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Background. Carbapenem-resistant Enterobacterales (CRE) harboring blaKPC have been endemic in Chicago-area healthcare net-
works for more than a decade. During 2016–2019, a series of regional point-prevalence surveys identified increasing prevalence of 
blaNDM-containing CRE in multiple long-term acute care hospitals (LTACHs) and ventilator-capable skilled nursing facilities (vSNFs). We 
performed a genomic epidemiology investigation of blaNDM-producing CRE to understand their regional emergence and spread.

Methods. We performed whole-genome sequencing on New Delhi metallo-beta-lactamase (NDM)+ CRE isolates from 4 point-
prevalence surveys across 35 facilities (LTACHs, vSNFs, and acute care hospital medical intensive care units) in the Chicago area and 
investigated the genomic relatedness and transmission dynamics of these isolates over time.

Results. Genomic analyses revealed that the rise of NDM+ CRE was due to the clonal dissemination of an sequence type (ST) 
147 Klebsiella pneumoniae strain harboring blaNDM-1 on an IncF plasmid. Dated phylogenetic reconstructions indicated that ST147 
was introduced into the region around 2013 and likely acquired NDM around 2015. Analyzing the relatedness of strains within and 
between facilities supported initial increases in prevalence due to intrafacility transmission in certain vSNFs, with evidence of sub-
sequent interfacility spread among LTACHs and vSNFs connected by patient transfer.

Conclusions. We identified a regional outbreak of blaNDM-1 ST147 that began in and disseminated across Chicago area post-acute 
care facilities. Our findings highlight the importance of performing genomic surveillance at post-acute care facilities to identify 
emerging threats.
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Carbapenem-resistant Enterobacterales (CRE) represent an ur-
gent antibiotic-resistance threat due to their resistance to first-
line antibiotics and transmissibility in healthcare settings [1, 2]. 
The emergence of epidemic lineages of CRE that are resistant 
to nearly all antibiotics and that cause infections with high 
mortality rates, such as Klebsiella pneumoniae carbapenemase 
(KPC) containing Klebsiella pneumoniae (KPC-Kp) sequence 
type (ST) 258 [3], has further escalated the need for more effec-
tive strategies to interrupt CRE transmission. Most interventions 
to prevent the spread of CRE and other healthcare-associated 
antibiotic-resistance threats have been implemented at the level 

of individual healthcare facilities. However, there is now a mul-
titude of evidence that the frequent movement of colonized and 
infected patients among regional healthcare facilities necessitates 
regional surveillance and infection prevention strategies [4].

Long-term acute care hospitals (LTACHs) and ventilator-
capable skilled nursing facilities (vSNFs) are potentially 
high-impact settings for implementation of regional CRE sur-
veillance and infection prevention interventions [5, 6]. Patients 
in these facilities have been shown to be colonized with CRE at 
high rates, likely due to a combination of their chronic severe 
illness, long lengths of stay, and high rates of prior or ongoing 
antibiotic exposure. Modeling and epidemiologic studies have 
suggested that the high CRE prevalence in LTACHs in partic-
ular has a significant impact on connected healthcare facilities 
with which they share patients [7, 8]. Currently, less is known 
about the regional influence of vSNFs, although the even longer 
lengths of patient stay and more limited resources for infection 
prevention indicate that they might also be important settings 
in regional amplification of antibiotic resistance.

A bundled infection prevention intervention [9] (Chicago 
PROTECT [10]) was initiated in July 2017 to control CRE in 
Chicago-area healthcare facilities, including in vSNFs and 
LTACHs. Serial point-prevalence surveys conducted to monitor 
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the impact of the intervention demonstrated that KPC-Kp levels 
remained stable across regional facilities. However, during the 
intervention period, New Delhi metallo-beta-lactamase (NDM) 
containing CRE prevalence unexpectedly increased in a subset 
of surveyed vSNFs. Here, we applied whole-genome sequencing 
to investigate the underlying transmission dynamics related to 
the increase in NDM prevalence in the region.

METHODS

Study Isolates and Metadata

From October 2016 to July 2019, 20 medical intensive care units 
(ICUs) in 20 short-term acute care hospitals, 7 LTACHs, and 8 
vSNFs in the Chicago region were invited to participate in serial 
1-day point-prevalence surveys of residents. In vSNFs, surveys 
were performed in ventilator wards. Medical ICUs were surveyed 
once in 2016–2017; vSNFs and LTACHs were surveyed every 
6–12 months. Patients who were present in their room at the time 
of the survey were considered eligible for participation. Written 
informed consent was waived for this project, and patients who 
were competent were provided a standardized verbal explanation 
of the rationale for surveillance and were asked for verbal assent. 
Local staff obtained a rectal swab sample from each participating 
patient and collected deidentified patient information assessed at 
the time of the survey (age up to 90 years, sex, respiratory support 
status, length of stay, contact precautions status, facility aware-
ness of resident CRE status). Swabs were processed at a central 
laboratory within 6 hours of collection. Overnight growth from 
MacConkey agar plates was screened for 5 carbapenemase gene 
families (KPC, NDM, VIM, IMP, and OXA-48) using multi-
plex polymerase chain reaction assays (Acuitas MDRO gene test 
and Acuitas Resistome test, OpGen, Gaithersburg, MD, during 
2016–2017; Xpert Carba-R, Cepheid, Sunnyvale, CA, during 
2018–2019).

For all genomic analyses, only the first isolate of a given ST 
(for K. pneumoniae isolates) or species (for all other species) was 
used for each patient. We used a Fisher exact test to test for the 
statistical significance of the difference in NDM or KPC prev-
alence between the first and last surveys. Fisher exact P values 
were corrected using the Benjamini-Hochberg method.

Whole-Genome Sequencing

Genomic DNA was extracted from cultures derived from 
single subcultured colonies. Genomic libraries were prepared 
with the NEBNext Ultra DNA library prep kit and sequenced 
at the University of Michigan Advanced Genomics Core on an 
Illumina NovaSeq 6000. All sequenced isolates have been de-
posited under BioProject PRJNA686897.

Genomic Analysis

We processed whole-genome sequences [11, 12] and identi-
fied in silico multilocus sequence types [13, 14], generated 

and annotated assemblies [12, 15–20], called single-nucleotide 
variants (SNVs) [21–28], identified phylogenetic clustering of 
facilities [8], and calculated pairwise SNV distances between 
isolates [29]. Reference-based whole-genome alignments of 
study and public ST147 isolates [30–40] were used to generate a 
phylogenetic tree using IQ-TREE v1.6.12 [41, 42]. We inferred 
ancestral dates of the phylogeny with the R package BactDating 
v1.0.12 [43–45]. NDM-containing plasmids were identified 
from publicly available complete plasmids [21, 29, 46–50]. See 
Supplementary Methods for details of the genomic analysis.

Determining Patient Flow Between Facilities

We constructed a patient transfer matrix of the Chicago metropol-
itan region using the Centers for Medicare and Medicaid Services’ 
minimum dataset, Medicare Provider Analysis and Review limited 
dataset, Medicaid Analytic eXtract Data from 2010–2012. Using 
the patient transfer matrix, we constructed a directed weighted 
patient transfer network of healthcare facilities in the Chicago 
area using R igraph v1.2.6 [51], including all healthcare facil-
ities in the study, and patient flow was determined as in [8]. See 
Supplementary Methods for details about calculating patient flow. 
Comparison of patient flow for interfacility isolate pairs ≤12 SNVs 
vs >12 SNVs was performed using Wilcox tests.

Data Analysis and Visualization

Data analysis and visualization was performed in R v4.0.2 [52]. Data 
visualization used the following packages: tidyverse v1.3.0 [53], 
pheatmap v1.0.12, lubridate v1.7.9.2, tidytree v0.3.3, treeio v1.12.0, 
ggtree v2.2.4 [54, 55], ggplotify v0.0.5, ggnewscale v0.4.4, and cowplot 
v1.1.0. Code for analysis and visualization can be found here: https://
github.com/Snitkin-Lab-Umich/ndm-st147-chicago-ms.

Ethical Review

Bacterial isolates and deidentified clinical metadata were col-
lected under a prior surveillance project that underwent eth-
ical review at the Centers for Disease Control and Prevention 
and was determined to be a nonresearch activity (public health 
surveillance). The project was also evaluated independently at 
each participating healthcare facility and deemed either a public 
health assessment or human subjects research and approved by 
local review boards where applicable.

RESULTS

Prevalence of NDM, but not KPC, increased over time in certain 
vSNFs that were not closely connected by patient transfer. We 
first detected the presence of NDM+ CRE isolates in vSNFs and 
LTACHs during a regional point-prevalence survey conducted 
in 2017 and subsequently performed 3 follow-up surveys (Figure 
1A). A summary of the patient population for each facility type 
across the 4 surveys can be found in Table 1. We found that 
while the prevalence of KPC+ CRE generally remained stable 
over time, the prevalence of NDM+ CRE increased in 3 vSNFs 
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not closely connected by patient transfer (Fisher exact P < .05 
for vSNFs J, K, and L; Figure 1B, Supplementary Figures 1, 2; 
Supplementary Table 1). The majority of NDM+ isolates were 
K. pneumoniae ST147 and carried blaNDM-1 on an IncF plasmid.

To understand the molecular basis for the increase in NDM+ 
CRE, we performed whole-genome sequencing on all CRE isolates 
from survey 1 and NDM+ isolates from the subsequent 3 follow-up 
surveys. We found that the presence of NDM was highly correlated 
with the presence of a suite of genes present on an NDM+ IncF 
plasmid isolated from K. pneumoniae [56] (Supplementary Figure 
3). Most isolates that contained the IncF plasmid were blaNDM-1 
K. pneumoniae ST147; however, 1 blaNDM-1 Escherichia coli ST354 
isolate also contained the plasmid (Figure 2). While short-read 
sequencing data alone are insufficient to provide structural data 

to associate NDM with the plasmid backbone, the high degree of 
correlation between NDM and the IncF-associated plasmid genes 
in concert with the phylogenetic relationships between isolates 
strongly suggests that these genes are co-inherited (Supplementary 
Figure 3). In addition to NDM, the IncF plasmid harbored a 
number of antibiotic-resistance genes from several different resist-
ance classes and the qacE gene, which may confer reduced suscepti-
bility to common biocides [57] (Supplementary Figure 3).

Regional ST147 Isolates Are Phylogenetically Distinct from All Public 
Isolates

We investigated the phylogeography of ST147 in the Chicago area 
to determine whether circulating ST147 could be attributed to 
1 or multiple importation events into the region. To this end, we 

Figure 1. Prevalence of New Delhi metallo-beta-lactamase (NDM) increased over time in certain vSNFs. A, Time window of when facilities were tested for each survey. 
Observance of NDM+ carbapenem-resistant Enterobacterales in vSNFs and LTACHs in survey 1 led to targeted follow-up surveys (2, 3, and 4) in these facilities. B, Proportion 
of NDM and Klebsiella pneumoniae carbapenemase–positive samples across surveys and facilities. vSNF O was not included as there was uneven sampling across surveys. 
ICUs are not shown in panel B because of very low prevalence (see Table 1). Abbreviations: ICU, intensive care unit; LTACH, long-term acute care hospital; vSNF, ventilator-
capable skilled nursing facility. 
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constructed a whole-genome phylogeny that included publicly 
available ST147 genomes from across the globe. Examination of 
the phylogenetic reconstruction revealed that all of the ST147 
isolates from the study form a monophyletic cluster, consistent 
with a single regional introduction (Figure 3). We also noted that 
while none of the NDM+ ST147 public isolates harbored the IncF 
plasmid, the majority of ST147s in the current study contained the 
plasmid. Moreover, 1 of the ST147 isolates in the KPC+/NDM– 
outgroup (from survey 3) contained the IncF plasmid but lacked 

NDM (Supplementary Figure 4), suggesting that the plasmid may 
have been acquired in a locally circulating ST147 strain, followed by 
integration of a mobile element harboring NDM. A dated phylo-
genetic analysis of circulating ST147 yielded an estimate of August 
2015 for when the NDM+ clade of ST147 first arose in the region 
(95% credible interval [CI], February 2015–March 2016; Figure 4, 
Supplementary Figure 5, Supplementary Table 2) compared with an 
estimate of July 2013 for when ST147 first entered the region (CI, 
October 2011–October 2014; Supplementary Table 2).

Figure 2. The majority of NDM+ isolates are Klebsiella pneumoniae sequence type 147 and carry NDM on an IncF plasmid. Number of sequenced isolates of various spe-
cies and sequence types, what carbapenemase(s) they contain, and whether they have the IncF plasmid. Abbreviations: KPC, Klebsiella pneumoniae carbapenemase; NDM, 
New Delhi metallo-beta-lactamase. 

Table 1. Summary of Point-Prevalence Survey Results from Intensive Care Units, Long-Term Acute Care Hospitals, and Ventilator-Capable Skilled Nursing 
Facilities for Surveys 1, 2, 3, and 4

Variable Intensive Care Unit Long-Term Acute Care Hospital Ventilator-Capable Skilled Nursing Facility

Number of surveys 1 4 4

Number of facilities 20 7 8

Number of patients eligible 238 1338 1325

Number of patients surveyed, n (% of eligible) 212 (89) 1188 (89) 1154 (87)

Age, mean (standard deviation), y 62 (17) 62 (15) 60 (15)

Male, n (%) 119 (56) 644 (54) 627 (54)

Length of stay, median (interquartile range), d 5 (3–10) 21 (11–37) 126 (33–410)

Mechanical ventilation, n (%) 102 (48) 405 (21) 477 (33)

Tracheostomy collar, n (%) 0 (0) 250 (21) 384 (33)

Contact precautions, n (%) 58 (27) 736 (62) 679 (59)

Carbapenemase gene    

  Klebsiella pneumoniae carbapenemase, n (%) 11 (5) 182 (15) 360 (31)

  New Delhi metallo-beta-lactamase, n (%) 2 (1) 30 (3) 146 (13)

  OXA-48, n (%) 1 (0) 0 (0) 1 (0)

  IMP, n (%) 0 (0) 1 (0) 0 (0)

  VIM, n (%) 0 (0) 4 (0) 66 (6)

  Any carbapenemase gene, n (%) 14 (7) 201 (17) 479 (42)

Of carbapenemase-positive    

  With contact precautions, n/N (%) 9/14 (64) 169/201 (84) 364/479 (76)

  Known to facility, n/N (%) 6/14 (43) 107/201 (53) 303/479 (63)
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Genomic Evidence Indicates That Intrafacility Transmission is Driving 
Prevalence at High-Prevalence vSNFs

After determining that the increase in NDM prevalence 
corresponds to a clonal outbreak of blaNDM-1 ST147, we in-
vestigated the potential transmission dynamics of this clone 
within and between healthcare facilities. We observed a 
substantial clustering of isolates from certain vSNFs on the 
phylogeny (Figure 5A, Supplementary Figure 6), which sug-
gests potential intrafacility transmission. To further inves-
tigate whether these clusters may represent within-facility 
transmission, we calculated pairwise SNV distances among 
all pairs of isolates and compared these distances for iso-
lates from the same facility (intrafacility pairs) to isolates 
from different facilities (interfacility pairs) across surveys 
(Figure 5B). Indeed, starting in survey 3, we observed a dis-
proportionate representation of small SNV distances (≤12 
SNVs; see Methods section for threshold selection), which 
is consistent with intrafacility transmission in vSNFs. Of 
note, in survey 4, we observed spikes in small SNV distances 
for both intra- and interfacility pairs, with closely related 
intrafacility pairs being primarily from vSNFs and closely 
related interfacility pairs being from both vSNF–LTACH 
and vSNF–vSNF pairs (Supplementary Figure 7). Putting 
these closely related interfacility pairs in the context of the 
regional patient transfer network supports a potential role of 
patient transfer in regional blaNDM-1 ST147 spread in survey 
4, with vSNF–LTACH and vSNF–vSNF isolate pairs less 
than 12 SNVs apart being from facilities with higher patient 
flow between them than isolate pairs with 12 or more SNVs 
(Wilcox P < .001; Supplementary Figure 8; higher patient 
flow indicates more movement of patients from source to 
destination facility, see Supplementary Methods for details).

DISCUSSION

We performed genomic analyses of CRE isolates collected through 
serial point-prevalence surveys in the Chicago area to investigate 
an increase in NDM+ CRE prevalence across a regional healthcare 
network. Our analysis supports the increase in NDM+ CRE being 
due to the clonal dissemination of a single blaNDM-1 ST147 strain of 
K. pneumoniae that emerged in 2015. Putting genomic analysis in 
the context of the regional healthcare network supports this strain 
first reaching high prevalence in a small number of vSNFs due to 
intrafacility transmission, followed by interfacility spread to con-
nected healthcare facilities.

Whole-genome sequencing showed that the majority of 
blaNDM-1 ST147 harbored an IncF multidrug-resistance plasmid. 
Incorporating public data into the analysis revealed that these 
isolates formed a monophyletic clade, suggesting a single in-
troduction into the region, either through importation of a 
preexisting NDM+ ST147 strain or acquisition of blaNDM by a 
locally circulating ST147 strain. Furthermore, examination of 
the global phylogeny indicates that while NDM+ ST147 has 
evolved multiple times in different locations and sometimes re-
sulted in clonal outbreaks, none of the global NDM+ ST147 iso-
lates we included in our analysis harbor the IncF plasmid found 
in our study isolates. The rapid and widespread dissemination 
of this strain in the region indicates that the NDM-carrying 
IncF plasmid we identified here can stably associate with an 
ST147 strain with epidemic potential. Given the potential neg-
ative impact of epidemic NDM-carrying K.  pneumoniae, this 
possibility warrants close monitoring.

By combining regional surveillance with genomic analysis, we 
were able to discern that NDM initially spread in 3 vSNFs, likely 
via intrafacility transmission, with evidence of subsequent spread to 

Figure 3. Study isolates are clonally separated from all publicly available isolates outside the Chicago region. Maximum likelihood phylogeny of study and public isolates 
annotated by geographic region and genomic element. Abbreviations: KPC, Klebsiella pneumoniae carbapenemase; NDM, New Delhi metallo-beta-lactamase. 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab457#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab457#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab457#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab457#supplementary-data


1436 • cid 2021:73 (15 October) • Lapp et al

healthcare facilities connected by patient transfer. There are several 
factors that likely contributed to the spread of this NDM+ ST147 
clone. First, vSNF patients are a high-risk population for carriage of 
CRE as they are chronically ill, are usually admitted from ICUs or 
LTACHs, and are often exposed to antibiotics [58]. Second, patients 
in vSNFs generally have long lengths of stay, often much longer than 
patient stays at LTACHs [59], meaning that they have a longer pe-
riod of time to acquire a multidrug-resistant organism. Furthermore, 
multibed rooms are common and the facilities themselves are often 
underresourced from a staffing and infection control perspective 
[6], both of which could facilitate intrafacility spread. Our findings 
paired with these observations indicate that vSNFs may be impor-
tant healthcare facilities to detect emerging threats and potentially 
contain them before widespread dissemination. In the current study, 
we note that NDM+ isolates were uncommon in ICUs, and the out-
break of ST147 might not have been detectable until much later if 
sampling were restricted to ICUs.

Our study has several strengths. Active surveillance of di-
verse types of healthcare facilities in the region allowed us to 
identify and investigate a potential multidrug-resistant or-
ganism threat earlier than would have been possible if serial 
point-prevalence surveys across several facility types were not 
ongoing. Furthermore, cross-sectional patient sampling within 
each survey allowed us to obtain a complete snapshot of CRE 
prevalence at a given facility at a given point in time and to de-
tect the increase in NDM+ isolates over time. Finally, we were 
able to leverage information from whole-genome sequencing 
to investigate the relatedness of isolates, as well as the intra- and 
interfacility transmission dynamics of NDM across the health-
care network.

Our study also has several important limitations. First, the 
cross-sectional study design could have led to potential biases in 
the number of NDM+ isolates sequenced at facilities, given that the 
patients at these facilities had different average lengths of stay, and 

Figure 4. New Delhi metallo-beta-lactamase–positive sequence type 147 Klebsiella pneumoniae was introduced into the region around 2015. Dated phylogeny generated 
by BactDating. Gray bar on the root is the lower and upper bounds of the confidence interval (2015.09 to 2016.17). Abbreviations: ICU, intensive care unit; LTACH, long-term 
acute care hospital; vSNF, ventilator-capable skilled nursing facility.
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precluded a more nuanced examination of NDM-1 intrafacility 
transmission dynamics and associated patient risk factors. 
Second, we lacked data from short-term acute care or community 
settings, particularly in the last 3 surveys, which limited our ability 
to examine the relative importance of other regional reservoirs for 
NDM+ ST147. However, the short-term acute care data that were 
available did not support their role in blaNDM-1 ST147 expansion. 
Third, we used facility-level aggregate patient transfer data to 
infer the likelihood of patient-level exposure to facilities; lack of 
patient-level facility exposure data precluded us from performing 
a more detailed exposure network analysis [60]. Last, we used 
short-read sequencing data, which limited our ability to investi-
gate more complex plasmid dynamics. While we plan to perform 
long-read sequencing on a subset of these isolates in the future, 
we find it notable that we were able to leverage publicly available 
complete plasmid sequences to determine that NDM was carried 
on the same plasmid in the majority of isolates.

In conclusion, we identified an emerging blaNDM-1 ST147 
clone of K.  pneumoniae with epidemic potential. The identi-
fication of this clone and characterization of its ability to dis-
seminate within and between healthcare facilities were made 
possible through whole-genome sequencing of NDM+ isolates 
from serial point-prevalence surveys at vSNFs, LTACHs, and 
ICUs. Our findings highlight the importance of performing 
surveillance of multidrug-resistant organisms not only in acute 
care hospital ICUs but also in post-acute care facilities such as 
LTACHs and vSNFs. vSNFs in particular appear to be especially 
important as sentinel sites of active surveillance for rare and 
emerging resistant pathogens.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corresponding author.

Figure 5. Intrafacility transmission is driving prevalence at high-prevalence vSNFs. A, Number of isolates in the largest subclade of the maximum likelihood phylogeny 
containing ≥90% of isolates from the given facility (see Methods section for more details). Note that the y-axis is log10-scaled. B, Pairwise SNV distances of isolates from the 
same and different facilities across surveys. The gray diamond at a pairwise SNV distance of 12 indicates the threshold for closely related isolates (see Methods section for 
details). Abbreviations: LTACH, long-term acute care hospital; SNV, single-nucleotide variant; vSNF, ventilator-capable skilled nursing facility.
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