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Abstract: This study aimed to analyze the effect of the impact velocity of a Zr 700 flyer plate
explosively welded to a Ti Gr. 1/P265GH bimetallic composite on the residual stress formation,
structural properties, and tensile strength. The residual stresses were determined by the orbital
hole-drilling strain-gauge method in a surface layer of Zr 700 in as-received and as-welded conditions.
The analysis of the tensile test results based on a force parallel to interfaces was used to propose a
model for predicting the yield force of composite plates. Compressive residual stresses found in the
initial state of the Zr 700 plate were transformed to tensile stresses on the surface layer of the welded
Zr 700 plate. A higher impact velocity resulted in higher tensile stresses in the Zr 700 surface layer.
To increase the resistance of the composite plate to stress-based corrosion cracking, a lower value of
impact velocity is recommended in the welding process.

Keywords: explosive welding; residual stress; orbital hole-drilling strain-gauge method; prediction
of tensile yield force; explosive cladding; Zr 700

1. Introduction

Metallic composites belong to a group of materials in which the multilayer structure of different
metallic alloys provides special functional properties [1]. Explosive cladding is one of the manufacturing
processes used to produce multilayer metallic composites. It involves the energy of detonation to
accelerate a flyer plate that, as a result, collides with a base plate [2,3]. High-velocity impact leads to
the formation of a strong bond between colliding plates. Low-density materials, such as aluminum
and magnesium alloys, can be explosively welded to steels and applied in the ship building and
automotive industries [4,5]. A copper layer [6,7] within a composite multilayer material provides
excellent electrical conductivity, and so-called reactive materials such as titanium [8,9], zirconium,
and niobium exhibit corrosive resistance in an aggressive environment. This, in turn, predisposes
them to wide usage in design applications in process equipment in particular [10]. A composition
of tungsten foil and cooper layers is applicable for thermonuclear reactors [11] since it offers high
resistance to heat loads and irritation.

Zirconium exhibits outstanding performance as a material for use in highly corrosive environments
with a broad range of chemical media and temperatures [10,12,13]. This allows the material to be
used in the chemical process industry for heat exchangers cooled with seawater and other pieces
of process equipment as well as in nuclear-fuel-reprocessing plants. To reduce the financial cost of
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producing the process equipment, a zirconium alloy could be used as a relatively thin layer in cladded
plates. According to Banker [10], replacing the solid structure with a zirconium wall of a thickness
above 20 mm by a multilayer plate could have cost-effective benefits. Explosive welding is categorized
within the solid-state process and is one of the ways to achieve a high-quality connection between
dissimilar materials.

The parameters of the explosive welding process determine the quality of the bond and the
mechanical properties of the cladded plates. For higher explosive welding parameters, locally melted
areas may be formed, which can involve brittle intermetallic compounds and shrinkage cracks [14,15].
Therefore, all parameters must be adequately selected to achieve optimal efficiency of the process.
Such parameters include the physical properties of the welded materials, parameters of the explosive
material, and the geometry of the welding setup. The explosively induced joint is inevitably associated
with large material deformation, a significant temperature gradient, and rapid phase change in the
surroundings of the impact zone. Therefore, residual stresses are locked-in stresses in the explosively
welded plates [16,17]. The residual stress state may have a considerable effect on material performance.
A compressive residual stress state is known to increase fatigue strength [18], and can be a cause
of dimension instability during cutting or other manufacturing processes. In contrast, a tensile
residual stress state tends to be undesirable as it accelerates crack growth and can induce stress-based
corrosion cracking [19,20]. Nagano et al. [21] noted that a passive oxide film in pure zirconium and its
alloys ruptured because of stress in corrosive environments depending on temperature and HNO3

concentration. Several other studies have reported on the stress-based corrosion cracking in zirconium
and its alloys [22–25]. A high residual stress gradient can result in rapid delamination of welded
plates within a few seconds after the collision of plates in the case of improper welding parameters.
Even if the bond survives, the geometrical stability of the welded plate during cutting can be lost.
In the case of the application of multilayer plates in processing equipment, the possible failure of
the corrosive resistance layer is unacceptable as it would lead to undetected corrosion because of the
release of corrosive compounds throughout the backing material. To reduce the failure probability
of the corrosive resistance layer, the residual stresses in the near-surface layer should be as low as
possible, with a preferably compressive character. However, the problem of the influence of explosive
welding parameters on residual stress states in the zirconium layer of composite plates was not
profoundly analyzed.

The present study is aimed at analyzing the influence of impact velocity on the tensile strength,
the structural properties of composite plates, and the generation of residual stress in the flyer plate
(a plate with explosive charge) made of Zr 700 alloy. Two impact velocities were achieved by altering
the stand-off distance by using a fixed quantity of the explosive charge.

Presently, limited research has been devoted to the determination of residual stress in composite
structures obtained through the explosive welding process. Due to the wide range of analyzed composite
structures and the use of different methods to determine residual stresses, unambiguous conclusions on
the state of residual stress in explosively welded multilayer structures cannot be deduced. In most cases,
tensile residual stresses were detected in the surface layer of the flyer plate [16,26–31]. Limited cases
with compressive residual stresses were found [17,32,33]. The hole-drilling strain-gauge method seems
to be the most relevant, as it is included in the ASTM standard [34]. In addition, both the limitation
and accuracy of this method are well established and are available in the literature.

In this study, the residual stresses were determined by employing the hole-drilling strain-gauge
method recommended by the ASTM standard [34]. The stresses were determined in the Zr 700 layer
for two plates welded under different impact velocities. Additionally, the residual stresses in the Zr
700 plate before welding were determined and used as the reference value.

The characteristic features of explosively welded materials include a wavy character of the
interface between joint metals and locally melted areas. These features of the interface were described
by measuring the sizes of the melted areas as well as the height and length of the interface wave.
The data were obtained through the microhardness measurement across welded plates. In addition,
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tensile tests were conducted with force applied in the parallel direction to the interface. Moreover,
a model for predicting the yield force of the composite plate is proposed.

2. Experiment

2.1. Materials in As-Delivered Condition

A composite structure consisting of three layers made of P265GH pressure vessel steel, Ti Gr. 1,
and zirconium Zr 700 was manufactured in the explosive welding process. Tables 1 and 2 summarize the
chemical composition and mechanical properties of the materials examined in this study, respectively.
The tensile tests were conducted to estimate the presented mechanical properties.

Table 1. Chemical composition of materials in as-delivered conditions [35].

Materials Chemical Composition (wt %)

P265GH Mn
0.959

Si
0.260

C
0.147

Al
0.051

Ni
0.030

Cr
0.022

P
0.011

Nb
0.008

S
0.006

Mo
0.005

N
0.004

Fe
Balance

Zr 700 O
0.067

Fe
0.060

C
0.004

N
<0.002

H
<0.0003

Zr + Hf
Balance

Ti Gr. 1 O
0.070

F
0.020

C
0.020

N
<0.010

H
0.010

Ti
Balance

Table 2. Basic mechanical properties of applied materials.

Material E, (GPa) ν, (-) Rp02, (MPa) Rm, (MPa) A, (%)

Zr 700 101 0.38 216 269 35

Ti Gr. 1 109 0.37 251 325 46

P265GH 193 0.29 268 391 41

E is the elastic modulus, ν is Poisson’s ratio, A is the elongation, Rp02 is the yield strength, and Rm is the tensile strength.

The microstructure of the materials under as-delivered conditions is illustrated in Figure 1.
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Figure 1. Microstructure of materials in as-delivered conditions: (a) Zr 700 alloy, (b) Ti Gr. 1 alloy,
and (c) P265GH steel.

The microstructure of Zr 700 plate in the section perpendicular to the rolling direction is presented
in Figure 1a. The material was characterized by the structure of the α-phased grains sized between 70
and 170 µm. The microstructure of the material used in the interlayer, i.e., Ti Gr. 1 alloy, consisted of
α-phased equiaxed grains sized between 20 and 40 µm (Figure 1b). Figure 1c presents the P265GH
carbon steel microstructure characterized by an equiaxed structure of mid-sized grains of 4–11 and
10–20 µm for pearlite and ferrite, respectively. As shown, a band structure composed of fine grains of
pearlite was observed; this is a typical phenomenon for materials after the hot-forming process.
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2.2. Explosive Welding Process

The explosive welding process was conducted by High Energy Technology Works “Explomet”
(Opole, Poland). Consequently, two multilayer plates were produced with different welding parameters.
In both cases, the flyer plate made of Zr 700 with a thickness of 10 mm was cladded to the preliminary
welded bimetallic plate composed of a 2-mm Ti Gr. 1 layer and a 14-mm P265GH steel layer. The plates
with dimensions of 300 mm × 500 mm were welded in parallel by applying an explosive charge of
ammonites, with NH4NO3 (High Energy Technology Works “Explomet”, Opole, Poland) as the main
component. The detailed composition of the explosive charge was not provided by the supplier of the
composite plates. The applied explosive charge resulted in a detonation velocity of vD = 2500 m/s,
which was measured using a fiber optic system [36]. The welding processes for the studied plates have
different values of stand-off distance δ (which is the initial distance between the flyer plate, Zr 700,
and the basic Ti Gr. 1–P265GH bimetal). For the first plate, labeled as B3, the stand-off distance was
δ = 10 mm, whereas it was δ = 15 mm for the second plate (B4). The application of different δ values
resulted in different impact velocities vP estimated using the Deribas formula [37,38]. The summarized
welding parameters are presented in Table 3.

Table 3. Explosive welding parameters.

Plate Flyer Thickness,
(mm)

Detonation Velocity,
vD, (mm)

Stand-off Distance,
δ, (mm)

Impact Velocity
vp, (m/s)

B3 Zr 700 10 2500 10 425

B4 Zr 700 10 2500 15 468

Both the welded plates underwent the flattening process and ultrasonic examination [39], revealing
no discontinuities except near the ignition and narrow area at the plate edges (approximately 20 mm
from the edge). Figure 2 shows the locations of the ignition point and samples used for residual stress
measurement and microstructural analysis.
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Figure 2. Explosively welded plate with the marked ignition area and samples for residual stress
estimation and microstructural analysis.

2.3. Residual Stress Estimation

Residual stress was identified using the incremental hole-drilling strain-gage method
recommended in the ASTM E837-13a standard [34], and the experiments were conducted on the surface
of the flyer Zr 700 plate. Additionally, for referential analysis, residual stresses in the Zr 700 plate in
the as-delivered condition were estimated.

For measuring the relieved strains during incremental hole drilling, a Vishay RS-200 device
(Vishay Precision Group, Malvern, PA, USA) with a pneumatic turbine was used in orbital drilling
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mode. This method appears to be beneficial in several ways, one of which is the considerable
improvement of drilling conditions [40]. In addition, a Vishay milling cutter (Vishay Precision
Group, Malvern, PA, USA) was used for the drilling and producing holes with the final diameter of
approximately 1.9 mm. The holes were drilled in incremental steps of 0.05 mm to a total depth of 1 mm.
This study employed a three-element type-A [34] strain rosette gauge of FRS-2 (TML Lab. Company,
Tokyo, Japan), paired with a multi-channel signal-acquisition device (P3 Strain Indicator and Recorder,
Vishay Precision Group, Malvern, PA, USA) (with resolution of strain measurement equal to 10−6).
Four measurement points were located in the middle part of plate B3 and two on plate B4. The distance
between the points varied from 30 to 70 mm. Additional residual stress estimation for the Zr 700 plate
under the as-delivered condition was based on two measurement points.

2.4. Structural Properties

The process of explosive welding is characterized by the formation of an interface between the
periodic deformation and the interfacial wave [3] (Figure 3a).
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Figure 3. (a) Interfacial wave of plate B4, and (b) structural properties of the wavy interface: length of
the welded line (L, wave height (H), wavelength (n), and melted area (P).

The geometrical parameters of the wave depend on the process parameters and physical properties
of the welded materials [7,41–43]. These parameters could be correlated with mechanical properties
of the composite structure [7,44,45]. For some welding systems, a melted area can be formed in the
vortex of the collision zone. In this study, the following geometrical quantities were measured: wave
height H, wavelength n, and melted area P along the length of welded line L. Figure 3b illustrates
the measurement of the geometrical parameters of the samples cut out from both welded plates by
using the digital optical method according. The total length of welded line L varies between 15 and
18 mm, including 8–12 points for wavelength and wave height determination for the Zr 700–Ti Gr. 1
interface and 20–37 points for the Ti Gr. 1–P265GH interface. Analyzed data were collected to calculate
the mean and standard deviation for each parameter. Following a previous study [7], the authors
calculated a parameter that describes the averaged amount of melted area: equivalent melted thickness,
EMT = P/L.

In addition to the geometrical properties, microhardness distribution was included as a structural
property. The microhardness distribution provides information on induced material hardening due to
severe plastic deformation that occurred during the impact of two plates. The distribution of Vickers
microhardness (HV) under the 50-G load was measured along three lines perpendicular to interfaces
with the distance of 0.06 mm between points in the vicinity of the welded zone. The final results were
obtained as the mean values of the three measurements (three lines) supplemented with error bars
representing standard deviations. The HV hardness of the as-delivered plates was also measured
for comparison.

2.5. Mechanical Test

The tensile test was designed to verify the strength of the cross-section perpendicular to the
interfaces. Figure 4 presents the geometry of the specimen used for the tensile test.
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Figure 4. Geometry of specimen for the tensile test (units in mm).

The test facilitated the determination of force Fp02 for the 0.2% offset of plastic strain, ultimate force
Fm, and elongation to rupture A. The obtained values for plate B4 and its composite plates can be
compared. These results can be verified using theoretical values calculated based on the mechanical
properties of materials in the as-delivered condition.

3. Calculation, Results, and Discussion

3.1. Residual Stresses

The relieved strain components recorded during the incremental drilling were evaluated and
recalculated with respect to residual principal stresses by using the Eval 7 software (Sint Technology).
This software is fully compliant with the international ASTM E837-13a standard [34] for residual stress
measurement using the hole-drilling strain-gage method. The software also allows evaluation of the
uncertainty of stress calculation [46]. The following accuracies of material and drilling parameters
were found: Young’s modulus = ±3 GPa, Poisson ratio = ±0.01, strain = ±0.6 µm/m, strain gauge
factor = ±1%, hole diameter = ±0.04 mm, and hole depth = ±0.025 mm. A uniform stress field was
assumed throughout the calculations. The obtained maximum (σ1) and minimum (σ2) principal
stresses may be considered as average values along the 1-mm hole depth, i.e., near the surface layer of
Zr 700 plate. The results of the residual stresses determined in the Zr 700 layers of composite plates B3
and B4 as well as the reference stresses determined for the Zr 700 plate before welding are presented in
Figure 5.
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The principal residual stresses determined for the as-delivered condition in the Zr 700 plate
represent the state of the residual stress before welding (reference points in Figure 5). This biaxial
compressive stress state with component values between−82± 8 MPa and−33± 4 MPa was transformed
into the biaxial tensile stress state (10 ± 1 MPa and 76 ± 8 MPa) for composite plate B4. In contrast,
composite plate B3, produced with a lower impact velocity of Vp = 425 m/s as compared to plate
B4 (Vp = 468 m/s), indicated lower values of residual stresses, ranging between −35 ± 4 MPa and
20 ± 2 MPa. The performed manufacturing processes had a considerable effect on the residual stress
state. The initial compressive stress state, which was beneficial in terms of stress-based corrosion
cracking, became more tensile with the increasing magnitude of impact velocity.

3.2. Structural Properties

Figure 6 presents the morphologies of the interfacial waves for composite plates B3 and B4.
As shown, the interfacial waves of the Zr 700–Ti Gr. 1 joint in both the plates did not exhibit melted
areas (EMT = 0 µm) but showed higher values for the wavelength and wave height than those
observed for the Ti Gr. 1–P265GH joint. The measured parameters are presented in Figure 7. Compared
to plate B3, the higher impact velocity (by 10%) for plate B4 resulted in higher wavelength (by 31%)
and wave height (by 14%) at the Zr 700–Ti Gr. 1 interface. At the Ti Gr. 1–P265GH interface, the wave
parameters were nearly equal (within the standard deviation band). The EMT values were low [45],
at approximately 3 and 5 µm for plates B3 and B4, respectively.
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The melted areas at the Ti Gr. 1–P265GH interface were localized mainly in the vortex formed
as a result of fluid–structure interaction (Figure 8.). The melted areas comprise a new phase with
mixed chemical composition of Ti and Fe (Figure 9). In both plates B3 and B4, multiple microcracks
(Figures 8 and 9a) were detected in the melted areas; these were probably formed owing to severe
residual stresses generated during the rapid cooling rate (shrinkage cracks [14]). Furthermore, grain
deformation was observed to intensify closer to the weld line.
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Figure 9. (a) SEM (Scanning Electron Microscope) and (b,c) EDX (Energy Dispersive X-Ray Analysis)
maps showing the distribution of Fe and Ti at the Ti Gr. 1–P265GH interface for plate B4.

The microhardness distributions presented in Figure 10 exhibited an increase in the plate hardness
in close vicinity of interfaces. In both plates B3 and B4, the distributions of microhardness were similar
within the standard-deviation error bands. The highest value of microhardness of 250 HV0.05 was
detected in the Ti Gr 1–P265GH interface; it exceeded the hardness of steel by approximately 40%.
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3.3. Mechanical Test

Figure 11 presents the results of tensile tests represented as strain–force curves. The curves for the
specimens made of composite plates B3 and B4 differ insignificantly.

The estimated curve parameters of yield force Fp02, ultimate force Fm, elongation A, and equivalent
Young’s modulus Eeq were calculated, as shown in Table 4. The equivalent Young’s modulus was
determined for the linear range of the curve as force F divided by total cross-section area A and strain
ε, Eeq = F/(Aε). Additionally, the fractures of both plates are presented in Figure 11.
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Table 4. Results of tensile tests on composite plates B3 and B4.

Plate Fp02, (kN) Fm, (kN) A, (%) Eeq, (GPa)

B3 47.4 55.5 11 134.6

B4 47.5 54.9 14 136.6

The strain–force curve was estimated theoretically to quantify the obtained results with respect to
the possible increase of strength properties [47] in relation to material properties in the as-delivered
condition. The following assumptions were made in the calculation model: (i) the cross-section of the
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specimen (Figure 4) comprised uniform strain distribution and (ii) all the layers comprised the uniaxial
stress state. This model applies constitutive empirical relations of σZr

− εZr, σTi
− εTi, and σSt

− εSt of
materials in the as-delivered condition (tensile tests). The recorded strain signal, ε, for the composite
plate was used to estimate the stress in each layer through the following empirical constitutive relations:
σZr

(
ε = εZr

)
, σTi

(
ε = εTi

)
, and σSt

(
ε = εSt

)
. The stresses σZr, σTi, and σSt estimated through the

force balance equation in each layer were used to determine force value F:

F =
3∑

i = 1

σiAi = σZrAZr + σTiATi + σStASt, (1)

where AZr, ATi, and ASt are the initial cross-sectional areas of the Zr 700, Ti Gr 1, and P265GH layers,
respectively. The empirical strain–stress curves for the material in the as-welded condition are presented
in Figure 12a.

The model implemented the initial cross-sectional areas, and thus its applicability was limited
to a small strain regime (assumed to be less than 1%). The slope of the calculated curve in the
linear range (up to ~20 kN; Figure 12b) is in accordance with the slope of the experimental curves
for both plates B3 and B4. Computed yield force Fp02 = 25.7 kN was considerably lower than its
empirical value of Fp02 = 47.5 kN. The increase in the yield force by approximately 85% was due to
material hardening in the vicinity of the interfaces. The research presented in [48–50] showed that the
yield strength proportionally increased with the hardness of different types of steels and zirconium
alloys [51]. The yield force Fp02 of explosively welded plates is proposed to be predicted according to
the proportional increase in yield stress Rp02 as the function of hardness rate:

Fp02 =
3∑

i = 1

ciri
HVRi

p02Ai = cZrrZr
HVRZr

p02AZr + cTirTi
HVRTi

p02ATi + cStrSt
HVRSt

p02ASt, (2)

where ci represents the proportionality factors for each layer (i = [Zr, Ti, St]), and ri
HV = HVi

h/HVi
0

represents the hardness rates (hardness of the hardened material HVi
h divided by the hardness of the

material in the initial state HVi
0). The hardness of HVi

h was calculated as the average hardness of each
layer (5 mm + 2 mm + 5 mm). The calculated hardness rates were as follows: rZr

HV = 0.97, rTi
HV = 1.16,

and rSt
HV = 1.25. The proportionality factors were assumed to be equal, i.e., cZr = cTi = cSt = c.

Proportionality factor c = 1.58 was identified by fitting the experimental and calculated (Equation (2))
yield forces.
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The process of explosive welding includes problems of phase transformation, shock impact,
plastic deformation, and fluid–structure interaction. A thorough analysis of the process requires
sophisticated multiphysics numerical modeling [52–55], which is nowadays narrowed to the prediction
of jet formation, morphology of the interfacial wave, and weldability. Residual stress formation has
not yet been numerically simulated. However, based on the knowledge of the explosive welding
process, a general scheme of residual stress generation can be proposed. During the shock of impact of
the Zr 700 plate with the Ti Gr. 1 layer, a large hydrostatic compressive stress due to inertial forces
could be formed in the contact region. The increase of local temperature reduces yield stress of both
materials in contact, allowing the occurrence of plastic deformation, which is sometimes manifested by
the adiabatic shear bands [8,56,57]. More intensive, larger, and plastically deformed regions appear
in a material with lower resistance to plastic yield. In most cases, the material with a lower yield
strength and higher elongation is selected as the flyer. In this case, larger and more intensive plastic
deformations occur in the flyer region in the vicinity of impact, and more elastic potential energy
is stored in the base plate. When the pressure of explosive gas is released, the elastically deformed
base plate below the interface expands and compresses the plastically deformed layer of the flyer
plate. The induced compressive residual stresses in the vicinity of the interface must be balanced by
the tensile residual stresses formed in the outer layer of the flyer plate (as a result of the spring-back
effect [3]). The locally melted areas solidify and form a new phase; these areas are the sources of
thermal residual stresses, which deviate from the general field of stresses described. The higher the
differences in Young’s modulus and thermal expansion coefficients, the higher the residual stresses.
Stress relief with respect to heat treatment is possible only for materials with close values of thermal
expansion coefficients.

In this study, the difference in the impact velocities by approximately 10% resulted in insignificant
differences in microhardness distribution and tensile yield force of specimens with reduced thickness
(5 mm + 2 mm + 5 mm). In addition, a notable increase of the wavelength by approximately 31% was
observed. In contrast to most structural properties, the residual stresses in a 1-mm-thick Zr 700 surface
layer exhibited profound sensitivity to the applied impact velocities. The initial compressive residual
stress state was significantly transformed towards the tensile type, reaching 76 ± 8 MPa for higher
impact velocities.

4. Conclusions

The main conclusions of the study are summarized as follows:

• The compressive residual stress, which was initially present in the Zr 700 flyer plate, decreased in
the explosive welding process, resulting in a tensile type with an increase in impact velocity.

• To protect the composite plate from stress-based corrosion cracking, a lower value of the impact
velocity is recommended.

• The experimental yield force of composite specimens is around 85% higher than the yield force of
combined properties of materials in the as-delivered condition.

• The experimentally estimated residual stresses could be used to verify the numerical method
applied in modeling of the explosive welding process.

• In addition, a simple model based on microhardness measurement for yield force prediction of
the composite plate was proposed. However, the model needs further verification.
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