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The vertebrate eye is a highly specialized sensory organ, which is derived from the

anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme.

The single central eye field, generated from the anterior neural plate, divides to give rise

to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently,

the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens

vesicle and double-layered optic cup, respectively. This complex process is controlled

by transcription factors and several intracellular and extracellular signaling pathways

including WNT/β-catenin signaling. This signaling pathway plays an essential role in

multiple developmental processes and has a profound effect on cell proliferation and

cell fate determination. During eye development, the activity of WNT/β-catenin signaling

is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular

malformations due to defects in the process of cell fate determination and differentiation.

This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye

development. Whilst this mini-review focuses on loss-of-function and gain-of-function

mutants of WNT/β-catenin signaling components, it also highlights some important

aspects of β-catenin-independent WNT signaling in the eye development at later stages.
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OVERVIEW OF EYE DEVELOPMENT IN MICE

During gastrulation, the eye field, a group of the retinal precursor cells, is specified within the
anterior neural plate. At this stage, these cells are anteriorly and laterally surrounded by the
telencephalic progenitor cells. Subsequently, the eye field is divided into two lateral parts, which
extend toward the surface ectoderm and give rise to the optic vesicle (Figure 1A; Inoue et al., 2000;
Cavodeassi and Houart, 2012; Heavner and Pevny, 2012). The head surface ectoderm thickens
to give rise to the lens placode while the optic vesicle subdivides into three parts, namely the
presumptive retinal pigment epithelium (RPE), the presumptive neural retina, and the presumptive
optic stalk (Figure 1B). The optic vesicle subsequently invaginates together with the lens placode
to form the double-layered optic cup (Figure 1C). The inner part of the optic cup gives rise to
the neural retina, meanwhile the outer layer forms the RPE. The ciliary margin (peripheral part of
the optic cup) develops to generate the iris and the ciliary body. The lens placodes progresses to
form a hollow lens vesicle. Cells in the posterior region differentiate as primary lens fiber cells and
elongate to fill the cavity, while the cells in the anterior region become proliferative lens epithelial
cells (Figure 1D; Fuhrmann, 2008; Cvekl and Ashery-Padan, 2014; Fuhrmann et al., 2014). The
retinal vessels arise from the optic nerve head shortly after birth and extend radically to the retinal
periphery in the superficial retina. The vasculature then sprouts ventrally to form the deep vascular
layer (Gariano and Gardner, 2005).
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FIGURE 1 | Schematic diagram of vertebrate eye development (A). The early optic vesicle stage (E8.5–9.0). The presumptive optic vesicle envaginates toward

the head surface ectoderm through the mesenchyme. (B) The optic vesicle stage (E9.5). As the optic vesicle comes into contact with the head surface ectoderm, it

becomes partitioned into three domains: a dorsal, a distal and a proximal domain, which give rise to the retinal pigment epithelium, the neural retina and the optic

stalk, respectively. The head surface ectoderm thickens to form the lens placode. (C) The optic cup stage (E10.5). The optic vesicle invaginates in coordination with

the lens placode to form the optic cup and the lens pit. (D) The closure of the lens vesicle (E13.5). The cells located at the posterior lens vesicle elongate anteriorly to

fill the cavity and differentiate as primary lens fiber cells. The cells in the anterior part of lens vesicle give rise to lens epithelial cells which migrate posteriorly to the

equator and differentiate as secondary lens fiber cells. Pink color represents the region where the activity of WNT/β-catenin signaling is active, green shows the source

of WNTs, blue indicates the region where WNT/PCP signaling is active. (E, F) Schematic representation of WNT/β-catenin signaling in the early lens development and

in the RPE development, respectively. E. The periocular mesenchyme secretes TGFβ, which signals to the non-lens surface ectoderm. WNT2b is induced by TGFβ

and activates WNT/β-catenin signaling in order to suppress the lens fate by repressing expression of Pax6. In the lens placode, WNT/β-catenin is inhibited by Pax6

which initiates lens development. (F) The surface ectoderm secretes WNTs which activate WNT/β-catenin signaling in the RPE. This signaling induces expression of

Otx2 and Mitf which in cooperation with Pax6 control the RPE developments.

WNT SIGNALING

WNTs can couple to various receptors and trigger different
downstream signaling cascades including the non-canonical
WNT/planar cell polarity (PCP), WNT/Ca2+, and the canonical
WNT/β-catenin signaling pathway, the focus of this review.
WNT/β-catenin signaling is initiated by binding of the WNTs
to the Frizzled/LRP5/6 receptor complex, which leads to
the accumulation of β-catenin and nuclear translocation. In
the nucleus, β-catenin interacts with the TCF/LEF family of

Abbreviations: pOV, presumptive optic vesicle; OV, optic vesicle; SE, head surface

ectoderm; ME, extraocular mesenchyme; pRPE, presumptive retinal pigment

epithelium; pNR, presumptive neural retina; pOS, presumptive optic stalk; LP, lens

placode; RPE, retinal pigment epithelium; LPT, lens pit; OS, optic stalk; CM, ciliary

margin; LE, lens epithelium; ON, optic nerve.

transcription factors and regulates their target genes. In the
absence of WNTs, β-catenin is phosphorylated by a “destruction
complex” composed of multiple proteins, including AXIN2 and
GSK3β, and targeted for degradation (Loh et al., 2016). In
addition to its critical role as a transcriptional co-activator, β-
catenin acts as a central component of the adherens junction
by forming a link between cadherins and the actin cytoskeleton
(Heuberger and Birchmeier, 2010). WNT/PCP signaling does
not use β-catenin, but activates the Rho family GTPases and
JNK pathway, which results in changes in cytoskeleton and cell
polarity (Loh et al., 2016). WNT signaling is modulated by
a number of WNT-sequestering proteins, such as DKKs and
SFRPs, which prevent ligand-receptor interactions (Cruciat and
Niehrs, 2013).
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THE LENS

WNT signaling plays essential roles in eye organogenesis
(Fuhrmann, 2008). During lens development, WNT/β-catenin
signaling is active in the periocular surface ectoderm and lens
epithelium (Stump et al., 2003; Smith et al., 2005; Kreslova et al.,
2007; Machon et al., 2010; Carpenter et al., 2015). Conditional
deletion of β-catenin in the presumptive lens placode and
surrounding head surface ectoderm results in abnormal lens
morphogenesis due to cell-cell adhesion defects. Conversely, the
lens induction in the β-catenin loss-of-function mutant is not
affected as expression of lens-specific markers is maintained
(Smith et al., 2005). Consistently, a null mutation in Lrp6, which
is expressed throughout the eye at the optic vesicle stage, does
not have a profound effect on the lens induction (Stump et al.,
2003; Smith et al., 2005). Interestingly, ectopic lentoid bodies
are formed in the periocular surface ectoderm, where WNT/β-
catenin signaling is inactivated in β-catenin-deficient mutants.
Although the adherens junction is disrupted, ectopic lentoid
bodies are not observed in the E-cadherin/N-cadherin or Scribs
conditional knockout mice generated using the same Cre line
(Pontoriero et al., 2009; Yamben et al., 2013). Thus, formation of
ectopic lentoid bodies is mediated by the inactivation of WNT/β-
catenin signaling rather than by cell-cell adhesion defects. In
addition, ectopic activation of WNT/β-catenin signaling by
expression of constitutively active β-catenin leads to inhibition
of the lens formation (Smith et al., 2005; Machon et al., 2010).
Taken together, WNT/β-catenin signaling is not required for the
lens fate determination, however it inhibits the lens formation
and appears to suppress the lens fate in the periocular ectoderm.
The precise regulation ofWNT/β-catenin signaling is required to
ensure the correct patterning of the ocular tissue.

WNT/β-catenin signaling is regulated by TGFβ signaling
and Pax6 in the surface ectoderm at the optic vesicle stage
(Figure 1E). The migrating neural crest cells inhibit the
lens specification, while their ablation results in ectopic lens
formation (Bailey et al., 2006). In chick embryos, the neural
crest cells secrete multiple TGFβs which activate WNT/β-catenin
signaling by inducingWNT2b in the adjacent non-lens ectoderm.
The lens fate in presumptive lens ectoderm explants can be
suppressed by the neural crest, constitutively active β-catenin,
as well as TGFβ. Interestingly, the expression of lens markers is
restored when these explants are cultured with TGFβ and WNT-
sequestering protein FZD8-CRD, a truncated and soluble form
of the WNT receptor. This indicates that lens suppression by
the neural crest-derived TGFβ is dependent on WNT/β-catenin
signaling (Grocott et al., 2011). WNT2b null mice display no
ocular defects and multiple WNTs are expressed in the surface
ectoderm, therefore additionalWNTs are required for the process
in mice (Tsukiyama and Yamaguchi, 2012; Carpenter et al., 2015).

Pax6 is expressed in the presumptive lens placode and Pax6
null mutation results in failure of the lens formation (Hill
et al., 1991; Grindley et al., 1995). It has been shown that
Pax6 regulates the expression of Sfrp2, and Dkk1. In Pax6-
deficient presumptive lens placode, Sfrp2 is down-regulated and
WNT/β-catenin signaling is ectopically activated (Machon et al.,
2010). However, it is unlikely that Sfrp2 acts as a downstream

effector as lens induction is not affected in the Sfrp1−/−;
Sfrp2−/− mice (Sugiyama et al., 2013). On the other hand, the
role of Dkk1 in the lens induction remains elusive as Dkk1
null embryos lack the anterior head structure including the
eyes (Mukhopadhyay et al., 2001). Interestingly, PAX6 ChIP
sequencing using human neuroectodermal cells has shown that
PAX6 binds to a variety of genes, which regulate WNT signaling
(Bhinge et al., 2014). Further studies are necessary to understand
how Pax6 counteracts WNT/β-catenin signaling.

At later stages of development, WNT/β-catenin signaling
is required for the formation and maintenance of the lens
epithelium (Stump et al., 2003; Cain et al., 2008; Martinez
et al., 2009). Interestingly, WNT/β-catenin signaling is reduced
in the lens epithelium of the Sfrp1−/−; Sfrp2−/− embryos
(Sugiyama et al., 2013). SFRP1/2 are primarily characterized as
WNT-sequestering proteins, however they can activate WNT/β-
catenin signaling by facilitating the diffusion of WNTs or
suppressing WNT/PCP pathway which can antagonize WNT/β-
catenin signaling (Satoh et al., 2008; Mii and Taira, 2009).
Additionally, Sfrp1/2 can also inhibit BMP and Notch signaling,
which are required for lens development, thus mis-regulation of
these signaling pathways might also be responsible for the defects
in the Sfrp1/2-deficient lens (Misra andMatise, 2010; Esteve et al.,
2011a).

Although WNT/β-catenin signaling is not required for the
lens fiber development, there are indications that the alignment
and orientation of lens fiber cells are dependent on the
WNT/PCP signaling pathways (Chen et al., 2008; Sugiyama
et al., 2010, 2011). In the lens overexpressing Sfrp2, the fiber
orientation is severely disrupted and expression of components
of the WNT/PCP pathway is down-regulated (Chen et al., 2008;
Sugiyama et al., 2010). WNT5, which activates the PCP pathway
is secreted from the lens epithelium and WNT5 promotes the
directed behavior of lens fiber cells in the lens explants (Dawes
et al., 2014).

THE RPE

Signals from neighboring tissues are crucial for the accurate
specification of the neural retina and the RPE within the
optic vesicle. The dorsal optic vesicle receives signals from
the extraocular mesenchyme and the head surface ectoderm to
differentiate into the RPE (Fuhrmann et al., 2000; Martínez-
Morales et al., 2004; Bharti et al., 2006; Steinfeld et al., 2013;
Carpenter et al., 2015). During retinal development, WNT/β-
catenin signaling is active in the dorsal optic vesicle which
gives rise to presumptive RPE at the optic vesicle stage and
is subsequently restricted to the peripheral RPE (Liu et al.,
2006; Fujimura et al., 2009; Westenskow et al., 2009; Hägglund
et al., 2013). The RPE transdifferentiates into the neural retina
in the β-catenin-deficient RPE at the optic cup stage, as
evidenced by loss of the RPE markers Mitf and Otx2 and
by the ectopic expression of neural retinal markers, such as
Chx10 and Rax (Fujimura et al., 2009; Westenskow et al., 2009;
Hägglund et al., 2013). The β-catenin-deficient RPE preserves
intact adherens junctions at the optic cup stage, although
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cell-cell adhesion is disrupted at later stages (Fujimura et al.,
2009; Westenskow et al., 2009). Interestingly, γ-catenin, a
paralog of β-catenin, can substitute β-catenin in cell adhesion
complexes in various developmental contexts (Huelsken et al.,
2000; Posthaus et al., 2002; Zhou et al., 2007). The lack of
β-catenin in the adherens junctions might be compensated
by γ-catenin as evidenced by the presence of γ-catenin in
the β-catenin-deficient RPE at the optic cup stage. Thus, the
transdifferentiation is probably caused by loss of WNT/β-catenin
signaling (Fujimura et al., 2009). A similar phenomenon is
observed in the optic cup derived from the mouse embryonic
stem cell aggregates in vitro (Eiraku et al., 2011). Treatment
with a WNT secretion inhibitor reduces the number of the
RPE cells, while WNT3a promotes the RPE differentiation and
suppresses the neural retina generation (Eiraku et al., 2011).
Interestingly, ectopic activation of WNT/β-catenin signaling in
the entire RPE also results in disruption of the RPE patterning.
The peripheral RPE remains normal, while the central part,
in which WNT/β-catenin signaling is ectopically active, loses
expression of the RPE markers. In contrast to β-catenin-deficient
mutants, the RPE is not transdifferentiated to the neural retina
(Fujimura et al., 2009). Thus, the activity of WNT/β-catenin
signaling is spatially and temporally regulated during the RPE
development.

WNT/β-catenin signaling regulates RPE development in
cooperation withMitf,Otx2, and Pax6 (Figure 1F). Expression of
Mitf and Otx2 is directly regulated by WNT/β-catenin signaling
(Fujimura et al., 2009; Westenskow et al., 2009). Furthermore,
ectopic expression of bothOtx2 and β-catenin in the presumptive
chick neural retina promotes the RPE fate while the ectopic
expression of Otx2 or β-catenin alone is not sufficient. Therefore,
β-catenin, together with Otx2, induces a change in cell fate from
retinal progenitor cells to the presumptive RPE (Westenskow
et al., 2010). Furthermore, β-catenin directly interacts with MITF
and promotes Mitf -mediated transcription (Schepsky et al.,
2006). A recent study has shown that PAX6 acts in synergy with β-
catenin andMITF to activate the promoters ofmelanogenic genes
Tyr and Trp-1 (Fujimura et al., 2015).

Although the identity of the specific WNTs involved in
RPE development remains elusive, a recent study has shown
that WNTs from the surface ectoderm are necessary for this
process (Carpenter et al., 2015). During early eye development,
the WNT transporter Wntless is expressed in the presumptive
lens placode, the periocular surface ectoderm, the periocular
mesenchyme at the optic vesicle stage, and it is also detected
in the peripheral retina and the RPE at later stages (Carpenter
et al., 2015). Conditional deletion of Wntless in the presumptive
lens leads to inactivation of WNT/β-catenin signaling in the
peripheral retina and periocular mesenchyme (Carpenter et al.,
2015). Moreover, the number of RPE cells is reduced inWntless-
deficient mice (Carpenter et al., 2015). Despite the presence
of multiple WNTs and Wntless in the periocular mesenchyme,
conditional inactivation ofWntless in the periocularmesenchyme
and RPE does not affect the eye development or the activity of
WNT/β-catenin signaling (Carpenter et al., 2015). It remains
elusive how WNTs disperse from the periocular mesenchyme
to the WNT-responsive tissue in the optic cup. There are,

however, indications that heparan sulfate proteoglycans (HSPG)
are involved in the distribution of WNTs within the eye.
HSPGs are located on the cell surface and in the extracellular
matrix and have been implicated in a number of signaling
pathways including WNT (Sarrazin et al., 2011). In the context
of WNT signaling transduction, HSPGs play an essential
role in organizing the extracellular distribution of WNTs
and they maintain the activity of WNTs by preventing their
aggregation in the extracellular environment (Fuerer et al., 2010;
Matsuo and Kimura-Yoshida, 2014). Interestingly, conditional
deletion of Ext1, a key HSPG synthetic enzyme, in the
periocular mesenchyme leads to severe ocular malformations
including the defects in the peripheral RPE development (Iwao
et al., 2010). It has not been shown whether WNT/β-catenin
signaling is affected in the peripheral optic cup of the Ext1-
deficient mice, however Ext1 is required for the activation
of the WNT11/β-catenin pathway in Xenopus embryos (Tao
et al., 2005). Thus, HSPG in the periocular mesenchyme
might mediate the distribution of WNTs from the surface
ectoderm.

THE CILIARY MARGIN

WNT/β-catenin signaling is active in the developing ciliary
margin or peripheral retina, but it is inactive in the central
retina (Liu et al., 2003, 2007; Cho and Cepko, 2006). Several
WNT signaling members, such as WNT2b, Frizzled-4 (FZD4),
and Lef1 are expressed in the ciliary margin (Trimarchi
et al., 2009). Overexpression of a constitutively active form
of β-catenin leads to the expansion of the ciliary margin
at the expense of the central retina (Cho and Cepko, 2006;
Liu et al., 2007; Trimarchi et al., 2009). In addition, Axin2
null embryos display multiple ocular phenotypes including
expansion of the ciliary margin (Alldredge and Fuhrmann,
2016).

Several studies indicate that WNT/β-catenin signaling activity
in the peripheral retina is controlled by Sfrp1/2, Foxg1, and
Sox2 (Matsushima et al., 2011; Esteve et al., 2011b; Fotaki et al.,
2013). As mentioned above, it has been suggested that WNT-
sequestering proteins SFRP1/2 can activate WNT/β-catenin
signaling (Bovolenta et al., 2008). In the Sfrp1−/−; Sfrp2−/−

embryos, this signaling is inactive in the peripheral retina,
which displays neural retinal characteristics (Esteve et al., 2011b).
Conversely, restriction of WNT/β-catenin signaling to the ciliary
margin has been shown to be mediated by Foxg1 and Sox2
(Matsushima et al., 2011; Fotaki et al., 2013). In Foxg1−or Sox2-
deficient retina,WNT/β-catenin signaling are up-regulated in the
peripheral retina and the ciliary margin expands at the expense
of the neural retina (Matsushima et al., 2011; Fotaki et al.,
2013). foxg1 suppresses WNT/β-catenin signaling by directly
repressing the transcription ofWNTs in the forebrain of zebrafish
(Matsushima et al., 2011). SOX2 interferes with WNT/β-catenin
signaling by binding β-catenin in the osteoblast lineage (Seo
et al., 2011). Taken together, it is likely that multiple mechanisms
control the activity of WNT/β-catenin signaling in the ciliary
margin.
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THE DORSO-VENTRAL PATTERNING IN
THE OPTIC CUP

In addition to the correct patterning of the lens and the
RPE development, WNT/β-catenin signaling is required for the
maintenance of the dorsal retinal identity (Veien et al., 2008;
Zhou et al., 2008; Hägglund et al., 2013). Conditional inactivation
of β-catenin in the early optic cup results in the down-regulation
of dorsal retinal markers, such as Bmp4 and expansion of the
ventral retinal markers, such as Vax2 (Hägglund et al., 2013).
Similarly, loss of Lrp6 causes dorso-ventral patterning defects in
the neural retina (Zhou et al., 2008). Consistently, the expression
of dorsal retinal markers are attenuated in a transgenic fish which
overexpresses dkk1 or dominant-repressor form of tcf3. This
phenotype is rescued by LiCl, which promotes the accumulation
of cytoplasmic β-catenin by inhibiting GSK3β (Veien et al., 2008).
Thus, the role of WNT/β-catenin signaling in the dorso-ventral
patterning within the retina seems to be evolutionarily conserved.

THE RETINAL VASCULAR SYSTEM

WNT/β-catenin signaling plays an essential role in the retinal
vascular development. In genetic disorders, such as Norrie
disease and Familial Exudative Vitreoretinopathy, retinal
hypovascularization is caused by loss-of-function mutations in
the Norrin disease protein (Norrin), FZD4, or LRP5 genes. Norrin
contains separate binding sites for FZD4 and for LRP5 (Ke
et al., 2013). Activation of FZD4/β-catenin signaling by Norrin
requires the presence of either LRP5 or LRP6 (Ye et al., 2009).
Although Lrp5 can compensate for the loss of Lrp6 (and vice
versa) in the postnatal brain vasculature, Lrp5 plays a major role
and Lrp6 plays a minor role in the retinal vascularization (Zhou
et al., 2014; Huang et al., 2016). Norrin secreted fromMüller glial
cells binds to FZD4 in the endothelial cells and regulates retinal
vascular development (Xu et al., 2004; Junge et al., 2009; Ye et al.,
2009; Wang et al., 2012). The retinal vascular defects caused by
ablation of Norrin are rescued by stabilizing β-catenin, while
ectopic expression of dominant negative Tcf4 in the endothelial
cells mimics the phenotype. This indicates that Norrin/FZD4

signaling acts via β-catenin signaling (Zhou et al., 2014). In
addition, WNT/β-catenin signaling in the retinal vascular
system is regulated by the EST transcription factor Erg, which
plays a critical role in vascular development and angiogenesis

(Birdsey et al., 2015). Erg controls WNT/β-catenin signaling by

promoting β-catenin stability and regulating transcription of
FZD4 (Birdsey et al., 2015).

β-catenin-independent WNT signaling pathway is also
required for the retinal vascular system development (Stefater
et al., 2011; Korn et al., 2014; Franco et al., 2016). The endothelial
cells express preferentially non-canonical WNTs, such asWNT5a
and WNT11. Conditional deletion of Wntless or WNT5a in the
endothelial cells leads to significant decrease in vascular density
due to excessive vessel regression (Korn et al., 2014; Franco et al.,
2016).

CONCLUSION

The activity of WNT/β-catenin signaling is tightly regulated
during eye development and mis-regulation of the signaling
results in multiple ocular malformations due to defects in the
process of cell fate determination and differentiation. Studies of
conditional knockout mice of various members of the WNT/β-
catenin signaling pathway indicate thatWNT/β-catenin signaling
is essential for eye development by controlling the correct
patterning of the ocular tissue, promoting the differentiation of
the retinal pigment epithelium, controlling the morphogenesis of
the optic cup, andmaintaining the dorsal retinal identity. Further
research is necessary to clarify the mechanisms through which
WNT/β-catenin signaling integrates into the genetic regulatory
networks controlling the eye development in the vertebrate.
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