
date genes in arrhythmia or AVNRT, which needs to be con-
firmed by other large samples genetic research or functional
verification.

S | LIMITATIONS

The major limitation of the current study is the small sam-
ple size as AVNRT with low prevalence in population.

3

Neuronal system/neurotransmitter
release cycle

Extrinsic/intrinsic cardiac
autonomic nervous system

lon homeostasis/ionic
channels

Cardiac conduction/refractory

period

A,
Dual atrioventricular node
pathways

Atrioventricular nodal reentry
tachycardia

FIGURE 7 Summary of the associated signal pathways and the
potential links with AVNRT

Although we identified a few candidate genes, such as SCNIA,
PRKAG?2, RYR2, CFTR, NOS1, PIK3CB, GAD2, and HIPIR,
in AVNRT in the present study, the genes were not verified
experimentally, and further research is needed to explore the
potential mechanisms of these genes. Since AVNRT is caused
by complex molecular mechanisms, a single pathway is not
sufficient to explain the pathogenesis of this disease. There-
fore, further experimental research is needed to confirm the
current findings. Finally, the controls included in the present
study did not undergo invasive electrophysiological examina-
tion, and it is possible that the controls were not completely
devoid of AVNRT.

6 | CONCLUSIONS

Our study identified a number of potentially disease-related
genes, such as SCNIA, PRKAG2, RYR2, CFTR, NOSI,
PIK3CB, GAD?2, and HIPIR, in the pathways of neuronal
system/neurotransmitter release cycles or ion channel/cardiac
conduction, which require further replication in larger cohorts
and functional confirmation. Because the anatomic substrate
in AVNRT remains unclear, our findings may provide insight
into the molecular basis of AVNRT and provide a new view
of AVNRT as shown in Figure 7.
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