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Abstract
Background: MUTYH-associated polyposis (MAP) is a recessively inherited disorder which
predisposes biallelic carriers for a high risk of polyposis and colorectal carcinoma (CRC). Since
about one third of the biallelic MAP patients in population based CRC series has no adenomas, this
study aimed to identify specific clinicopathological characteristics of MAP CRCs and compare these
with reported data on sporadic and Lynch CRCs.

Methods: From 44 MAP patients who developed ≥ 1 CRCs, 42 of 58 tumours were analyzed
histologically and 35 immunohistochemically for p53 and beta-catenin. Cell densities of CD3, CD8,
CD57, and granzyme B positive lymphocytes were determined. KRAS2, the mutation cluster region
(MCR) of APC, p53, and SMAD4 were analyzed for somatic mutations.

Results: MAP CRCs frequently localized to the proximal colon (69%, 40/58), were mucinous in
21% (9/42), and had a conspicuous Crohn's like infiltrate reaction in 33% (13/40); all of these
parameters occurred at a higher rate than reported for sporadic CRCs. Tumour infiltrating
lymphocytes (TILs) were also highly prevalent in MAP CRCs. Somatic APC MCR mutations
occurred in 14% (5/36) while 64% (23/36) had KRAS2 mutations (22/23 c.34G>T). G>T
tranversions were found in p53 and SMAD4, although the relative frequency compared to other
mutations was low.

Conclusion: MAP CRCs show some similarities to micro-satellite unstable cancers, with a
preferential proximal location, a high rate of mucinous histotype and increased presence of TILs.
These features should direct the practicing pathologist towards a MAP aetiology of CRC as an
alternative for a mismatch repair deficient cause. High frequent G>T transversions in APC and
KRAS2 (mutated in early tumour development) but not in P53 and SMAD4 (implicated in tumour
progression) might indicate a predominant MUTYH effect in early carcinogenesis.
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Background
MUTYH-associated polyposis (MAP) is an autosomal
recessive disorder, which may be responsible for approxi-
mately 0.5–1% of colorectal carcinomas (CRCs).[1,2]
Most biallelic MUTYH mutation carriers are reported to
develop multiple polyps (typically between 10–500).[3,4]
However, in seven population based CRC studies, 15 out
of 39 (38%) proven biallelic MUTYH mutation carriers
had no polyps besides their CRC while seven (18%) had
a limited number of adenomas (i.e. <10). [1,2,5-9] There-
fore, the practicing pathologist should also consider bial-
lelic MUTYH mutations in CRC patients with none or less
than 10 polyps.

The MUTYH protein is a base excision repair (BER) glyco-
sylase involved in the repair of DNA damage resulting
from the oxidation of guanine nucleotides. The oxidation
product of guanine, 8-oxo-7,8-dihydro-2'-deoxyguanos-
ine (8-oxoG), readily mispairs with adenosine nucle-
otides during DNA replication. MUTYH acts by scanning
the newly synthesized DNA strand for any mispaired
adenines, either with guanines or 8-oxoG's, and excising
them. A dysfunctional MUTYH protein increases the
occurrence of somatic G>T transversions. For instance,
somatic mutations in the APC gene in MAP tumours
involve almost exclusively G>T transversions, an observa-
tion that led to the discovery of the MAP syndrome.[10]
Similarly, the most prevalent KRAS2 mutation in MAP
tumours is a G>T transversion at codon 12 (c.34G>T),
which was reported to be present in 64% of MAP carcino-
mas.[11] Such mutation is infrequent in sporadic CRCs,
according to published consecutive series.[12]

Recently it was reported that MAP CRCs are often near-
diploid (52%) and commonly contain chromosomal
regions of copy neutral loss of heterozygosity (LOH)
(71%). In copy-neutral LOH there is no loss of genetic
material and this can arise via mitotic recombination,
non-disjunction, or deletion and reduplication events.
This is in contrast to sporadic colon cancer, where physical
loss of genetic material is the main characteristic.[13]

Another set of CRCs with deficiencies in DNA repair are
the mismatch repair deficient tumours. Mismatch repair
deficient CRCs with high-microsatellite instability (MSI-
high) arise in the context of the Lynch syndrome or have
a sporadic origin due to somatic inactivation of hMLH1.
MSI-high tumours have characteristic histological and
molecular features: they are most often near-diploid and
arise preferentially in the right side of the colon. They
have a high prevalence of mucinous and medullary histo-
types, poor differentiation, a Crohn's-like lymphocytic
reaction, and a high amount of (intra-epithelial) tumour
infiltrating lymphocytes (TILs). These characteristics are

currently employed for diagnostic purposes and may have
implications for patient treatment and prognosis. [14-17]

In the present study we describe histological and molecu-
lar aspects of MAP carcinomas in a Dutch cohort, and
compare these with data available in literature of consec-
utive series of sporadic, MSI-high (sporadic), and Lynch
syndrome-derived CRCs. The aim of this study was to
identify specific characteristics that would aid in the diag-
nosis of MAP CRCs and in differentiation from carcino-
mas arising from distinct genetic backgrounds.

Methods
Patients
Fifty-seven MAP families, from which clinical data were
available, were studied. Informed consent was obtained
according to protocols approved by the Leiden University
Medical Center ethics review board (02-2004). These fam-
ilies include 57 index-patients with biallelic homozygous
or compound heterozygous MUTYH mutations and 22
siblings with biallelic MUTYH mutations. Forty index-
patients have been described previously in lesser detail.[3]
One patient was reported to have CRC stage A according
to the modified Astler-Coller guidelines at age 21, but
after re-evaluation appeared to have high grade dysplasia
(carcinoma in situ) and was not included in this series of
MAP carcinomas. To date, 56% (44/79) of the carriers
have developed CRC. A total of 58 CRCs were diagnosed
in these 44 MAP patients, composed of 26 males and 18
females. Hematoxylin and eosin (H&E) stained slides and
tissue material from 42 and 38 CRCs, respectively, belong-
ing to 35 MAP patients, could be retrieved from 23 pathol-
ogy laboratories throughout The Netherlands.

Histological examination
Histological tumour type and grade were independently
assessed by two observers (HM and MN) according to the
World Health Organization classification.[18] Staging
was performed according to the modified Astler-Coller
(MAC) and the American Joint Committee on Cancer
(AJCC) TNM staging system guidelines. Metachronous
tumours were defined as new tumours arising in the colon
at least six months after the initial diagnosis.[19] Semi-
quantitative assessment defined two subgroups, accord-
ing to mucinous content of the tumour: >50% of tumour
area involved (mucinous) and 10 to 50% of tumour area
involved. Mucinous adenocarcinomas and signet-ring cell
carcinoma by convention were considered poorly differ-
entiated [18], although are also separately scored. A
Crohn's-like reaction was assessed as grade 0, 1+, or
2+.[20] Grade 2+ was referred to as conspicuous. Leuko-
cyte infiltration was assessed semi-quantitatively on H&E-
slides as none, moderate (visible only on high magnifica-
tion (×40), or marked (visible already on low magnifica-
tion ×10).
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Molecular analysis
Genomic DNA of paired normal colon and colorectal car-
cinoma tissue was isolated from formalin-fixed paraffin-
embedded material, as described previously.[21] The per-
centage of tumour cells in the areas from which the
punches were taken, were in all cases above 50% and in
most cases above 70%. Microsatellite instability analysis
was done according to the Bethesda guidelines using the
markers D2S123, D5S346, D17S250, BAT25, BAT26, and
BAT40. A tumour was scored MS-stable when no marker
showed instability, MSI-high when > 30% of markers
showed instability, and MSI-low when only one marker
(<30%) showed instability.[22] For somatic mutation
analysis of APC, KRAS2, p53 and SMAD4 DNA sequence
analysis was performed. Codon 12 and 13 of the KRAS2
gene and the Mutation Cluster Region (codons 1286–1513)
of the APC gene were analyzed as described previously.
[23] Primer pairs were designed for the coding regions
and exon-intron boundaries of p53 exons 5–8 and
SMAD4 exons 3–13. Primer details are available from the
authors upon request. Germline DNA mutation analysis
of the whole MUTYH gene was performed on lymphocytic
DNA or DNA from formalin-fixed paraffin-embedded
normal tissue as described previously.[3,5] Primer details
are available from the authors upon request. For further
details see the website of our DNA diagnostic laboratory
[24]. To describe MUTYH mutations we used the most up-
to-date annotation, see the LOVD database.[25,26]

Immunohistochemical analysis using tissue microarray
To construct a tissue microarray (TMA), triplicate tissue
cores were taken from tumour tissue as described previ-
ously [27]on the basis of H&E-stained slides reviewed by
a pathologist (HM).) Sections were deparaffinised and
endogenous peroxidases were inactivated with 0.3%
H2O2 in methanol solution after antigen retrieval by
means of microwave oven treatment for 10 minutes in 10
mM citrate buffer pH 6.0 (p53, MLH1) or 1 mM Tris-
EDTA pH 8.0 (beta-catenin, PMS2). Sections were incu-
bated overnight at room temperature with mouse anti-
human monoclonal antibodies directed against p53
(clone D0–7, 1:1000, Neomarkers, USA), MLH1 (clone
G168–728, 1:50, BD Pharmigen, USA), PMS2 (clone A16-
4, 1:200, BD Pharmigen) and beta-catenin (encoded by
CTNNB1) (clone 14, 1: 800, BD Transduction Laborato-
ries, USA). The following day, tissue sections were incu-
bated with a biotinylated secondary antibody in PBS/BSA
1%. Diaminobenzidine tetrahydrochloride was used as a
chromogen for the development of the staining. The
slides were counterstained with hematoxylin. Immuno-
histochemistry (IHC) was scored for p53 nuclear staining
as: 1 = none, 2 = >0<25% (mostly indicative of a func-
tional intact p53 status), 3 = 25%–75%, or 4 = >75% (the
latter two indicative of p53 dysfunction). Staining of beta-
catenin was graded by the following scale: 1 = membra-

nous staining, 2A = membranous and some nuclear stain-
ing, 2B = membranous staining, and increased nuclear
staining, 3 = strong nuclear staining, with less or no mem-
branous staining. Normal epithelium and stromal cells
provided positive internal controls.

Infiltrate analysis using fluorescent immunohistochemical 
staining
Fluorescent immunostaining was performed as previously
described.[28] Five μm TMA sections were used in all
experiments. A mixture of the antibodies ab828 (rabbit
polyclonal, anti-CD3; Abcam, UK), hNK-1 (mouse mon-
oclonal IgM, anti-CD57; Department of Pathology,
LUMC, The Netherlands), and 4B11 (mouse monoclonal
IgG2b, anti-CD8; Novo Castra, UK) was added to each
slide. The next day slides were incubated with the appro-
priate combination of fluorescent antibody conjugates
(IgG-Alexa Fluor 546, IgM-Alexa Fluor 488 and IgG2b-
Alexa Fluor 647). Alexa Fluor conjugates were obtained
from Molecular Probes (Leiden, the Netherlands). The
images were captured with a confocal laser scanning
microscope (LSM) (Zeiss LSM510, Zeiss, Germany). The
number of each leukocyte sub-type was assessed per
tumour area (TILs/mm2 tumour epithelium) using the
LSM software (Zeiss). Cells staining for CD3, and not for
CD8 or other CD markers, were considered to be T-helper
lymphocytes. Standard immunostaining for the associ-
ated cytotoxic molecule granzyme B (NCL-GRAN-B; clone
11F1; Novo Castra) was performed in sequential sections.
To calculate the density of granzyme B positive cells we
used the assessed tumour area from the fluorescent immu-
nostaining.

Literature on histological and molecular features of CRC
We compared literature available, describing histological
and molecular features, on sporadic, MSI-high and Lynch
CRCs. The following terms were employed as search
terms: colon carcinomas, bowel cancer, CRC, sporadic,
MSI-high, Lynch, HNPCC, histological, molecular, APC,
KRAS2, p53, beta-catenin, CTNNB1, SMAD4, tumour
infiltrating lymphocytes, tumour infiltrating lymphocytes
and intra-epithelial lymphocytes. All relevant references
within articles were identified and included.

Statistical Analysis
Fisher exact test was used to estimate an association
between molecular and clinical-pathological parameters.
The Spearman test was used to assess correlations. All P-
values are reported for a two-tailed test; P-values of less
than 0.05 were considered to be statistically significant. A
group with high and low intraepithelial leukocyte infiltra-
tion was distinguished, using the median value as cut-
point of the leukocyte-infiltration scores of all patients.
When a patient had more than one carcinoma the mean
number of lymphocytes in these carcinomas was used for
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the survival analysis. The Kaplan-Meier method was used
to calculate the overall survival and the log-rank test was
used for comparison of the survival curves. All statistical
analyses were carried out using the SPSS software package
(SPSS Inc. 12.0, USA).

Results
Histopathology of MAP carcinomas
Forty-four MAP patients were diagnosed with 58 CRCs
(see Table 1) at a mean age of 49 years (Table 2 and 3).
Ten patients (23%) had metachronous or synchronous
carcinomas. The majority of carcinomas (35/51, 69%,
metachronous tumours not included), were right-sided,
i.e. proximal to the flexura lienalis. The majority of proxi-
mal tumours were located in ascending colon or cecum
(80%, 28/35) and only a minority occurred in the trans-
verse colon or hepatic flexure (14%, 5/35). Fifty-five per-
cent (29/53) were stage B according to MAC guidelines or
T>1N0M0 according to the TNM guidelines. Forty-two
colon carcinomas from 35 MAP index patients were avail-
able for further study (Table 1). Histological analysis
showed poor differentiation in 26% (11/42) and moder-
ate in 71% (30/42, Figure 1A), mucinous CRCs repre-
sented 81% of these cases (9/11, Figure 1B). No MAP
carcinomas showed a solid or medullary histotype or con-
tained signet ring cells. A Crohn's like infiltrate was
present in 33% (13/40, Figure 1C). In 40% (16/40) of
tumours, focal necrosis (dirty necrosis within glandular
lumina) was present. Tumour infiltrating lymphocytes
assessed on H&E-slides were present in 74% (31/42) and
were marked in 17% (7/42, Figure 1D). In 33 tumours
MSI status was analyzed and all carcinomas but one were
MS-stable. The latter carcinoma showed instability of less
than 30% of markers (one dinucleotide marker) designat-
ing the tumour as MSI-low. Furthermore, staining for
MLH1 and PMS2 was positive for all the tumours.

No significant geno-phenotype correlations for any of the
main histopathological parameters could be found.

Somatic mutation analysis and immunohistochemical 
staining
APC mutation analysis (Table 4) of the mutation cluster
region showed somatic mutations in 5/36 (14%) carcino-
mas; four were MUTYH associated transversions (G>T's);
two were C>T transitions, one of them occurring together
with a G>A transition (patient 6). KRAS2 mutations were
found in 23/36 (64%) of tumours, 22 were c.34G>T trans-
versions. An increased nuclear and reduced membranous
beta-catenin staining was found in 11% (4/35). In 57%
(20/35) of MAP CRCs, p53 staining indicative of a func-
tional p53 status (>0<25% nuclear staining) was found.
Nuclear staining indicative of p53 dysfunction was found
in 34% (12/35) (Figure 1E). In 9 out of 16 carcinomas
(56%) that could be analyzed, ten p53 mutations were

found. One carcinoma had two mutations (patient 7,
Table 4). Three mutations were G>T transversions. Except
in one case (patient 7, Table 4), staining was in concord-
ance with the combined results of the p53 staining and
LOH of chromosome 17p results published previously by
Middeldorp et al (Table 4).[13] When staining was indic-
ative of a dysfunctional p53 status, a mutation as well as
LOH was found (patients 2, 23, 24, and 41). In cases were
a mutation is present but no LOH was identified for 17p,
staining was indicative of a still intact, functional p53
(patient 5, 8, and 16). Only one case (patient 22) had a
nonsense mutation in p53, explaining the absence of
nuclear staining. All other p53 mutations are (probable
pathogenic) amino acid substitutions and all except one
have been published previously [29](Table 4). SMAD4
mutations were present in 26% of MAP carcinomas tested
(5/19, Table 4). Two tumours had G>T tranversions.

Infiltrate analysis
First, we scored the presence of TILs and Crohn's like infil-
trate on standard H&E sections. Secondly, in order to
establish an objective lymphocytic cell count, we also per-
formed triple-fluorescent IHC staining for CD3+, CD8+,
and CD57+ TILs (Figure 1F). The median number of intra-
epithelial T-helper (CD3+, CD8-), cytotoxic T lymphocyte
(CTL, CD8+, CD57-) and natural killer cells (NK, CD8+/
CD57+) found in 34 CRCs available for analyses were 20,
37, and 0 cells/mm2 tumour, respectively. There was a sig-
nificant correlation between the total number of immun-
ofluorescently detected TILs and the amount of TILs
(none, present, marked) assessed on H&E slides (Spear-
man's test, P = 0.002). Immunohistochemistry for
granzyme B, which is expressed on activated CD8+ cyto-
toxic lymphocytes (CTLs) and involved in the induction
of apoptosis of target cells, showed a median of 4
granzyme B+ cells/mm2. The number of CD8+ TILs showed
a significant positive correlation with the number of
granzyme B+ cells (Spearman's test, P = 0.009). No signif-
icant differences in survival were seen between patients
with high versus low levels of TILs, although in patients
with a high level of CD8+ TILs and granzyme B+ cells, a
tendency was observed towards a better prognosis (Figure
2A and 2B, P = 0.15 and P = 0.2, respectively, log rank
test).

Literature Review
Results are shown in Table 2 and 3; different study out-
comes were aggregated in Table 2 and Table 3 shows con-
cise conclusions of these data. Data on Lynch syndrome
carcinomas only included proven mismatch repair gene
mutation carriers. An extended version of Table 2 is avail-
able online, as a supplement (Additional file 1), showing
outcomes of all the individual articles and including data
for Lynch syndrome suspected carcinomas where no
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germline mutations in the mismatch repair genes were
searched for or found.

Discussion
Specific histological and molecular characterization of
CRCs may have implications in the diagnosis, prognosis,
and treatment strategies, as demonstrated for mismatch
repair deficient MSI-high CRCs.[15,16,30] In order to
explore similar implications for MAP, we analyzed clini-
cal, histological and molecular pathologic characteristics
in our series of MAP CRCs and compared our findings to
the literature (Table 2 and 3). Age at diagnosis of CRC,
when compared to sporadic cases, was relatively young in
MAP patients and comparable to that in Lynch patients
(49 and 47 years). MAP CRCs showed less metastases than
sporadic CRCs, but more than Lynch carcinomas (Table 2
and 3). A prominent feature is the 69% proximal sub-
localization of colon carcinomas in this cohort; others
reported a proximal location in 29, 43 and 46% of MAP
CRCs.[4,11,31] This is still more than that reported in
sporadic carcinomas (23%) but less than MSI-high or
Lynch carcinomas (75% and 67% respectively, Table 2

and 3). Furthermore, this study showed that proximal
MAP tumours had a preferential location in the cecum or
ascending colon, as opposed to the transverse colon,
which was also reported by O'Shea at al.[31]

The relatively high number of observed (meta) synchro-
nous carcinomas in MAP patients is in agreement with
previous reports on MAP patients (Table 2). In contrast to
sporadic carcinomas but in agreement with MSI-high car-
cinomas, MAP CRC's were demonstrated to be relatively
often mucinous in this study (Table 2). O'Shea et al.
found a poor (low) differentiation grade in all MAP carci-
nomas (16/16) but remarkably, none had a mucinous
pattern (0/16).[31]

In MSI-high tumours the caretaker function of mismatch
repair enzymes is disrupted resulting in somatic muta-
tions that are accumulated throughout the cell genome.
Such abundance of mutations can result in aberrant
frameshift peptides that would be presented at the cell
surface, through the antigen processing pathway, to cells
of the immune system. This sequence of events could
explain the presence of an accentuated intra-epithelial
lymphocytic infiltrate in MSI-high tumours.[14,32,33] In
MAP carcinomas the disruption of the caretaker function
of the BER machinery, mediated by MUTYH mutations,
leads to the accumulation of G>T somatic mutations, at
least early in tumourigenesis, which might evoke similar
specific anti-tumour immune responses. TILs were present
in a majority of MAP CRCs (74%) in this study, although
marked infiltration was only detected in about one fifth of
MAP carcinomas. The median number of CD8+ lym-
phocytes in MAP CRCs, scored with IHC, fell somewhere
between that found in MSI-stable and MSI-high CRC's
(indicated by absent MLH-1 expression) previously ana-
lyzed with the same procedure in our laboratory.[34]
O'Shea et al. reported the same percentage of TILs present
in MAP CRCs as in their controls (50%, 8/16).[31] Their
controls, however, might not be representative of sporadic
CRCs, as the number of TILs reported by others in spo-
radic CRCs is much less (24%, Table 2 and 3). In MSI-high
tumours, an active immune response by the host (repre-
sented by a high number of TILs) was also associated with
a better survival, especially when associated with
granzyme B positivity.[33] The group of MAP patients
with a high number of CD8+ and granzyme B+ TILs
showed a better overall survival, although not statistically
significant for either parameters.

The number of APC mutations in the mutation cluster
region found in MAP carcinomas (14%) is notably lower
than that reported in sporadic CRCs (63%, Table 2 and 3).
One possible explanation for the relatively small number
of APC mutations could be that in MAP CRCs more muta-
tions lay outside the mutation cluster region. In sporadic

MAP CRC histologyFigure 1
MAP CRC histology. A) moderate differentiation, tumour 
23, 5× B) >50% mucinous, tumour 29, 5× C) Crohn's like 
infiltrate, tumour 34, 5× D) TILs, tumour 33, 40× E) p53 
staining, >75% nuclear staining, tumour 32, 5× F) CD3/CD8/
CD57 immunofluorescent staining, tumour 35, red cells: 
CD3+, purple cells: CD3+CD8+, white cells: CD3+ CD8+ 

CD57+, 40×.
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2 19036.2 p.Y179C p.Y179C C 41 T2N2M1 D mod No 0

3 C 41 T2N2M1 D mod No 2

4 R/S 41 T2N2M1 D muc yes, >50% 1

5 AC 41 T2N2M1 D muc yes, >50% 1

6 19049.1 p.Y179Cb p.Y179C SF 56 T3N0M0 B2

7 R 69 T3N0M0 B2 mod No 2
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14 52240.1 p.P405L p.P405L R 58 T3N0M0 B2 muc yes, >50% 0

15 52596.1 p.Y179C p.Y179C C 44 T3N0M0 B muc yes, >50% 2

16 52654.1 p.P405L p.P405L AC 37 T1N2M0 C1 mod No 2

17 AC 37 T2N2M0 C1 mod No

18 53029.1 p.Y179Cb p.P405L C 41 T3N2M0 C2 mod No 1
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19 53231.1 p.G396D p.G396D AC 59 T2N0M0 B1 mod No 0

20 54092.2 p.G396Db p.G396D C 60 T2N0M0 B1 mod No 1

21 54178.1 p.G396D p.P405L S 44 T3N0M0 B2 muc yes, >50% 2

22 54186.1 p.Y179C p.Y179C AC 45 T4NxM1 D mod No 0

23 54186.6 p.Y179Cb p.Y179C S 43 T3N0M0 B2 mod No 0

24 HF 43 T3N0M0 B2 mod yes, <50% 1

25 54245.1 p.Y179C p.Y179C R 54

26 'left' 57

27 I 77

28 AC 77 T3N0M0 B2 mod yes, <50% 1

29 54962.10 p.G396Db p.P405L AC 51 T2N1M0 C1 muc yes, >50% 0

30 55247.1 p.Y179C p.R247X C 46 T2N0M0 B1 muc yes, >50% 2

31 55535.1 p.Y179C p.Y179C C 45 T3N2M1 D mod yes, <50% 2

32 56081.1 p.Y179C p.G396D HF 59 T3N0M0 B2 mod No 2

33 56081.2 p.Y179Cb p.G396D AC 49 T3N1M0 C2 mod yes, <50% 2

34 56566.1 p.Y179C p.G396D TC 67 T3N1M0 C2 mod No 1

35 56641.1 p.Y179C p.G396D C 43 T3N0M0 B2 mod yes, <50% 2

36 TC 46 T3N0M0 B2 mod No 1

37 57139.1 c.1145delc p.G396D S 42 T2N0M0 B mod No 1

38 S 42 T1N0M0 A mod yes, <50%

39 57246.1 p.Y179C p.Y179C C 65 T2N0M0 B1 mod yes, <50% 0

40 AC 65 T2N0M0 B1 well No 0

Table 1: MAP patients and histological features of colorectal carcinomas (Continued)
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41 57249.1 p.Y179C p.Y179C R/S 49 T3N0M0 B2 mod-poor No 1

42 57249.13 p.Y179Cb p.Y179C R 52 T2N0M0 B1 mod No 0

43 57249.9 p.Y179C p.Y179C C 49 T2N1M0 C1 mod No 1

44 60322.4 p.Y179C p.G396D 'right' 39 T4N1M0 C3 mod No 0

45 52638.4 p.G396Db p.R109W C 52 T3N0M1 D poor No 1

46 57449.1 p.Y179C p.Y179C HF 45 T3N0M0 B2 muc yes, >50% 0

47 19047.1 p.G396D p.G396D 'right' 70 TxN1M0 C

48 19106.1 p.Y179C p.Y179C R 40 TxN0M0 B

49 57591.1 p.P405L p.Y179C C 40 TxN1M1 D

50 60406.1 p.E480del p.E480del AC 51 T3N0M0 B2

51 51063.1 p.Y179C p.Y179C SF 44 T1N0M0 A

52 54140.1 p.E410fs p.E410fs R 42 TxN0M0 B

53 57135.1 p.Y179C p.Y179C HF 46 TxN1M1 D

54 55356.1 c.1145delc p.P405L R 42 TxN0M0 B

55 53276.1 p.G396D p.P405L C 48 T1N0M0 A

56 19247.3 p.Y179Cb p.Y179C R 43

57 'right' 53 TxN1M1 D

58 'right' 59

Blank cells: not done/not ascertainable, CRC = colorectal cancer, R = rectum, S = sigmoid colon, DC = descending colon, SF = splenic flexure, 
ascending colon, C = cecum, I = ileum.
aAccording to the recently changed MUTYH Nomenclature (Human Genome Variation Society), adding 14 amino acids after amino acid positio
G382D>G396D, banalysis in DNA from FFPE material. †MAC = Modified Astler-Coller, ††mod = moderate, muc = mucinous, *0 = none, 1 = m
tumour infiltrating lymfocytes 0 = none/few, + = moderate, ++ = marked, ~yes = focal necrosis (dirty necrosis within glandular lumina).

Table 1: MAP patients and histological features of colorectal carcinomas (Continued)
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Table 2: Histological and molecular features of carcinomas

Characteristics
Colon carcinomas

MAP Sporadic CRC Sporadic MSI-high Lynch 
(based on MMR 
mutations)

Average age at CRC 49 years [CS]
59 years11

68 years 67–75 years 47 years

TNM stage III or IV 34% (51/148)
55% (10/18)[1]

42% (1781/4193) 43% (19/44) 15% (15/101)

Proximal location 69% (35/51) [CS]
29% (7/24)11

43% (16/37)4

46% (6/13)31

23% (1887/8129) 75% (308/411) 67% (74/111)

(Meta) synchronous 
CRC

23% (10/44) [CS]
33% (6/18)11

26% (8/29)4

2% (14/832) 18% (7/38)

Poor Differentiation 26% (11/42) [CS]
22% (5/23)11

100% (16/16)31

10% (765/7590) 41% (203/501) 38% (38/101)

Mucinous (>50%) 21% (9/42) [CS]
13% (3/23)11

0% (0/16)31

12% (292/2480) 28% (104/376) 35% (40/113)

Crohn's like
infiltrate

Conspicuous 33% (13/40) [CS]
31% (5/16)31

28% (586/2059) 54% (318/589) 49% (37/76)

Necrosis 40% (16/40) [CS] 77% (356/465) 17% (9/52)

TILs* Present 
(moderate and marked)

74% (31/42) [CS]
50% (8/16)31

24% (338/1406) 58% (155/268) 33% (4/12)

Marked 17% (7/42) [CS] 4% (34/889) 29% (63/218) 17% (2/12)

APC Mutations (†MCR, ‡also 
outside the MCR)

14% (5/36) [CS]†
43% (6/14)11‡

83% (5/6)31†

63% (459/724)† *
52% (281/539)‡

5% (1/21)†

41% (56/136)‡
33%(6/18)‡

KRAS Mutations codon 12/13 64% (23/36) [CS]
64% (9/14)11

29% (1090/3710) 20% (56/280) 34% (91/267)

Beta-catenin 
(CTNNB1)

Nuclear staining 11% (4/35) [CS]
71% (12/17)11

77% (138/179) 13% (4/31) 59% (40/68)

Mutations 0% (0/16)5 5% (30/610) 7% (2/27) 20% (11/56)

P53 Nuclear staining
>25%

34% (12/35) [CS]
53% (8/15)11

57% (668/1167) 15% (20/130) 72% (23/32)

Mutations 60% (9/15) [CS]
21% (3/14)11

43% (1808/4299) 22% (21/95) 22% (2/9)

SMAD4 Mutations 26% (5/19) [CS]
0% (0/14)11

22% (17/77) 18% (2/11)

MSI High 0% (0/33) [CS]
0% (0/17)11

18% (2/11)31

33% (1/3)43

12% (227/1834) 90% (88/98)

CS = current study, MAP = MUTYH-associated polyposis, MSS= microsatellite stable, MSI = microsatellite instability, TIL = Tumour Infiltrating 
Lymphocytes, MCR = mutation cluster region. *Relative large proportion of missense mutations (29%) in study by Luchtenborg et al as compared to 
other studies, explaining the high overall percentage of APC mutations in the MCR only group. See Additional file 1 online for more details and article 
references.
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CRCs, APC mutations in the MCR represent 50–77% of all
APC mutations found. [35-37] In MAP tumours (CRCs
and adenomas), a substantial proportion (~60%) of
mutations were found outside the MCR.[10,11] Similarly,
in MSI-high CRCs noticeably more APC mutations are
found when larger regions of APC were analyzed (Table
2A). Another explanation might be that distal carcinomas,
which are underrepresented in our cohort, have more APC
mutations than proximal tumours as shown by Luchten-
borg et al.[38] In addition, APC-MCR mutations were
seen in 46% (13/28) of rectum carcinomas analyzed pre-
viously in our laboratory.[39]

In agreement with data derived on MSI-high carcinomas,
strong beta-catenin nuclear staining was not frequent in
MAP carcinomas in this study (13% and 11%, respec-

tively). In sporadic CRCs this rate is much higher (77%,
Table 2 and 3).

We found a high percentage of KRAS2 mutations in our
MAP CRCs (64%), comparable to reports by Lipton et al.
and Jones et al.[11,40] The vast majority (96%) were
c.34G>T transversions (GGT>TGT). Intriguingly, no G>T
transversions at the second nucleotide of this codon (lead-
ing to GGT> GTT) have been reported so far in MAP CRCs.

In contrast, KRAS2 mutations are found on average in
29% of sporadic CRCs and 22% of sporadic MSI-high car-
cinomas. Furthermore, the c.34G>T tranversion com-
prises just 8% of KRAS2 mutations in sporadic and none
in MSI-high CRCs.[12] In Lynch carcinomas the percent-
age of KRAS2 mutations is around 34%, Table 2 and 3)

Table 3: Concise overview of data in Table 2

MAP Sporadic CRC Sporadic MSI-high Lynch (based on MMR mutations)

Average age (years) 49 68 67–75 47

MAC stage C or D + ++ ++ +

Proximal location ++ + +++ ++

(Meta) synchronous CRC + 0 ND +

Poor Differentiation + 0 + +

Mucinous (>50%) + * + * + +

Crohn's like infiltrate (conspicuous) + + ++ +

Necrosis + ++ + ND

TILs* present ++ + ++ +

TILs marked + 0 + +

APC-MCR mutations + ++ + +

KRAS mutations (codon 12/13) ++ + + +

Beta-catenin (nuclear staining) + +++ + ++

Beta-catenin (CTNNB1) mutations 0 0 0 +

P53 (nuclear staining >25%) + ++ + +++

P53 mutations ++ ++ + +

SMAD4 mutations + + 0 +

MSI-high 0 + +++ +++

0 = 0–10%, + = 11–40%, ++ = 41–70%, +++ = >70% ND = no data
* mucinous rate in MAP CRCs in this study was two times more than in sporadic CRCs: 23% and 12% respectively (see also table 2).
Page 10 of 15
(page number not for citation purposes)
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Table 4: Results of somatic mutation analysis and IHC analysis

Tumour 
nr

APC (MCR)
mutation*

KRAS 
mutation

p53 
IHC†

p53 mutation* 17P
LOH@

Beta-catenin 
IHC††

SMAD4 mutation* MSIc MLH1-PMS2
IHC**

1 no c.34G>T ++ No yes 0 c.227G>GT, p.R76RI S +

2 no c.34G>T +++ c.758C>CT, 
p.T253TI*

yes 0 no S +

3 no no +++ yes 0 S +

4 no c.34G>T + no 0 c.1058A>AG, 
p.Y353YC* 
c.1096C>CT, 
p.Q366QX

S +

5 no c.34G>T + c.593A>AT, p.E198EV no 0 c.161T>TC, p.L54LS
c.740G>GA, 
p.G247GE
c.1597C>CT, 
p.L533LF

S +

7 c.3949G>GT
p. E1317EX*
c.4339C>CT
p. Q1447QX*

no + c.565G>GA, 
p.A189AT* 
c.599A>AG, 
p.N200NS*

yes 0/+ no S +

8 no c.34G>T + c.446C>CT, 
p.S149SF*

no 0 no S +

11 no no 0 0 S +

12 no no + 0 S +

13 no c.34G>T 0 +/++ L~ heterogenous

14 no no No no no S +

16 no c.34G>T + c.446C>CT, 
p.S149SF*

no + c.115G>GA, p.A39AT 
c.74G>GA, p.C25CY

S +

17 no c.34G>T +++ no 0 c.1609G>GT, 
p.D537DY*

+

18 no no + 0 S

20 no c.34G>T + 0/+ S +

21 c.4222G>GT
p.E1408EX*

no + 0 S +

22 c.4222G>GT
p.E1408EX*

no + c.13791G>GT,
p.E271EX*

yes 0/+ no S +

23 no c.34G>T ++ c.596G>GT, 
p.G199GV*

yes 0 no S +

24 no c.34G>T ++ c.820G>GT, 
p.V274VF*

yes 0 S +

28 no c.34G>T + No 0 no S +
Page 11 of 15
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and in these carcinomas other hotspot mutations are
found, namely the c.35G>A and c.38G>A, compromising
81% of detected KRA2S mutations in these tumours. [41]
Previously we have shown that KRAS2 hotspot analysis
can be used to detect MAP tumours.[5] Since KRAS2
mutations have been found previously in aberrant crypt
foci (ACF) as well,[42] the high prevalence of KRAS2
mutations might influence tumourigenesis in MAP.

Nuclear staining indicative of p53 dysfunction was found
in 34% in this study, which is less than found in sporadic
carcinomas (57%, Table 2A). We found p53 mutations in
60% of carcinomas analyzed; this finding, along with the
presence of LOH, correlated with the IHC staining results
(Table 4). Three mutations were typical MUTYH G>T
transversions. Lipton et al. found nuclear staining in 53%
of MAP carcinomas, but p53 mutations in only 21% (of
which a minority were G>T transversions), suggesting an

alternative mechanism of over-expression.[11] The
employment of tissue arrays for the current study could
imply an underestimation of cases with both p53 and
beta-catenin accumulation in the nucleus. However, we
reported that 3 punches representing one tumour in a
TMA correctly recapitulated the observations made on
analysis of the whole slides.[27].

SMAD4 somatic mutations in this series were present in
26% (5/19, Table 4). Lipton et al. did not find any SMAD4
mutations in MAP CRCs, but did find 18q LOH at the
same frequency as in sporadic CRCs.[11] Recently we
reported that the chromosome 18q LOH in MAP carcino-
mas mainly comprises copy neutral LOH and not physical
loss, as observed in sporadic CRC.[13]

In the early stages of MAP tumourigenesis, a dominance of
the BER defect can be concluded from the high frequency

29 no c.34G>T 0 yes 0/+ no S +

30 no c.34G>T + 0/+ S +

31 c.4085C>CT
p.S1362SF

no + ++ S +

32 no no +++ no + no S

33 no c.34G>T ++ 0/+ S

34 no no +++ No yes 0 no S +

35 no c.34G>T + No no 0 S +

36 c.4381G>GT
p.E1461EX

c.34G>T + no 0/+ no S +

37 no c.34G>T + yes 0 S

38 no no + no 0/+ S +

39 no c.34G>T + 0 S +

40 no c.34G>T + 0 S +

41 no no ++ c.13794G>GA,
p.V272VM*

yes 0 no S +

42 no c.34G>A ++ 0 no S +

43 no c.34G>T + no yes 0 no S +

44 no c.34G>T ++ 0/+ S +

Blank cells: not done/not ascertainable, † 0 = none, + = >0<25%, ++ = 25–75%, +++>75%, *previously reported mutations, see http://
www.sanger.ac.uk/genetics/CGP/cosmic/ (SMAD4) and http://p53.free.fr/index.html (P53), @LOH, as reported by Middeldorp et al (mainly copy 
neutral LOH and not physical loss),8 †† 0= category 1(membranous staining), 0/+ = 2A (membranous and some nuclear staining), + = 2B 
(membranous & increased nuclear staining), ++ = 3 (strong nuclear & less or no membranous staining), ~2/9 markers unstable.

Table 4: Results of somatic mutation analysis and IHC analysis (Continued)
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of G>T tranversions in KRAS2 and APC. In the later stages
such G>T transversions seem less prominent, as seen in
SMAD4 and p53. Mitotic recombination might be a driving
force in MAP carcinogenesis, based on our conclusion that
the LOH in MAP carcinomas mainly comprise copy neutral
LOH. Two previous studies by Colebatch and Lefevre et
al.[43,44] have suggested that MAP CRCs can also develop
through a MSI pathway (by inactivation of MLH1) because
of the finding of MSI-high phenotype in one out of three
and one out of six MAP CRCs, respectively. O'Shea et al.
found MMR deficiency in 2 out of 11 tumours (18%).
However, on the basis of the results of this study (an
absence of MSI-high in 35 analyzed carcinomas), we con-
clude that the MSI pathway is not an important pathway in
the development of MUTYH associated tumours.

Conclusion
MAP CRCs as a group show specific histological features
that differentiate them from sporadic CRCs, and have sim-
ilarities with sporadic MSI-high and Lynch syndrome
colon cancers, such as a preferential proximal location,
mucinous histotype, and increased presence of TILs. These
TILs might suggest that defects in base excision repair,
similar to mismatch repair deficiency, produce secondary
aberrant proteins functioning as tumour-specific neoanti-
gens that, in turn, induce anti-tumour immune responses.
Further evidence for MAP can be assembled by the detec-

tion of c.34G>T transversion in KRAS2 that takes place in
early tumour development. KRAS2 analysis can be imple-
mented as a pre-screening test that helps selecting CRC
patients eligibly for germline MUTYH mutation testing. In
practice, above features should direct the pathologist
towards a MAP aetiology of CRC as an alternative for a
mismatch repair deficient cause, especially when diag-
nosed at a young age and in combination with polyps
and/or a recessive inheritance pattern.
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Survival in 26 MAP patients, according to CD8+ status and granzyme B+ statusFigure 2
Survival in 26 MAP patients, according to CD8+ status and granzyme B+ status. high versus low, median, number of 
TILs as cut off point. Log rank; P = 0.15 (CD8+) and Log rank; P = 0.2 (granzyme B+).
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