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Abstract
Identifying promising targets is a critical step in modern drug discovery, with causative genes of diseases that are an important source of 
successful targets. Previous studies have found that the pathogeneses of various diseases are closely related to the evolutionary events of 
organisms. Accordingly, evolutionary knowledge can facilitate the prediction of causative genes and further accelerate target 
identification. With the development of modern biotechnology, massive biomedical data have been accumulated, and knowledge 
graphs (KGs) have emerged as a powerful approach for integrating and utilizing vast amounts of data. In this study, we constructed 
an evolution-strengthened knowledge graph (ESKG) and validated applications of ESKG in the identification of causative genes. More 
importantly, we developed an ESKG-based machine learning model named GraphEvo, which can effectively predict the targetability 
and the druggability of genes. We further investigated the explainability of the ESKG in druggability prediction by dissecting the 
evolutionary hallmarks of successful targets. Our study highlights the importance of evolutionary knowledge in biomedical research 
and demonstrates the potential power of ESKG in promising target identification. The data set of ESKG and the code of GraphEvo can 
be downloaded from https://github.com/Zhankun-Xiong/GraphEvo.
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Significance Statement

Identifying promising drug targets from tens of thousands of human genes is a critical step in modern drug discovery. To be a prom
ising drug target, a gene must have both targetability and high druggability. Our analyses found that existing successful targets share 
some critical evolutionary hallmarks, and evolutionary information can facilitate the target prediction. Here, we proposed a concept 
“evolution-strengthened knowledge graph (ESKG)” and materialized this concept by establishing a data set containing more than 4 
million triplets. Furthermore, we developed an ESKG-based machine learning model named GraphEvo, which can effectively predict 
the targetability and the druggability of genes. Our approach can provide some ideas for target research and help to improve the ef
ficiency of drug research and development.
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Introduction
Identifying promising drug targets with high clinical efficacy 
from tens of thousands of human genes (i.e. predicting the 
targetability of genes) is a critical step in modern drug discov
ery (1). It is well known that disease-causing genes are an im
portant source of successful targets. In recent years, a large 
number of disease-associated genes have been identified 
based on biological experiments or in silico approaches (2). 
However, most of these disease-associated genes are not 
causative genes, and agents that target noncausative genes 
will lead to clinical inefficiency (3), wasting human and mater
ial resources in clinical trials. Therefore, the rational selection 
of drug targets is one of the effective ways to mitigate risk in 
preclinical drug discovery (4).

From the perspective of evolutionary medicine, the pathogen
esis and development of various diseases (including cancers, 

neurological diseases, and cardiovascular diseases) are closely re

lated to the evolutionary events of organisms (5–10). Indeed, a ser

ies of studies have revealed that evolutionary knowledge can 

facilitate the interpretation of disease pathogenesis and thus 

help predict causative genes (11–16). In evolutionary biology, 

whole-genome duplication (WGD) is generally regarded as an im

portant evolutionary event for vertebrates (17). Genomic studies 

have found that the ancestral genome of humans experienced 

two WGD events during the early vertebrate period, and the pro

duction of ∼30% of protein-coding genes in the human genome 

is involved in these two events (18–22). The genes generated in 

these two WGD events were named Ohnologs (22). Due to the 
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high dosage sensitivity of Ohnolog genes (that is, the variation of 
gene copy number will have an impact on the phenotype), 
Ohnolog genes are closely related to the occurrence and develop
ment of human diseases (13, 18). In addition to Ohnologs, the evo
lutionary stages of genes are also associated with some human 
diseases (8). For example, cancer driver genes are significantly en
riched in those originating from cellular organisms, Opisthokonta, 
and Eumetazoa (14). And drug targets that originated in 
Eumetazoa are significantly related to the function of neurological 
disease therapy (23). Previous studies have shown that existing 
successful drug targets share some common evolutionary hall
marks (i.e. Ohnologs and evolutionary stages) (3, 23–26). Our ana
lyses found that the proportion of targets with direct evolutionary 
support increases significantly across the drug development pipe
line, and selecting evolutionary information–supported targets 
could double the success rate in clinical development (23). 
Therefore, evolutionary information could facilitate the target
ability prediction of genes.

In addition to the targetability of genes, the druggability is 
equally important for the identification of a promising drug target. 
The druggability of existing successful targets varies widely, 
namely, a few targets are extremely successful and cover 10 or 
more approved drugs (defined as highly druggable targets in this 
study), but most targets give birth to three or fewer approved 
drugs (2). For example, nuclear receptor subfamily 3 group C 
member 1 (NR3C1) is a representative drug target with high drugg
ability. According to the records of the drug target database 
SCG-Drug (http://zhanglab.hzau.edu.cn/scgdrug) (3), there are 
currently more than 60 approved drugs for the treatment of in
flammatory diseases targeting NR3C1. Another known highly 
druggable target is histamine receptor H1 (HRH1), which is tar
geted by ∼50 approved drugs associated with allergic rhinitis 
and chronic urticaria (3). According to records of SCG-Drug (3), 
highly druggable targets, which account for 13% of human suc
cessful targets, cover more than 60% of approved drugs. The effi
cient prediction of gene druggability and further identification of 
highly druggable targets will greatly improve the efficiency of 
drug development.

Thanks to the development of modern biological technology, 
the amount of biomedical data has grown exponentially in recent 
years. As a consequence, determining how to integrate biomedical 
big data and extract useful knowledge has become an important 
topic in the field of modern biology. The concept of knowledge 
graph (KG) was formally proposed by Google in 2012 (27), and its 
initial roles were to optimize search results, enhance search qual
ity, and improve Google user experiences (27). The KG is a multi
relational graph composed of entities (nodes) and relations 
(different types of edges). Each edge is represented as a triplet 
(head entity–relation–tail entity), which enables massive data to 
be gathered to achieve rapid response and reasoning based on 
knowledge. Furthermore, the KG facilitates the integration of 
data from multiple sources, improving the performance of data 
analysis to a level that cannot be delivered by a single data source 
or traditional databases.

At present, based on accumulated biomedical big data, several 
KGs have been successfully constructed and are widely used in 
the prediction of drug activities, drug side effects, drug–target in
teractions (DTIs), drug–drug interactions (DDIs), etc. (28–38). For 
example, Zhang et al. (34) successfully applied an advanced graph 
neural network (GNN) model to the discovery of anti-COVID-19 
drug candidates through the KG construction. Hsieh et al. (35) es
tablished a COVID-19–related KG based on interactions among 
host genes, biological pathways, drugs, and phenotypes and 

further used the GNN algorithm to predict the drug combinations 
that may synergically treat COVID-19. Yu et al. (36) proposed a 
new model, SumGNN, which integrates KG with GNN, and can 
be used to predict DDIs. Wang et al. (37) constructed a KG4SL mod
el that can be used to the prediction of synthetic lethality genes in 
human cancers through KG and GNN algorithm, which are an im
portant source of anticancer drug targets. Xiong et al. (38) devel
oped a novel multimodal framework called GraphPK, which 
integrates information from KG, drug–disease bipartite graph, 
and biological domain features for improving in silico drug reposi
tioning. The above research indicated that KG construction has a 
variety of application scenarios and important application value 
in the field of drug research and development.

In this study, we first constructed an evolutionary knowledge– 
containing KG named the evolution-strengthened knowledge 
graph (ESKG). To validate the biological significance of the ESKG, 
we predicted the causative genes of representative diseases using 
ESKG and KG embedding models. We further developed a ma
chine learning model named GraphEvo to predict the targetability 
and the druggability of genes using the ESKG-derived embedding 
as features. Next, we investigated the explainability of the ESKG 
in druggability prediction through dissecting the biological hall
marks of targets. Our study highlights the potential of evolution
ary knowledge in target research.

Results
Construction and validation of ESKG
In this study, we constructed an evolutionary knowledge–contain
ing KG called ESKG (Fig. 1A). The ESKG not only contained various 
types of common biological data (such as gene–disease associa
tions, gene–gene interactions, biological processes, subcellular lo
calization of proteins, drug–target associations, and drug–disease 
associations) but also integrated the evolutionary data (Ohnologs 
and evolutionary stages) of genes (Fig. 1A). The constructed ESKG 
involved more than 4 million triplets and 16 kinds of relations, 
such as disease–disease associations, gene–gene associations, 
gene–disease associations, and disease–disease associations 
(Table S1).

Then, we utilized a classical KG embedding model named 
TransE (39) to learn low-dimensional vector representations (i.e. 
embeddings) of entities and relations in the ESKG. The embedding 
representations of the entities and relations learned by the TransE 
model were visualized by the t-distributed stochastic neighbor 
embedding (t-SNE) algorithm in our study. The t-SNE reduces 
high-dimensional vectors to graphical representations in a 2D 
space, and nearby points have similar embedding representa
tions. Figure 1B–E shows that the embedding representations of 
the same type of entities or relations in the ESKG have relatively 
good colocalization in a 2D space, which reflects the effectiveness 
of the ESKG to a certain extent.

To further validate the biological significance of the ESKG, we 
applied the ESKG to the identification of causative genes for 19 
kinds of complex diseases based on TransE (39) (see Materials 
and methods). Causative genes were collected from DisGeNET 
(https://www.disgenet.org/) (40). DisGeNET has developed a reli
able scoring system for gene–disease associations with scores 
that range from 0 to 1, where higher scores represent higher con
fidence in gene–disease associations. The reliable scoring system 
of DisGeNET has been supported by extensive literature evidence 
with high confidence (40). In order to ensure the strong correlation 
and reliability of gene–disease associations, we selected the genes 
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Fig. 1. Construction and validation of the ESKG. A) The types of entities and relations contained in the ESKG. The ESKG not only contains various types of 
common biological data (such as genes, diseases, biological processes, and drugs) but also integrates the evolutionary data (Ohnologs and evolutionary 
stages) of genes. B–E) TransE-learned embedding visualization of the entities and relations in the ESKG based on the t-SNE algorithm. Embeddings of the 
same type of entities or relations in the ESKG have relatively good colocalization in a 2D space, which validates the effectiveness of the ESKG. F) 
Performance comparison of the ESKG and initial KG in the prediction of causative genes for complex diseases. The results demonstrate that compared 
with the DRKG-derived initial KG, the ESKG showed superior power in the task of causative gene prediction for 17 of 19 kinds of diseases.
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with the highest 10% of DisGeNET scores for each disease as 
causative genes for the corresponding disease, covering 72,266 
gene–disease associations. Of these causative gene–disease asso
ciations, 10.41% (7,520 of 72,266) were existing successful targets 
in SCG-Drug database. This ratio was significantly higher than 
that of noncausative gene–disease associations included in the 
DisGeNET (4.26%, 30,942/725,588) (P = 0, hypergeometric distribu
tion test). These results indicated that the prediction of causative 
genes can facilitate the identification of successful drug targets.

In this paper, to demonstrate the efficacy of the ESKG, we filtered 
out the existing triplets of DisGeNET-derived causative genes and 
the corresponding diseases in the initial KG and ESKG for each dis
ease. As a result, compared with the initial KG which does not con
tain evolutionary knowledge (34), the ESKG was more effective in 
causative gene prediction in 17 kinds of these diseases (i.e. alcohol
ism, Alzheimer’s disease [AD], asthma, ataxia telangiectasia, colitis, 
colorectal neoplasms, dementia vascular, depressive disorder, dia
betes mellitus, diabetic retinopathy, gonorrhea, Huntington disease, 
influenza, intellectual disability, leukemia lymphoid, lupus neph
ritis, and schizophrenia) (Fig. 1F and Table S2). It is worth noting 
that the above diseases include two infectious diseases (gonorrhea 
and influenza). Although the classical strategy against infectious 
diseases in the past mainly targeted pathogen proteins, host mol
ecule–targeted therapies have gradually become the focus of antiin
fectious drug development due to their low drug resistance and 
broad spectrum (26). Therefore, the ESKG-predicted causative genes 
related to infectious diseases may be potential targets of antiinfec
tive drugs. We found that several ESKG-predicted causative genes, 
which received high gene–disease association scores in DisGeNET, 
were confirmed by previous studies but were overlooked in the ini
tial KG-based prediction.

For example, through the ESKG and TransE model, we predicted 
that CCAAT enhancer binding protein alpha (CEBPA) may act as a causa
tive gene of lymphocytic leukemia. CEBPA is a transcription factor 
that plays a role in cell cycle regulation and granulocyte differenti
ation (41). A study has shown that the gene mutation and abnormal 
regulation of CEBPA at the transcriptional, translational, and post
translational levels can induce acute myeloid leukemia (42), which 
is an important branch of lymphocytic leukemia. In addition, we pre
dicted that caspase-3 (CASP3) is a causative gene of AD. Previous stud
ies have demonstrated that the activation of proteins in the caspase 
family is associated with AD-related neurodegeneration (43). CASP3, 
an important member of the caspase family, has been shown to be a 
major effector in the apoptotic cascade leading to neuronal apoptosis 
(44). Type 1 diabetes mellitus (T1DM), also known as autoimmune 
diabetes, is a chronic disease characterized by the loss of pancreatic 
beta cells leading to insulin deficiency, which leads to hyperglycemia 
(45). Using the ESKG and the TransE model, we predicted that uncoup
ling protein 2 (UCP2) could be a causative gene of T1DM. UCP2 is a 
transporter of the inner mitochondrial membrane, which is consid
ered to be a key regulator of energy and glucose homeostasis (46). 
It has been reported that UCP2 is negative for the regulation of insulin 
secretion, and its gene polymorphism is also associated with diabetes 
mellitus and other chronic complications of diabetes (47, 48). There is 
increasing evidence that drugs can treat diabetes by down-regulating 
the expression of UCP2 (49). These results indicate that evolutionary 
knowledge–containing KG (ESKG) is more effective in predicting 
causative genes compared with the initial KG.

Prediction of gene targetability by ESKG
To verify the effectiveness of the ESKG in the targetability predic
tion for human genes, we first applied the ESKG-derived 

information of genes to construct the targetability prediction 
model named GraphEvo. In this study, we used ESKG-derived em
beddings (learned from TransE) as input features of genes and 
adopted the ensemble learning algorithm boosting to develop 
the targetability prediction model (Fig. 2). In the modeling process, 
we took the target–disease pairs that were marketed by the Food 
and Drug Administration (FDA) before the year 2000 as positive 
samples and randomly generated a considerable number of 
gene–disease pairs without clinical trial records as negative sam
ples. As a result, the area under the receiver operating character
istic (ROC) curve (AUC) of our targetability prediction model 
reached 0.82 (F1 score = 0.82).

Moreover, we found that the accuracy of gene targetability pre
dicted by GraphEvo increased significantly across the target devel
opment pipeline (Table S3). For targets in the preclinical stage, 
only 24.59% were identified by GraphEvo. For targets in clinical 
stages, these ratios were 27.14% (phase I), 34.73% (phase II), and 
46.95% (phase III). In the approved stage, up to 68.59% of currently 
successful targets were identified by GraphEvo, indicating that 
GraphEvo can effectively predict the targetability potential of in- 
research targets. In addition, based on the sequence, structural, 
physicochemical, and human system profile information of the 
targets, Zhu et al. (50) used an in silico method to evaluate the ap
proval potential of 31 targets in phase III clinical trials in 2009, of 
which 16 targets were predicted to be promising candidates. By 
2018, 10 of these 16 (62.5%) promising targets were approved by 
the FDA (51). In comparison, we used our targetability prediction 
model (GraphEvo) to analyze the approval potential of these 31 
targets. The results of our model showed that seven targets had 
approval potential, and they all (100%) became approved targets 
by 2018. The above study demonstrated the application value of 
ESKG and GraphEvo in targetability prediction.

In addition to predicting the targetability of genes, we also cal
culated the associated scores between drug targets and diseases 
using ESKG. Similar to predictions of disease causative genes, 
we used the TransE model to calculate the associated potential 
of each successful target-involved triplet (i.e. the successful 
drug target, disease, and corresponding relation) in the ESKG 
and used it as the associated score between a drug target and a 
certain disease category. In this study, we used the three disease 
categories with the highest associated scores as potential thera
peutic activities of successful targets. The results showed that 
for 468 successful targets, the approved drug activities of 77.78% 
(364) of the targets are consistent with ESKG-derived disease cat
egories, reflecting the potential of ESKG in the activity prediction 
of drug targets (Table S4).

Prediction of gene druggability by ESKG
Application of ESKG in gene druggability prediction
GraphEvo could also predict the druggability of genes and further 
identify highly druggable targets by fusing the features derived 
from the ESKG and the target–disease graph (TDG) (Fig. 2). Based 
on King et al.’s (52) and Quan et al.’s (3) data, we obtained 1,536 ap
proved target–disease pairs, covering 468 successful targets, and 
114 of 468 (24.36%) had a number of approved drugs greater 
than or equal to 10, which were defined as highly druggable tar
gets in our paper (Fig. 3A and B and Table S5). First, we used the 
KG embedding model TransE (39) to extract the embeddings of 
the ESKG as features of drug targets. In addition, it is obvious 
that target–disease associations could provide abundant informa
tion about the druggability of drug targets. Therefore, using a 
graph convolutional network (GCN) with the layer attention (53), 
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we also obtained graph-derived features of drug targets from the 
TDG. Finally, we concatenated the ESKG-derived features and 
TDG-derived features of drug targets and utilized the machine 
learning model of support vector regression and decision tree re
gression to construct an identification model for highly druggable 
targets (Fig. 2). In detail, our research divided 468 successful tar
gets into training and test sets according to their approval times; 
that is, drug targets approved before the year 2000 were the train
ing set, and drug targets approved after the year 2000 were the test 
set. We mainly used two common machine learning evaluation 
indicators, the AUC and top-K recall, to evaluate the effectiveness 
of this model. GraphEvo achieved an AUC of 0.95, and the top-30 
recall was 100% in the test set, which means that our model could 
recall all 9 highly druggable targets in the top 30 predictions (see 
Materials and methods).

Moreover, we found that our model could identify highly drug
gable targets that are likely to be excluded by previous studies. 
Recently, a risk gene predictive model called integrative RIsk 
Gene Selector (iRIGS) has been established by integrating multio
mic data and gene networks, and ∼100 high-confidence risk genes 
of schizophrenia were predicted based on iRIGS and considered as 
potential targets (54). However, some highly druggable targets as
sociated with dozens of antischizophrenia drugs, such as dopa
mine receptor D2 (DRD2) and 5-hydroxytryptamine receptor 1A 
(HTR1A), were overlooked by iRIGS. It is interesting to notice 
that both targets (DRD2 and HTR1A) could be successfully pre
dicted by GraphEvo (Table S6).

Explainability of ESKG in gene druggability prediction
The above results demonstrated the satisfying performance of the 
ESKG-derived model (GraphEvo) in the task of gene druggability 
prediction. We speculated that an important reason for these 

results is that highly druggable targets may have some evolution
ary hallmarks, which could be extracted from the ESKG. It was 
found that 78.95% of highly druggable targets are Ohnologs 
(Fig. 3C and Table S5), which are generated by two WGD events 
in the early vertebrate lineage and are strongly associated with 
diseases because of their dosage sensitivity (13, 18). The 
Ohnolog ratio of highly druggable targets was significantly higher 
than that of nonhighly druggable targets (P = 7.40 × 10−8, χ2 test) 
(Fig. 3C).

In addition to the evolutionary hallmark of Ohnologs, our ana
lysis revealed that highly druggable targets were enriched in 
genes that originated in the Eumetazoa stage (P = 1.86 × 10−7, hy
pergeometric distribution test) (Fig. 3D and Table S5). We rea
soned that this may be because the approved activities of a high 
percentage of highly druggable targets belong to the psychiatry 
and psychology category (Fig. 3E), and the nervous system of or
ganisms first appeared in the Eumetazoa stage according to evolu
tionary common sense (55). Taken together, our results indicate 
that compared with targets with fewer successful drugs, highly 
druggable targets have more distinctive evolutionary hallmarks 
that have been integrated by the ESKG.

Discussion
The development of new drugs is an expensive, time-consuming, 
and complex process. The rational selection of drug targets is an 
effective strategy for reducing the risk in the clinical development 
of drugs. Therefore, identifying promising drug targets from tens 
of thousands of human genes is one of the critical and most chal
lenging steps in the modern drug development process. To be a 
promising drug target, a gene must have both targetability (i.e. po
tential to be a drug target) and high druggability (i.e. potential to 
be targeted by a large number of drugs).

Fig. 2. Construction of the gene targetability and druggability prediction model (GraphEvo). In this study, we used ESKG-derived embeddings (learned 
from TransE) as input features of genes and adopted the ensemble learning algorithm boosting to develop the targetability prediction model. In the 
modeling process, we took the target–disease pairs that were marketed by the FDA before the year 2000 as positive samples and randomly generated a 
considerable number of gene–disease pairs without clinical trial records as negative samples. For a candidate highly druggable target, we concatenated 
the ESKG-derived features and TDG-derived features as the final features to predict the potential druggability of drug targets, and the druggability 
(number of approved drugs) of the target was used as the label of the training sample. Then, we utilized the machine learning model of support vector 
regression and decision tree regression to construct the identification model for highly druggable targets. To obtain robust prediction results, the final 
predicted scores are the averages of these two types of regression methods.
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In recent years, benefiting from the development of high- 
throughput biotechnology, the biomedical field has accumulated 
massive data, such as genome, transcriptome, proteome, metab
olome, and metagenome data. Traditionally, researchers have 
attempted to integrate these data using advanced computation
al, bioinformatic, or statistical strategies (including network- 
based method and machine learning–based method), aiming to 
predict DTIs or drug–pathway associations and thus discover 
promising drug targets and potential drugs (56–58). Indeed, rapid 

progress has been achieved in the biomedical field, such as the 
identification of thousands of disease-associated genes and doz
ens of innovative drug targets, enabling the discovery of hun
dreds of new drugs. However, we are still faced with the 
dilemma of missing targets and the possibility that no drugs 
will be available for a large number of complex diseases, result
ing in many deaths every year. The traditional method of drug 
target mining seems to have entered a bottleneck stage. 
Therefore, the biomedical field urgently needs to incorporate a 
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(24.36%) targets had at least 10 approved drugs, and these were defined as highly druggable targets in this study. C) Comparison of the ratios of Ohnolog 
genes between highly druggable targets and nonhighly druggable targets. The Ohnolog ratio of highly druggable targets was significantly higher than that 
of nonhighly druggable targets (P = 7.40 × 10−8, χ2 test). D) Comparison of the ratios of evolutionary stages between highly druggable targets and other 
protein-coding genes. The majority of highly druggable targets (49.50%) originated from the Eumetazoa stage (P = 1.86 × 10−7, hypergeometric 
distribution test). E) The druggability of different disease category–associated drug targets. The results show that more than 50% of psychiatry and 
psychology category–associated targets are highly druggable targets.
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new knowledge context in the hope of making breakthroughs in 
target research.

Several recent studies have established that evolutionary 
knowledge of genes facilitates the identification of drug targets 
(28–38). Therefore, we constructed an ESKG and validated the bio
logical significance of this KG through the causative gene predic
tion of diseases. Then, based on the ESKG, we developed an in 
silico model (GraphEvo) that could predict the druggability of 
genes and further identify highly druggable targets. This model 
does not depend on the protein structures of genes, which greatly 
expands the range of druggable genes. Finally, we systematically 
dissected the evolutionary hallmarks of existing successful tar
gets to explain the efficient performance of the ESKG in the drugg
ability prediction of genes.

However, this study has some limitations. First, it is well known 
that identifying causative genes responsible for complex diseases 
is an enormous task, which needs to take into account variants 
contained in genes, patterns of linkage disequilibrium, allele fre
quencies in different populations, and regulatory effects of those 
variants, among others. Therefore, using causative genes pre
dicted only at gene level as potential drug targets is biologically in
sufficient and may lead to undesired therapeutic effects. 
Nevertheless, our results indicate that ESKG-predicted causative 
genes are supported by multiple experimental researches, which 
can validate the biological applicability of ESKG to some extent. 
Second, the ESKG constructed in this paper is a static KG that 
only contains data that were accumulated up to a certain point 
in time. With the continuous updating of biomedical knowledge, 
the entities in the KG and the relations between entities will con
tinue to change. Previous articles showed that a dynamic graph 
containing time series data, that is, a graph with a time dimen
sion, can extract knowledge more accurately than a static graph 
(59). Besides, it is well known that the targetability and druggabil
ity of a gene are also related to the 3D structure of its coded pro
tein. Thanks to the rapid progresses in structural biology, such 
as protein structure prediction by AlphaFold (60), our future re
search will incorporate the 3D structure information of proteins 
to bring more effective predictions. In addition to protein targets, 
a number of studies in recent years have shown that some 
microRNAs (miRNAs) play crucial roles in human diseases and 
can be targeted by small-molecule drugs, making the 
miRNA-based diagnosis and therapeutic target discovery become 
the focus of drug research and development (61–63). However, to 
the best of our knowledge, there is no successful miRNA target in 
the field of drug development. Considering that the construction 
of prediction model needs to be based on sufficient training data 
and the biomedical data related to miRNA targets are relatively 
lacking, the current KG has not yet integrated miRNA-related bio
medical knowledge. Integrating the disease-related miRNA infor
mation into ESKG and further predicting the targetability and 
druggability of miRNA are important topics worthy of future re
search. Notably, it should be pointed out that whether a protein 
or a miRNA could become a highly druggable target is affected 
by a variety of conditions, including some nonacademic (such as 
commercial) factors. This study only investigated the potential 
of proteins to become highly druggable targets at an academic 
level.

In summary, we proposed a concept “ESKG” and materialized 
this concept by establishing a data set containing more than 4 mil
lion triplets. ESKG-based machine learning model (GraphEvo) can 
effectively predict the targetability and druggability of genes, 
which demonstrates the important value of evolutionary knowl
edge in biomedicine and is helpful to streamline the drug 

discovery pipeline. The data set of ESKG and the code of 
GraphEvo can be downloaded from https://github.com/ 
Zhankun-Xiong/GraphEvo.

Materials and methods
Data sources and preprocessing
Standardization of disease terms
The collection of successful drug targets used in this study was ob
tained from King et al.’s research (52). The data of approved drugs 
and drug–target associations were downloaded from the 
SCG-Drug database (http://zhanglab.hzau.edu.cn/scgdrug) (3). 
Due to differences in the disease terms used in different sources, 
we used the Unified Medical Language System (UMLS) to stand
ardize the disease terms of drug targets and indication annota
tions of drugs. In this study, Medical Subject Headings (MeSH) 
was selected as the vocabulary source of UMLS, and the 
MetaMap tool was used to process disease text descriptions to ob
tain a standardized disease vocabulary (64). This tool uses natural 
language processing (NLP) and computer linguistics techniques to 
process input biomedical text descriptions into standardized bio
medical texts. The processing results of MetaMap were confirmed 
in previous studies, and it has been widely used in medical text 
processing (64). Next, we systematically analyzed the approved 
drug number distribution of successful drug targets. In this art
icle, successful drug targets covering 10 or more approved drugs 
are defined as highly druggable targets.

Collection of causative genes of diseases
This study also used MetaMap to standardize disease descriptions 
of genes from DisGeNET (https://www.disgenet.org/) (40). 
DisGeNET has developed a reliable scoring system for gene–dis
ease associations with scores that range from 0 to 1, where higher 
scores represent higher confidence in gene–disease associations. 
The reliable scoring system of DisGeNET takes into account the 
number and type of data sources (treatment level and model or
ganism) and the number of publications supporting the gene–dis
ease association (40). It has been supported by extensive literature 
evidence with high confidence. To further improve the reliability 
of disease-causative genes, we selected the genes with the highest 
10% DisGeNET scores for each disease as causative genes for the 
corresponding disease. We then obtained 72,266 target–disease 
pairs that could be further used for KG construction.

Collection of evolutionary data
Information on the evolutionary stages of genes was collected 
from research published by Liebeskind et al. in 2016 (65). This 
study integrated predictions of 13 popular homology detection al
gorithms, greatly reducing the bias caused by single-algorithm 
prediction (64). In this work, human genes were classified into 
eight evolutionary stages according to their origin times, and a to
tal of ∼18,000 human genes were considered. The numbers of 
genes involved in the evolutionary stages are as follows: (i) com
mon ancestor of cellular organisms: 812 genes; (ii) common ances
tor of Eukaryota and Archaea (Euk_Archaea): 201 genes; (iii) 
horizontal gene transfer from Bacteria (Euk + Bac): 1,395 genes; 
(iv) Eukaryota: 5,240 genes; (v) Opisthokonta: 1,030 genes; (vi) 
Eumetazoa: 4,567 genes; (vii) Vertebrata: 2,469 genes; and (viii) 
Mammals: 2,180 genes. In addition, the information about 
Ohnologs was obtained from the study by Makino et al. (18). 
These data contain 9,057 pairs of Ohnologs involving 7,295 human 
genome genes.

https://github.com/Zhankun-Xiong/GraphEvo
https://github.com/Zhankun-Xiong/GraphEvo
http://zhanglab.hzau.edu.cn/scgdrug
https://www.disgenet.org/
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Construction of the ESKG
Here, we use the newly published drug repurposing knowledge 
graph (DRKG) (34) as the basis of the ESKG to build the KG. The 
DRKG is a large-scale comprehensive medical KG constructed by 
the Amazon Shanghai AI Lab and several scientific research insti
tutions, involving a variety of drug and biomedical data sources 
(including drug–target associations, drug–disease associations, 
drug side effects, gene ontologies, gene–disease associations, bio
logical pathways, and biological processes). The DRKG mines data 
from six public large-scale pharmaceutical databases (DrugBank, 
Hetionet, GNBR, STRING, IntAct, and DGIdb) and 22 million med
ical studies and then organizes and normalizes them. The DRKG 
currently contains ∼97,000 entities belonging to 13 entity types 
and ∼5,874,000 triplets of data belonging to 107 relation types. 
Since an important application of our ESKG is to construct an 
identification model for highly druggable targets, we removed 
all triplets of drug–target associations from the DRKG to form 
the initial KG to verify the performance of this model. Next, we ex
tracted KG triplets from evolutionary data (including Ohnologs 
and evolutionary stages of genes) and manually corrected the 
triplets to ensure that each entity or relation was unique in the 
ESKG. Through the integration of the initial KG and evolutionary 
data, we obtained a comprehensive ESKG.

Prediction of causative genes
After constructing the ESKG, we counted 4,512 diseases in the 
graph and standardized the names of these diseases through 
the NCBI MeSH hierarchical system (https://www.ncbi.nlm.nih. 
gov/mesh). Then, all diseases can be divided into 24 disease cat
egories, which covered common complex diseases: neoplasms, 
nervous system diseases, nutritional and metabolic disease cat
egories, immune system diseases, etc. After that, for each disease 
category, one to two representative diseases (which have suffi
cient numbers of known causative genes) were selected for the 
prediction of causative genes, and a total of 19 kinds of diseases 
(alcoholism, AD, asthma, ataxia telangiectasia, colitis, colorectal 
neoplasms, dementia vascular, depressive disorder, diabetes mel
litus, diabetic retinopathy, gonorrhea, HIV infections, Huntington 
disease, influenza, intellectual disability, leukemia lymphoid, lu
pus nephritis, melanoma, and schizophrenia) were obtained. To 
ensure the reliability and avoid circularity of prediction results, 
first, we needed to filter out the existing triplets of 
DisGeNET-derived causative genes and the corresponding dis
eases in the initial KG and ESKG for each disease. Then, we ob
tained 19 disease-specific initial KGs and ESKGs (a total of 38 
KGs) to predict causative genes and randomly divided the triplets 
of each KG into a training set (90%), a validation set (5%), and a test 
set (5%).

Here, we used a classical KG embedding model named TransE 
(39) to learn the embeddings of genes and diseases. The basic 
idea of TransE is to describe a triplet (h, r, and t) in the KG as the 
translation of the head entity (h) and the tail entity (t) in a continu
ous vector space through the relation (r); that is, h + r ≈ t. Here, h, 
r, and t represent the embeddings of h, r, and t, respectively. To 
measure the plausibility of the relations, a distance-based scoring 
function is adopted by TransE:

fr(h, t) = −h + r − t2. (1) 

∥· ∥2 represents the L2 norm, which was used as the norm of 
TransE in this study. After scoring, the output scores are then 
passed to the margin-based ranking loss, which is defined as 
follows:

L =
􏽘

ξ∈Δ

􏽘

ξ∈Δ′
[γ + fr(ξ′) − fr(ξ)]+, (2) 

where [x]+ W max(0, x) and γ denote the margin separating 

positive triplets and negative triplets. Δ and Δ′ denote the posi
tive and negative triplets, respectively. Then, the loss is used 
by the Adam optimizer to update the embeddings of the en
tities. Finally, the embeddings for each entity and each rela
tionship type were obtained by TransE. In this study, we 
implement TransE based on a high-performance KG embed
ding framework named Deep Graph Library-Knowledge Graph 
(DGL-KE) (66).

Causative gene prediction could be viewed as a KG completion 
problem. This problem can be represented as a ranking task, 
which is essentially the task of learning a prediction function 
that scores high on true triplets and low on false triplets. For 
each disease, we calculated edge scores between all genes in the 
corresponding KG and the disease based on their embeddings by 
using the following algorithm:

d = γ − ∥h + r − t ∥2 . (3) 

score = LogSigmoid(d) = log
1

1 + exp (−d)

􏼒 􏼓

. (4) 

Note that here, we use LogSigmoid to make all scores <0, so the 
higher a score is, the stronger the association between entities. 
Then, we sorted edge scores in descending order, and the top 1% 
was predicted to be causative genes for each disease. To compare 
the performance of the causative gene prediction on ESKG with 
that on the initial KG, we calculated the number of intersections 
between the TransE-predicted genes and the DisGeNET-derived 
causative genes.

Construction of the targetability and druggability 
prediction model (GraphEvo)
GraphEvo consists of four main components (Fig. 2): (i) evolu
tionary biomedical feature extraction of genes from the 
ESKG; (ii) target–disease association feature extraction of genes 
from the TDG; (iii) construction of the targetability prediction 
model; and (iv) construction of the druggability prediction 
model.

Evolutionary biomedical feature extraction of genes from the 
ESKG
Considering that evolutionary information helps identify highly 
druggable targets, we constructed an ESKG and used TransE (39) 
to extract evolutionary information by calculating the embed
dings of drug targets in the ESKG. After updating the embeddings 
of all entities in the ESKG through Eqs. (1) and (2), we obtained the 
KG embeddings X ∈ RM×k for all targets, where M and k denote the 
numbers of targets and the dimensionality of the KG embeddings, 
respectively. We denote the embedding of the target i as 
ESKG-derived feature xi.

Target–disease association feature extraction of genes from 
the TDG
The known target–disease associations could provide abundant 
information about the druggability of drug targets, which can en
hance the identification of highly druggable targets. We first de
note target–disease associations as a binary matrix 
A ∈ {0, 1}M × N, where M and N denote the numbers of targets 
and diseases, respectively; Aij = 1 if a target ti interacts with a 

https://www.ncbi.nlm.nih.gov/mesh
https://www.ncbi.nlm.nih.gov/mesh
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disease dj and Aij = 0, otherwise. Then, we constructed the known 
TDG defined by the adjacency matrix AH:

AH = 0 A
AT 0

􏼔 􏼕

∈ R(M+N) × (M+N). (5) 

Next, we utilized the GCN, a multilayer connected neural network 
architecture, to learn the low-dimensional representations of tar
gets, i.e. TDG-derived features. Specifically, given the adjacency 
matrix AH of the known target–disease association graph, the 
layerwise propagation rule of the GCN is formulated as:

H(l+1) = σ D̃
−1

2 ÃH D̃
−1

2 H(l) W(l)
􏼐 􏼑

, (6) 

with the initialized embeddings of the nodes as:

H(0) = 0 A
AT 0

􏼔 􏼕

, (7) 

where ÃH = AH + I is the adjacency matrix of the target–disease as
sociation graph with added self-connections, and I is the identity 

matrix; D̃ii =
􏽐

j ÃH, ij is the degree matrix of ÃH, W(l) is a layer- 

specific trainable weight matrix, and σ(·) denotes an activation 

function; H(l) ∈ R(M+N)×k is the node embeddings at the lth layer, 
and k is the dimensionality of the embeddings. After L layers, we 
obtained L k-dimensional embeddings from different graph con
volution layers. Since the embeddings at different layers capture 
different structural information in the association graph, we uti
lized an attention mechanism to combine the embeddings of dif
ferent layers and obtained the final embeddings of targets and 

diseases as 
HT

HD

􏼔 􏼕

=
􏽐

alH
l, where HT ∈ RM×k and HD ∈ RN×k 

are the final embeddings of targets and diseases, respectively; al 

is autolearned by the neural networks and initialized as 
1

(l+1) , l = 1, 2, . . . , L. The learning objective of the feature extrac

tion is to reconstruct the known target–disease associations. 
Concretely, the reconstruction of the known target–disease asso
ciations is defined as the generalized inner product of the target 
and disease final representations:

Ỹ = HT W HT
D, (8) 

where W ∈ Rk×k is a trainable matrix. Then, we adopted the focal 

loss (67) as the loss function to calculate the loss between Ỹ and A. 
Next, we utilized the Adam optimizer to minimize the loss func
tion and updated the embeddings of drugs and targets. Finally, 
HT is used as the TDG-derived feature. Specifically, we denote 
the TDG-derived feature for the target i as hi.

Construction of the targetability prediction model
In this study, we used the evolutionary biomedical features ex
tracted from the ESKG as input features of genes and adopted 
the ensemble learning algorithm boosting to develop the target
ability prediction model. In the modeling process, we took the tar
get–disease pairs that were marketed by the FDA before the year 
2000 as positive samples and randomly generated a considerable 
number of gene–disease pairs without clinical trial records as 
negative samples.

Construction of the druggability prediction model
For a candidate highly druggable target i, we integrated its evolu
tionary biomedical information and target–disease information 
by concatenating the ESKG-derived features xi and TDG-derived 

features hi as the final features hfinal to predict the potential 
druggability of the drug target (Fig. 2).

hfinal = xi||hi, (9) 

where || represents vector concatenation operation. In the process 
of model construction, the druggability (number of approved 
drugs) of the target was used as the label of the training sample, 
and we utilized the machine learning model of support vector re
gression and decision tree regression to construct the identifica
tion model for the highly druggable target. To obtain robust 
prediction results, the final predicted scores are the averages of 
these two types of regression methods. For the target i, we ob
tained the druggability score as follows:

druggability score =
SVR(hfinal) + DTR(hfinal)

2
. (10) 

Finally, the bool score of whether the target is a highly druggable 
target is defined as:

priviledged score = 0 if druggability score < threshold
1 if druggability score ≥ threshold

􏼚

.
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