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Abstract

The fat body, a multifunctional organ analogous to the liver and fat tissue of vertebrates,

plays an important role in insect life cycles. The fat body is involved in protein storage,

energy metabolism, elimination of xenobiotics, and production of immunity regulator-like

proteins. However, the molecular mechanism of the fat body’s physiological functions in the

tephritid stem gall-forming fly, Procecidochares utilis, are still unknown. In this study, we per-

formed transcriptome analysis of the fat body of P. utilis using Illumina sequencing technol-

ogy. In total, 3.71 G of clean reads were obtained and assembled into 30,559 unigenes, with

an average length of 539 bp. Among those unigenes, 21,439 (70.16%) were annotated

based on sequence similarity to proteins in NCBI’s non-redundant protein sequence data-

base (Nr). Sequences were also compared to NCBI’s non-redundant nucleotide sequence

database (Nt), a manually curated and reviewed protein sequence database (SwissProt),

and KEGG and gene ontology annotations were applied to better understand the functions

of these unigenes. A comparative analysis was performed to identify unigenes related to

detoxification, immunity and energy metabolism. Many unigenes involved in detoxification

were identified, including 50 unigenes of putative cytochrome P450s (P450s), 18 of glutathi-

one S-transferases (GSTs), 35 of carboxylesterases (CarEs) and 26 of ATP-binding cas-

sette (ABC) transporters. Many unigenes related to immunity were identified, including 17

putative serpin genes, five peptidoglycan recognition proteins (PGRPs) and four lysozyme

genes. In addition, unigenes potentially involved in energy metabolism, including 18 lipase

genes, five fatty acid synthase (FAS) genes and six elongases of very long chain fatty acid

(ELOVL) genes, were identified. This transcriptome improves our genetic understanding of

P. utilis and the identification of a numerous transcripts in the fat body of P. utilis offer a

series of valuable molecular resources for future studies on the functions of these genes.
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Introduction

Crofton weed, Eupatorium adenophorum Spreng, is a perennial, hazardous invading species of

the family Asteraceae, which is native to Mexico. It has successfully invaded many regions on

the globe in a wide variety of natural and anthropogenic ecosystems that range from forest and

grassland to farmland [1] and is now one of the most dangerous exotic invasive plants, causing

great economic losses and environmental problems worldwide [2]. The tephritid stem gall-

forming fly, Procecidochares utilis Stone (Diptera: Trypetidae), is an important natural enemy

of the noxious invasive E. adenophorum. The larvae of flies can bore into the E. adenophorum
leading to gall formation, which can inhibit the growth and development of its host plant and

can effectively restrict the dispersal of E. adenophorum [3, 4]. In 1945, P. utilis was introduced

from Mexico to Hawaii to combat E. adenophorum and it proved an effective biological control

agent for E. adenophorum [5, 6]. Many countries such as New Zealand, Australia, and China

have used this insect to control the damage caused by E. adenophorum [7, 8]. Since P. utilis is

utilized as a biocontrol agent, many of its ecological and biological characteristics have been

studied [9], but the molecular research of P. utilis is relatively limited, and the entire genome is

not yet available. The transcriptome sequencing of its alimentary tract of P. utilis has been per-

formed successfully, and has proved to be an effective method to gather genetic information of

the alimentary tract [7]. These data have provided comprehensive gene expression information

regarding detoxification. However, the fat body transcriptome has not been investigated.

The insect fat body is a multifunctional organ that fills the adipocytes, which play important

roles in the life of insects [10]. The fat body controls the synthesis and use of energy reserves,

lipid and glycogen, and has multiple biochemical functions in intermediate metabolism,

including lipid, carbohydrate, amino acid and nitrogen metabolism, and protein synthesis

[11]. It is a major storage depot for nutrients and fat, and these reserves can be utilized to

release energy to meet the energy demands of the insect. Furthermore, the insect fat body par-

ticipates in the process of immune regulation and production of antimicrobial peptides, which

provides an immune barrier between the internal and external environment [12, 13]. In recent

studies, a number of genes associated with immune response were identified in transcriptome

of the insect fat body. For example, 71, 60 and 44 unigenes encoding various putative

immune-related enzymes were identified in Bactrocera dorsalis, Glossina morsitans morsitans
and Aedes aegypti, respectively [13–15]. In addition, the insect fat body is also involved in

metabolism and detoxification of xenobiotics, harboring several detoxification enzymes [13,

16, 17]. In the B. dorsalis fat body transcriptome, 37 P450s, 18 GSTs and 29 ABC transporters

were identified [13]. With the development of novel next generation high-throughput

sequencing technology, the fact that insect fat body serves as a multifunctional organ of great

biosynthetic and metabolic importance has also been confirmed by the fat body transcrip-

tomes of Drosophila melanogaster [18], the tsetse fly (G. morsitans morsitans) [14], the yellow

fever mosquito (A. aegypti) [15,19], the Oriental Fruit Fly (B. dorsalis) [13], the brown

planthopper (Nilaparvata lugens) [11], the wing polymorphic cricket (Gryllus firmus) [20].

Despite the importance of this organ, little is known about its molecular machinery as it relates

to its physiology, immunity and energy metabolism. In this study, we performed high-

throughput Illumina HiSeqTM 2000 to acquire a transcriptome of the fat body for P. utilis. We

mainly focused on genes associated with immune defense, detoxification and energy metabo-

lism, as these genes are important for insect development. The results obtained from this study

will improve our genetic understanding of P. utilis. At the same time, a large number of genes

identified in the fat body of P. utilis will provide a series of valuable resources for further study

of the physiological functions of these genes.
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Materials and methods

Ethics statement

No specific permits were required for the insects collected in this study. The P. utilis used for

this study is neither an endangered or protected species. Galls of E. adenophorum were col-

lected in Kunming, China and no specific site permission was required for this location as it is

not privately-owned or protected.

Insect samples

Galls of E. adenophorum were originally collected from Kunming, Yunnan Province, China.

All galls were kept in cages and reared under laboratory conditions at 25˚C and 75% relative

humidity as described previously [8]. Fresh galls were dissected with a scalpel and then larvae

were collected for later experiments.

Fat body collection and RNA isolation

Fat body samples of P. utilis were obtained from third instar larvae. Firstly, 75% alcohol was

used to disinfect the skin of P. utilis larvae, then skins of the larvae were dissected from head to

tail and the Malpighian tubules, cuticula, salivary glands, midgut and other residues were dis-

carded. The fat body samples were transferred to an Eppendorf tube with Trizol on ice. They

were stored at -80˚C until RNA extraction.

Total RNA was isolated from the fat bodies using the Trizol reagent (Invitrogen, USA)

according to the manufacturer’s instructions. The concentration and quality of total RNA

were determined by an Agilent 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit, Agilent Tech-

nologies, USA) and NanoDropTM spectrophotometer (Thermo Fisher, Waltham, MA, USA),

respectively.

cDNA library preparation and Illumina sequencing

The cDNA libraryof P. utilis fat body was constructed from a pool of 100 fat bodies using the

mRNA-Seq Sample Preparation Kit (Illumina, San Diego, CA USA) following the manufactur-

er’s instruction. In brief, the Poly (A) mRNA was purified from 20 μg of total RNA using Oligo

(dT) magnetic beads. It was then chemically fragmented into short sequences in the presence

of fragmentation buffer at 94˚C for 5 min. These short sequences were used as templates to

synthesize first-strand cDNA using random hexamer-primers. Subsequently, second-strand

cDNAs were synthesized using buffer, dNTPs, RNaseH and DNA polymerase IDNA polymer-

ase I (New England BioLabs, Ipswich, MA). After that, these cDNA short fragments were puri-

fied using QiaQuick PCR extraction kit (Qiagen) and then resolved with EB buffer for end

reparation and single nucleotide A (adenine) addition. Finally, the cDNAs were connected

with sequencing adapters. Suitable fragments (200–250 bp), as judged by agarose gel electro-

phoresis, were collected and used as templates for PCR amplification. The quantification of

cDNA library was validated and quantified via Agilent 2100 bioanalyzer and ABI StepOnePlus

Real-Time PCR System. The mean read lengths of the cDNA library were 350 bp. Finally, the

cDNA libraries (three biological replicates) were pooled and sequenced in one lane on the Illu-

mina HiSeqTM 2000 platform using paired-end technology in a single run at Beijing Genomics

Institute (BGI; Shenzhen, China). A total of 45,639,322 raw reads were obtained and the raw

transcriptome data was deposited in the NCBI Short Read Archive (SRA) with the accession

number: SRR8521423.
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Transcriptome De novo assembly and bioinformatics analysis

Prior to assembly, reads with adaptors, the number of reads with unknown nucleotides con-

tent larger than 5% and low quality reads which the percentage of low quality bases (base qual-

ity�10) was more than 20% were removed from raw data by using filter_fq (BGI internal

software). Meanwhile the clean data were calculated based on Q20, Q30, GC-content and

sequence duplication level. The subsequent sequencing on Illumina HiSeqTM 2000 for paired

read of 100 or 105 bases following manufacturer’s manual. The clean reads were then de novo
assembled into unigenes using Trinity v2.0.6 with a Kmer_length of 25 and all other parame-

ters set to default [21]. Next, TIGR Gene Indices clustering tools (TGICL) was used to perform

sequence clustering and generate unigenes [22]. Briefly, clean reads with a certain length of

overlap (the overlap length between k-mer was equal to k-1 to extend the seed until it could no

longer be extended) were combined to form contigs. Then, using paired-end reads, reads were

then mapped back to the contigs and contigs from the same transcript, as well as the distances

between these contigs were detected. Trinity connected these contigs to produce sequences

that could not be extended on either end, were considered unigenes. After clustering, the

obtained unigenes were divided into two classes: clusters, with the prefix CL, and singletons,

having the prefix unigene.

After assembly, homology searches and annotation of all unigenes were performed using

the BLASTn programs against nucleotide sequence databases (Nt, e-value� 1.0e−5) in NCBI

[23]. Unigenes were also aligned by BLASTx with the non-redundant protein (Nr, e-value�

1.0e−5), euKaryotic Ortholog Groups (KOG), Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Swiss-Prot databases [23]. Functional annotation by Gene Ontology (GO) terms

(http://www.geneontology.org) was analyzed by Blast2GO v2.5.0 software with e-value less

than 1.0e−6 [24] and InterPro was performed by InterProScan5 [25].

Identification and analysis of interesting genes

Sequences putatively encoding genes related to detoxification, immunity and energy metabo-

lism, such as detoxification enzymes (GSTs, CarEs, P450s and ABC transporters), immune-

related enzymes (serpin, PGRP and lysozyme) and energy metabolism enzymes (lipase, FAS

and ELOVL) were identified by the BALSTx alignment against the nr database with a cut-off

E-value of 10−5. Contigs from the same cluster represent the same unigene. If a cluster contains

several contigs, the longest one was selected for further analysis. The full open reading frames

of interesting genes were determined (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and were

further verified by protein BLAST results. Amino acid sequences were aligned using the Clus-

tal W. The interesting gene families in P. utilis were compared to different model insect spe-

cies, D. melanogaster, B. dorsalis and C. capitate. The GST, CarE, P450, ABC transporter,

serpin, PGRP, lysozyme, lipase, FAS and ELOVL sequences of D. melanogaster, B. dorsalis and

C. capitate were downloaded from NCBI. Subsequently, the phylogenetic trees were con-

structed based on the amino acid sequence alignment using Neighbor-joining (NJ) method in

software MEGA 5 [26]. Bootstrap analysis of 1,000 replication trees was performed to evaluate

the branch strength of each tree.

Results and discussion

Illumina sequencing and de novo assembly

Illumina sequencing was used to sequence a cDNA library of the P. utilis fat body, and gener-

ated about 45.64 Mb raw reads. After filtration, a total number of 41,241,514 clean reads were

assembled into 40,467 contigs with a total length of 19,806,004 bp and a mean length of 489
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bp. The contigs were further assembled into 30,559 unigenes with an average length of 539 bp

(Table 1), which is shorter than that obtained from the N. lugens (avirulent TN1 population

with a mean length of 656 bp and the virulent Mudgo (M) population with a mean length of

676 bp) [11] and B. dorsalis [13]. Among all unigenes, 4,304 unigenes (14.08%) were longer

than 1,000 bp, 9,325 unigenes (30.5%) were longer between 500 and 1,000 bp, and 20,665 uni-

genes (67.6%) ranged from 300 to 500 bp (Fig 1).

Functional annotation of the P. utilis fat body unigenes

For functional annotation, a total of 30,559 unigenes were searched against the Nr, Nt, Swis-

sProt, KEGG, KOG, InterPro and GO databases. The results showed that 21,439 (70.16%),

13,657 (44.69%), 12,188 (39.88%), 12,405 (40.59%), 12,925 (42.30%), 13,149 (43.03%) and

9,354 (30.61%) unigenes matched to Nr, Nt, SwissProt, KEGG, KOG, InterPro and GO known

protein databases, respectively (Table 2). After Nr database annotation, the species distribu-

tions demonstrated that 58.58% of the unigenes had best matches against sequences of Cerati-
tis capitata, followed by Trypanosoma brucei gambiense DAL972 (18.83%), Trypanosoma
brucei brucei TREU927 (10.9%) and Musca domestica (2.19%) (Fig 2). Even though a large per-

centage of transcripts matched to trypanosomes, PCR analysis confirmed the lack of contami-

nation in P. utilis fat bodies and thus, the transcripts are likely not contaminants and are likely

truly derived from the fat bodies of P. utilis (S1 Text). The species distribution was consistent

with our previous study of transcriptome analysis of the alimentary tract of P. utilis, in which

more than 50% of genes were most matched to C. capitate [27]. However, in the fat body of B.

dorsalis, the highest percentage of unigene sequences were matched with Drosophila (over

79%) [13].

Table 1. Sequencing summary for the fat body transcriptome of P. utilis.

Sequencing Summary Fat body specific transcriptome

Total raw reads(Mb) 45.64

Total clean reads 41,241,514

Total clean bases (Gb) 3.71

Q20 percentage (%) 98.72

Q30 percentage (%) 94.19

Number of contigs 40,467

Total length of contigs (bp) 19,806,004

Mean length of contigs (bp) 489

N50 length of contigs (bp) 623

N70 length of contigs (bp) 362

N90 length of contigs (bp) 232

GC percentage (%) 39.53

Number of unigenes 30,559

Total length of unigenes (bp) 16,485,836

Mean length of unigenes (bp) 539

N50 length of unigenes (bp) 685

N70 length of unigenes (bp) 403

N90 length of unigenes (bp) 255

GC percentage (%) 39.84

Total number of complete ORFs 2,808

Total number of partial ORFs 11,164

https://doi.org/10.1371/journal.pone.0226039.t001
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Gene ontology (GO) assignments were used to functionally classify the predicted unigenes

from the fat body of P. utilis. According to the sequence similarity, 9354 unigenes (30.61%)

were annotated and classified into 61 functional groups of three main ontologies: biological

Fig 1. Length distribution of unigenes in transcriptome assembly for P. utilis fat body.

https://doi.org/10.1371/journal.pone.0226039.g001

Table 2. Number of unigenes annotated in seven databases.

Database The number of unigenes Percentage (%)

Nr 21,439 70.16

Nt 13,657 44.69

Swissprot 12,188 39.88

KEGG 12,405 40.59

KOG 12,925 42.30

Interpro 13,149 43.03

GO 9,354 30.61

Total number of unigenes 30,559 100

All databases 2,692 8.81

At least one database 24,395 79.83

https://doi.org/10.1371/journal.pone.0226039.t002
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processes (46.48%) was the largest category, followed by cellular components (16.88%) and

molecular function (36.64%) (Fig 3). In the biological processes category, “cellular process”

and “metabolic process” terms were the two largest groups. In the cellular components cate-

gory, “cell” and “cell parts” terms were the most abundant. In the molecular function, “bind-

ing” and “catalytic activity” terms were the two largest groups. The results were similar to the

transcriptome study of the fat body from N. lugens [13]. Meanwhile, the “cell killing” term in

the biological processes category was the smallest group, containing only one unigene. Only

one unigene each was assigned in the functional groups “cell killing”, “collagen trimer” and

“translation regulator activity” (Fig 3).

In addition, to obtain more detailed annotation information of the transcriptome, all uni-

genes were compared against the KOG for functional prediction and classification. In all,

12,925 (42.30%) unigenes were annotated and classified into 25 KOG categories (Fig 4).

Among all these categories, the “General function prediction only” contained 2,345 unigenes,

which was the largest category, followed by “Signal transduction mechanisms” (1660), “Post-

translational modification, protein turnover, chaperones” (1,540) (Fig 4). Among these uni-

genes, 1,140 were classified as“function unknown” categories, which revealed that these may

be unique or novel genes in the fat body transcriptome of P. utilis. In contrast, “Defense mech-

anisms” and “Cell motility” represented relatively smaller KOG groups, containing 94 and 36

unigenes, respectively (Fig 4).

Subsequently, the KEGG pathway assignment was also performed on unigenes to identify

the biological pathways including metabolic and regulatory pathways that will be actively

involved in the fat body of P. utilis. In total, 12,405 unigenes (40.59%) were annotated to the

KEGG database and mapped to the cellular processes, environmental information processing,

genetic information processing, human diseases, metabolism, and organismal systems path-

ways (Fig 5). Among these pathways, the most abundant pathway is the global and overview

maps (2,126, 17.14%), followed by signal transduction (1,436, 11.58%), translation (1,126,

Fig 2. Species distribution of the top BLASTX matches to the P. utilis fat body unigenes.

https://doi.org/10.1371/journal.pone.0226039.g002

De novo transcriptome analysis of Procecidochares utilis

PLOS ONE | https://doi.org/10.1371/journal.pone.0226039 December 17, 2019 7 / 36

https://doi.org/10.1371/journal.pone.0226039.g002
https://doi.org/10.1371/journal.pone.0226039


Fig 3. Classification of the gene ontology (GO) for the transcriptome of the fat body from P. utilis.

https://doi.org/10.1371/journal.pone.0226039.g003
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9.08%), and transport and catabolism (1,030, 8.3%) (Fig 5). The KEGG pathway assignment

will be helpful to further research specific biological processes, functions and pathways that

exist in the fat body of P. utilis.

Fig 4. KOG classification of the fat body transcriptome of P. utilis.

https://doi.org/10.1371/journal.pone.0226039.g004
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Simple sequence repeats discovery

Based on the unigene sequences, a total of 2,839 sequences containing 3,585 SSRs were identi-

fied from 30,559 unigenes. Among all SSRs, 544 sequences contained more than one SSR, and

trinucleotide repeats (43.65%) represented the largest proportion of microsatellite repeat units,

followed by mononucleotide (24.16%), dinucleotide (23.7%), quadranucleotide (4.88%), hexa-

nucleotide (2.00%) and pentanucleotide (1.59%) repeats (Fig 6). Among all repeat types, A/T

(24.1%), AAC/GTT (23.88%) and AC/GT (10.79%) are the most abundant ones (S1 Table). In

total, 3,585 SSRs were identified. The SSRs identified in this research will be helpful for further

studies related to population genetic structure in P. utilis, such as genetic variation and gene

flow.

Identification of the major detoxification-related genes

The insect fat body is an endocrine organ, which involved in metabolism and detoxification of

xenobiotics, harboring several detoxification enzymes [13, 16, 17]. In this study, we obtained

abundant fat body transcriptome data of P. utilis, and identified many unigenes that are highly

similar to those related to xenobiotic metabolism in other insects, including 50 cytochrome

P450 (P450s), 18 glutathione S-transferases (GSTs), 35 carboxylesterases (CarEs), 26 ATP-

binding cassette (ABC) transporters.

Fig 5. KEGG pathway classification of unigenes in the fat body of P. utilis.

https://doi.org/10.1371/journal.pone.0226039.g005

De novo transcriptome analysis of Procecidochares utilis

PLOS ONE | https://doi.org/10.1371/journal.pone.0226039 December 17, 2019 10 / 36

https://doi.org/10.1371/journal.pone.0226039.g005
https://doi.org/10.1371/journal.pone.0226039


Cytochrome P450s. Cytochrome P450 (P450s) phase I enzymes constitute an old and

widely distributed protein superfamily that participated in the metabolism and detoxification

of a wide variety of plant secondary metabolites and pesticides [28, 13]. The functional and

Fig 6. Statistics of SSR nucleotide classes found in the transcriptome of P. utilis fat body.

https://doi.org/10.1371/journal.pone.0226039.g006

Table 3. Number and class distribution of P450s genes in other insects.

Classification Pu Dm Ss Gm Bm Tc Ag As

CYP2 clan 1 7 6 14 7 8 10 8

CYP3clan 30 36 44 30 28 79 40 44

CYP4 clan 11 32 19 18 33 47 46 34

Mitochondrial clan 5 12 10 15 10 9 9 7

Total 50 87 79 77 78 143 105 93

Pu, P. utilis; Dm, D. melanogaster; Ss, Shirakiacris shirakii; Gm, Grapholita Molesta; Bm, Bombyx mori; Tc, T. castaneum; Ag, A. gambiae; As, Anopheles sinensis. Data of

Dm, Gm, Bm, Tc, Ag from Guo et al (2017). Data of Ss from Qiu et al (2016). Data of As from Zhou et al (2015).

https://doi.org/10.1371/journal.pone.0226039.t003
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evolutionary diversity of P450s play key roles in insect adaptation to various ecological envi-

ronments [29]. They are divided into four clades, CYP2, CYP3, CYP4 and mitochondrial. To

date, P450s have been identified from many insects (Table 3) [29–31]. In this study, a total of

50 unigenes corresponding to P450s were identified in the P. utilis fat body transcriptome

based on the Nr annotation results. The number was less than the number of CYP450s identi-

fied in the fat body transcriptome of B. dorsalis. According to the closest blast match in the

NCBI nr database, all the identified P450s were divided into four clades: CYP2 (1), CYP3 (30),

CYP4 (11) and the mitochondrial CYP clade (5) (S2 Table). After removing short sequences,

26 unigenes were used for phylogenetic analysis. The results showed that these unigenes were

divided into seven families: Cyp9 (1), Cyp6 (13), Cyp4 (5), Cyp12 (2), Cyp309 (2), Cyp314 (2)

and Cyp18 (1) (Fig 7). The majority of the P450s in P. utilis fat body belong to the Cyp6 family

and Cyp4 family. In our previous studies, 22 unigenes were assigned to eight families accord-

ing to phylogenetic analysis. Five, five, four, three and two genes belonged to the Cyp 4, Cyp 9,

Cyp 6, Cyp 307 and Cyp 12 families, respectively. Lastly, single unigene expression in the ali-

mentary canal were identified as members of Cyp 315, Cyp 314, and Cyp 302 families and

most of P450 unigenes in the alimentary tract of P. utilis belong to Cyp4, Cyp6 and Cyp9 fami-

lies. By comparing these unigenes identified in the fat body and alimentary tract of P. utilis, 17

and 12 unigenes were unique to the fat body and alimentary tract, respectively, and nine uni-

genes were found in both tissues [27].

In previous studies, most of the P450s belong to the CYP3 and CYP4 clades. These clades in

insects are involved in xenobiotic metabolism, such as pesticides and plant secondary metabo-

lites [32–37]. For instance, three of the four CYP6F subfamily genes and CYP9AQ2 in Locusta
migratoria were related to the detoxification of deltamethrin or carbaryl [38, 39]. CcCYP6A51
in C. capitata was associated with the detoxification of lambda-cyhalothrin [40]. CYP4g1,

CYP6g1 and CYP12d1 confer DDT resistance in D. melanogaster [41]. In Plutella xylostella,

CYP6BG1 conferred resistance to pyrethroid [42], recently, overexpression of contigs00326
and 02103, both members of the CYP6 P450 family were known to be associated with pyre-

throid detoxification in Bactrocera oleae [43]. Moreover, the expression levels of P450s were

differentially induced by feeding on the different host plants of herbivorous insects. Oedaleus
asiaticus grasshoppers feeding on Artemisia frigida (a species with low nutrient content and a

high level of secondary compounds), had higher P450s enzyme activity and the gene expres-

sion level of cytochrome P450 6K1 was highest compared to feeding on the grasses Cleistogenes
squarrosa, Leymus chinensis, and Stipa krylovii, that level showed a significant positive correla-

tion with the secondary compounds of host plant [33]. Rhynchophorus ferrugineus larvae fed

on diet containing methyl eugenol, methyl isoeugenol, and rosmarinic acid tremendously

enhanced the expression of P450 gene [32, 44]. Several CYP6AS subfamily genes and CYP9Q1
in Apis mellifera were related to the detoxification of quercetin, a flavonol widely present in

the honey bee’s distinctive diet of honey and bee bread [45, 46]. Moreover, in A. mellifera
CYP9Q2, and CYP9Q3 detoxify both tau-fluvalinate and coumaphos; these twogenes can also

be up-regulated by quercetin [47]. Furthermore, the expression of CYP6AB14, CYP321A7 and

CYP321A9 genes of Spodoptera litura were induced by the toxic allochemicals xanthotoxin,

coumarin, and flavones [48]. Likewise, the expression of CYP6A8, CYP6D5, CYP6W1,

CYP9B2, and CYP12D1 of D. melanogaster were induced by Piper nigrum extracts, and

CYP6A2 and CYP6A8 expression was induced by caffeine [49, 50]. It is possible that during

the evolution, P. utilis has produced P450s to adapt to the toxins of its host plant E.

adenophorum.

Glutathione S-transferases. Glutathione S-transferases (GSTs) are multifunctional

enzymes that play a crucial role in phase II detoxification of endogenous and xenobiotic com-

pounds including plant secondary metabolites and pesticides [51]. In insects, GSTs are
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ordinarily divided into several major subclasses: Delta, Epsilon, Sigma, Omega, Theta, Zeta,

Microsomal and others [52, 53]. In particular, Delta and Epsilon were two insect-specific clas-

ses and have been widely associated with responses of environmental stress, especially during

xenobiotic detoxification [54, 55]. In D. melanogaster, B. dorsalis, G. molesta and Bactrocera
minax 37, 14, 28, 27 GSTs genes have been identified [30, 56–58]. In this study, a total of 18

sequences encoding GSTs were identified in the fat body of P. utilis (S3 Table). After removing

short sequences, 13 GSTs unigenes were manually selected for phylogenetic analysis. The

results showed that these unigenes were assigned to six classes: seven unigenes belonged to the

Epsilon class, one unigene belonged to the Delta class, and two unigenes belonged to the Theta

class, one unigene was assigned to each of the Omega, Sigma and Microsomal GST classes (Fig

8). No genes belonged to the Zeta class. Most of the genes belonged to Epsilon class, which is

in agreement with the previous studies from the fat body of B. dorsalis [13]. In our previous

analysis of the alimentary canal transcriptome, 21 unigenes were used for phylogenetic analysis

after removing overly short sequences. The result indicated that they belonged to seven fami-

lies: Epsilon (8), Delta (4), Theta (2), Zeta (1), Omega (1), Sigma (1), and Microsomal (4)

families, and like the fat body, most of the unigenes were assigned to the Epsilon family. Inter-

estingly, by comparing these unigenes identified in the fat body and alimentary canal of P. uti-
lis, eight unigenes were unique to fat body, 13 unigenes were unique to alimentary canal, and

five unigenes were found in both tissuse.

It has been demonstrated that Delta and Epsilon two classes of GSTs were unique in insect

species and responsible for detoxification and adaptation to environmental selection pressures

[57, 59]. For example, in B. dorsalis, three Epsilon GSTs have been implicated in resistance to

malathion and overexpression of the genes increased the detoxification of malathion in B. dor-
salis [30, 60]. The LmGSTd1 gene might be related to the resistance of chlorpyrifos in L. migra-
toria, and the expression of this gene was induced by chlorpyrifos [61]. The expression level of

Drosophila GSTD2 and GSTD5 genes were upregulated after exposure to the heavy metals, cad-

mium and zinc [62]. In addition, some studies suggest that Metaseiulus occidentalis and Tetra-
nychus urticae Microsomal GSTs may be involved in eliminating toxic xenobiotics, protection

against oxidation and pesticide resistance [63–65]. In M. occidentalis and B. mori, the Zeta

class GSTs not only participated in the oxidative stress response and catalyzed the degradation

of tyrosine and phenylalanine, but they also probably played a role in pesticide resistance [63,

66, 67]. The Sigma GSTs of B. dorsalis, D. melanogaster and S. litura play a role in detoxifica-

tion of toxic compounds and oxidative stress resistance and may also be involved in muscle

structure [13, 58, 68]. Moreover, the GSTs have remarkable connections with the secondary

compounds in the host plant. The GSTs of Hyphantria cunea play important roles in degrad-

ing plant secondary metabolites [69]. Rhynchophorus ferrugineus larvae fed on diet containing

α-asarone, eugenol, coniferyl aldehyde, rosmarinic acid, methyl isoeugenol and methyl euge-

nol enhanced the expression of GSTs [32, 70]. The P. utilis GSTs unigenes in these classes may

play a similar role as their counterparts in other insect species.

Carboxylesterases. Carboxylesterases (CarEs) is a multigene family and ubiquitous in ani-

mals, plants, insects, and microbes, which play an important role in insecticide resistance, alle-

lochemical metabolism and tolerance, defense, and regulating development [71]. For example,

CarEs are involved in metabolism of phenolic glycosides in Papilio canadensis [72]. The CarEs

of Anoplophora glabripennis play important roles in promoting A. glabripennis colonization

and survival in trees that produce phenolic glycosides in the family Salicaceae [73, 74].

Fig 7. Neighbor-joining phylogenetic tree of P450 genes from the P. utilis fat body (●) and other insects. Numbers

at each branch node represent bootstrap values.

https://doi.org/10.1371/journal.pone.0226039.g007
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Furthermore, CarEs are also implicated in neurogenesis, hormones and pheromones degrada-

tion [75]. Insects CarEs can be divided into 13 clades. These clades fall into three main groups,

A-C clades belong to the dietary/detoxification group, D-G clades belong to the hormone/

semiochemical processing group, and I-M clades belong to the neuro/developmental group

[76]. 35, 24, 44 CarEs have been identified in the genome of D. melanogaster, A. mellifera and

Metaseiulus occidentalis respectively [63, 77], while 15 and 38 putative CarEs have been identi-

fied in the transcriptome of B. oleae and B. dorsalis [76, 78]. In this study, 35 putative CarEs

have been identified in the fat body transcriptome of P. utilis (S4 Table).

Based on phylogenetic analysis with other known insect CarEs, 17 CarEs identified in the

fat body transcriptome of P. utilis were divided into seven clades: seven in clade C (α-ester-

ases), three in clade H (glutactins and glutactin-like enzymes), two in each M (neurotactins)

and I (uncharacterized) clade, one in each K (gliotactin), L (neuroligins), G (lepidopteran

JhE). No CarEs in the fat body transcriptome of P. utilis belonged to A, B, D, E, F and J clades

(Fig 9). Interestingly, 12 of these unigenes coding for CarE were unique to the fat body and

were not detected in our previous analysis of the alimentary canal [27]. In this study, most of

the CarEs (seven α-esterases) belong to clade C of the dietary detoxification group. This phe-

nomenon was consistent with the CarEs clade in L. migratoria and S. shirakii [79, 31]. This

finding is consistent with that described in L. migratoria and S. shirakii, a large number of

detoxification genes can be used to detoxify many different plant secondary metabolites and to

develop insecticide resistance [79].

The ATP-binding cassette (ABC) transporters are membrane-bound proteins belonging to

the ABC superfamily located in the cellular membrane in all living organisms from bacteria to

humans [80, 81]. ABC transporters have been subdivided into eight subfamilies, from ABC-A

to ABC-H [82, 83]. In insects, ABC transporters are not only involved in the molecule trans-

port of molecules, but also play a major role in the metabolism of xenobiotics [76]. From the

fat body transcriptome of P. utilis, 26 unigenes sequences encoding putative ABC transporters

were identified (S5 Table). After removing short sequences, 22 unigenes were subjected to phy-

logenetic analysis with B. dorsalis and the results showed that these unigenes were divided into

six subfamilies: five belong to the ABCB subfamily (22.73%), four belong to the ABCC

(18.19%), one belong to the ABCD (4.55%), three belong to the ABCF (13.63%), nine belong

to the ABCG (40.9%). No ABC transporters belong to the ABCA and ABCH subfamily (Fig

10). Genome-wide analysis of ABC transporters in the B. dorsalis, D. melanogaster, A. gambiae,
T. castaneum, A. mellifera, B. mori, Daphnia pulex, Tetranychus urticae, Bemisia tabaci and

Laodelphax striatellus led to the identification of 47, 56, 52, 73, 41, 55, 65, 103, 55 and 40 ABC

transporters, respectively (Table 4) [80, 84, 85]. Furthermore, in the B. dorsalis fat body tran-

scriptome, 29 ABC transporters were identified and assigned to 7 subfamilies, including

ABCA (4), ABCB (4), ABCC (1), ABCD (2), ABCE (1), ABCF (3), ABCG (4) [13]. Compared

with number of ABC transporters in other insect species, there were fewer ABCs in P. utilis,
especially in the ABCA, ABCD and ABCH subfamilies (Table 4). The missing ABC genes in

the current transcriptome database may await further discovery.

ABC transporters have been reported to be involved in the translocation of xenobiotics and

phytochemicals. For example, in larvae of Anopheles stephensi, the ABC transporters were

involved in the detoxification of permethrin [86]. In B. dorsalis, BdABCF1, BdABCF3,

BdABCG1, BdABCG11, BdABCH1, and BdABCH2 genes were upregulated after treatment

with three different pesticides; however the expression level of BdABCB7 was significantly

Fig 8. Neighbor-joining phylogenetic tree of glutathione S-transferase (GST) genes from the P. utilis fat body (●)

and other insects. Numbers at each branch node represent bootstrap values.

https://doi.org/10.1371/journal.pone.0226039.g008
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higher after treatment with malathion than that after treatment with beta-cypermethrin and

avermectin, and the toxicity of malathion to B. dorsalis increased after BdABCB7 was silenced

[85]. In B. tabaci, the ABC transporters responsed to imidacloprid, a neonicotinoid insecticide,

and most of the significantly up-regulated ABC transporters of B. tabaci (80%) involved in the

Fig 9. Neighbor-joining phylogenetic analysis of CarE genes from the P. utilis fat body (●) and other insects.

Numbers at each branch node represent bootstrap values.

https://doi.org/10.1371/journal.pone.0226039.g009
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detoxification of imidacloprid belong to the ABCG family [87]. In addition, the ABC trans-

porters were regulated by heavy metals and implicated in the biochemical detoxification of

zinc and copper in D. melanogaster [62]. Likewise, in the cotton bollworm, Helicoverpa armi-
gera, the ABC transporters were associated with the degradation of plant secondary metabo-

lites [88]. Previous studies have shown that most of the ABC transporter genes of other insects

involved in detoxification belonged to the three families: A, B and C [13, 86]. Here we identi-

fied 22 ABC transporters in the fat body of P. utilis for the first time and more than half of

them also belong to A, B and C families. This was the first analysis of the ABC transporters. It

remains to be further studied whether these ABC transporters play roles in the adaptation of P.

utilis to the toxic host E. adenophorum.

Identification of the putative immunity-related genes

The insect fat body acts as an immune barrier between the internal and external environment,

which plays a major role in preventing infection by microbial, protozoan pathogens and other

foreign objects [12, 13, 89]. In recent studies, a number of genes associated with immune

response were identified from the fat body transcriptome of B. dorsalis, G. morsitans morsitans
and A. aegypti, including lysozyme, serpin, antimicrobial peptide and other genes [13–15, 90].

In this study, 17 putative serpin, five peptidoglycan recognition proteins (PGRP) and four lyso-

zyme unigenes were identified, which played important roles in insect immune defense.

Serpins are the largest family of serine proteinase inhibitors with members spread over

eukaryotes and prokaryotes. At present, many serpin genes have been identified in a number

of insect genomes and transcriptomes (S6 Table) [91–96]. The fat body is a main site for the

serpin synthesis, indicating that this organ participates in the immune response of insects. For

example, in Manduca sexta, serpin-9 and -13 genes were mainly produced in fat body [97]. In

this study, a total of 17 putative serpin unigenes were identified (S7 Table). This number was

less than in the fat body transcriptome of B. dorsalis (25) [13]. After removing short sequences,

11 unigenes were used for phylogenetic analysis. The results showed that these unigenes were

divided into different clades (Fig 11). Previous studies have illustrated that serpins play vital

roles in regulation of innate immune responses via inhibition of serine proteinase cascade

Fig 10. Neighbor-joining phylogenetic analysis of ABC genes from the P. utilis fat body (●) and B. dorsalis.
Numbers at each branch node represent bootstrap values.

https://doi.org/10.1371/journal.pone.0226039.g010

Table 4. Gene numbers in ABC subfamilies of twelve arthropod species.

ABC subfamily Pu Bd Dm Bo Ag Tc Am Bm Dp Tu Bt Ls

A 0 7 10 3 9 10 3 9 4 9 8 2

B 5 7 8 4 5 6 5 5 7 4 3 6

C 4 9 14 2 13 35 9 9 7 39 6 5

D 1 2 2 1 2 2 2 2 2 2 2 2

E 0 1 1 1 1 1 1 1 1 1 1 1

F 3 3 3 3 3 3 3 3 3 3 3 2

G 9 15 15 4 16 13 15 13 24 23 23 14

H 0 3 3 0 3 3 3 3 15 22 9 8

Total 22 47 56 18 52 73 41 55 65 103 55 40

Pu, P. utilis; Bd, B. dorsalis; Dm, D. melanogaster; Ag, A. gambiae; Tc, T. castaneum; Am, A. mellifera; Bm, B. mori; Dp, D. pulex; Tu, T. urticae; Bt, B. tabaci; L.

Striatellus. Numbers of other nine species were derived from Dermauw and Van Leeuwen (2014), Xiao et al (2018).

https://doi.org/10.1371/journal.pone.0226039.t004

De novo transcriptome analysis of Procecidochares utilis

PLOS ONE | https://doi.org/10.1371/journal.pone.0226039 December 17, 2019 19 / 36

https://doi.org/10.1371/journal.pone.0226039.g010
https://doi.org/10.1371/journal.pone.0226039.t004
https://doi.org/10.1371/journal.pone.0226039


pathways. Serpin-5 and serpin-9 two genes in H. armigera controlled melanization by directly

inhibiting their target proteases clip-domain serine protease 4 and clip-domain serine protease

6, respectively [98].

Peptidoglycan recognition proteins (PGRPs) form a large family of proteins that recognize

peptidoglycan (PGN) in both gram-negative and gram-positive bacteria cell walls and induce

the activation of immune responses [99, 100]. The PGRPs are widely distributed and highly

conserved from invertebrates to mammals [100]. According to the length of corresponding

mRNA, insects PGRPs are divided into two categories: long-type PGRP (PGRP-L) that

encodes secreted proteins and short-type PGRP (PGRP-S) that encodes transmembrane or

intracellular products, which play distinct roles in innate immune response [101]. In Drosoph-
ila, PGRP-SA and PGRP-SD can recognize lysine-type peptidoglycan and activate the Toll

pathway, while PGRP-LE is essential for activation of the prophenoloxidase (proPO) cascade

[102]; DAP-type peptidoglycan is recognized by PGRP-LC and PGRP-LC can interact with

PGRP-LE to trigger Imd pathway signaling activation [101]. In Anopheles, PGRPLC activates

the immune-deficiency (Imd) pathway to resist microbiota load and Plasmodium infection

[103]. At present, many PGRP genes have been identified from Drosophila, T. castaneum, A.

gambiae, B. dorsalis and other insects (S6 Table) [13, 104–106]. In this study, five PGRP genes

were identified from the fat body transcriptome of P. utilis, of which one belongs to the short

(S) subfamily (PGRPS1, S2, and S3), while four belong to the long (L) subfamily (PGRPLA,

LB, LC, and LD) based on the phylogenetic analysis with genes from other insects (S8 Table

and Fig 12). The number of PGRP genes in P. utilis was similar to the number identified in the

fat body of B. dorsalis [13].

The innate insect immune system includes humoral and cellular immunity that can be acti-

vated by invasion of pathogens [107]. An array of potent antimicrobial peptides and proteins

(AMPs), lysozymes and lectins make up the humoral response. Lysozyme is well-known as an

immune effector that is found in both vertebrates and invertebrates, which play protective

roles in defense against infections [107, 108]. To date, with genomic and transcriptomic analy-

sis many lysozyme genes have been identified from several insects such as Galleria mellonella,

T. castaneum, Reticulitermes speratus, M. sexta, Acyrthosiphon pisum and Harmonia axyridis
(S6 Table) [108–113]. Previous reports have shown that insect lysozyme is synthesized in

hemocytes and much more so in the fat body, and the lysozyme is released into the hemo-

lymph [107, 114]. Generally insect lysozyme genes are significantly expressed but upregulated

in response to microbial challenge in specific tissues, mainly the fat body and hemocytes [107,

115]. Six hours after injection with E. coli, SgLys transcripts were upregulated 2-fold in the fat

body of Schistocerca gregaria, indicating that SgLys plays a role in S. gregaria innate immunity

[107]. Low levels of transcripts were observed in the fat body of non-infected larvae of M.

sexta, while after treatment with peptidoglycan the levels of transcripts increased rapidly and

remained elevated for several days [107, 116].

We identified four gene sequences encoding putative lysozymes in the fat body transcrip-

tome of P. utilis. Among them, three belong to lysozyme genes and one encodes a lysozyme-

like proteins (LLPs) gene according to the phylogenetic analysis with other insects (S9 Table

and Fig 13), which is similar to or less than the number found in other insects (S6 Table) [91,

106, 108, 110, 117]. LLPs exhibit antimicrobial activity against both gram-positive and gram-

negative bacteria, which probably inhibit bacterial membrane, but do not dissolve the cell wall

[118]. Lysozyme not only participates in immunity, but also has a digestive function. In D. mel-
anogaster two lysozyme genes were recruited for the digestion of symbiotic bacteria in the

stomach [119]. Therefore, whether lysozymes in P. utilis are involved in immunization needs

further study. This is the first analysis of the lysozymes in the fat body transcriptome of P.

utilis.
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Energy metabolism functions of fat body

The fat body plays major roles in insect metabolism and nutrient storage, which is similar to

the liver and fat tissue of vertebrates. The fat body is distributed all over the insect body, but

mainly in the abdomen and under the epidermis [10]. Insects store energy in the form of gly-

cogen, triglycerides and amino acids, which form storage proteins in fat body. It is a major

storage depot for nutrients stores, and releases energy in response to the energy demands of

the insect [10, 13]. In this study, we found many unigenes that are highly similar to those

related to energy metabolism in other insects, including 18 lipases, five fatty acid synthase and

six elongases of very long chain fatty acid (ELOVL).

Lipids are the main component of the fat body and the major source of metabolic energy

[13]. Lipases are a special type of serine hydrolase, which are widely found in vertebrates and

Fig 11. Neighbor-joining phylogenetic analysis of serpin genes from the P. utilis fat body (▲) and other insects. Numbers at each branch

node represent bootstrap values.

https://doi.org/10.1371/journal.pone.0226039.g011
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Fig 12. Neighbor-joining phylogenetic analysis of PGRP genes from the P. utilis fat body (●) and other insects. Numbers at each branch node represent bootstrap

values.

https://doi.org/10.1371/journal.pone.0226039.g012
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invertebrates and play a crucial role in fat metabolism [14]. According to sequence relation-

ships within the α/β hydrolase fold superfamily of proteins, lipases are divided into six families:

neutral (Pfam: PF00151), acid (Pfam: PF04083), lipase 2 (Pfam: PF01674), lipase 3 (Pfam:

PF01764), GDSL (Pfam: PF00657) and hormone sensitive lipases (HSL) [120, 121]. The genes

encoding lipases were identified in the genomes of many insects (S6 Table) [121, 122]. Accord-

ing to our research on the P. utilis fat body transcriptome, a total of 18 unigenes putatively

Fig 13. Neighbor-joining phylogenetic analysis of lysozymes and lysozyme-like proteins from the P. utilis fat body (●) and other insects. Numbers at each branch

node represent bootstrap values.

https://doi.org/10.1371/journal.pone.0226039.g013
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encoding lipase were identified (S10 Table), which is less than the number found in other

insects [121, 122]. After manually removing short sequences, 12 unigenes were used for the

phylogenetic analysis and the result indicated that they were divided into four families, five

belonged to the neutral lipase, four belonged to the acid lipase, two belonged to the Brummer

and one belonged to the lipase 3. No unigene belonged to lipase 2 and hormone sensitive

lipases (Fig 14). The features and functions of lipase vary with families. In insects, neutral

lipases have been characterized to play important roles in regulating lipolysis in the fat body.

For example, a triacylglycerol lipase with phospholipase A1 activity in the fat body of M. sexta
plays a crucial role in regulating lipolysis [10, 123]. Brummer lipase, or insect adipose triglycer-

ide lipase (ATGL) has been identified in some insects such as D. melanogaster, B. mori and G.

morsitans [121, 123–125]. During starvation, Brummer is crucial for lipolysis in the fat body of

Drosophila [124]. Furthermore, a mutation of Brummer in Drosophila reduced fat body lipid

accumulation, nevertheless overexpression of Brummer results in lean flies [123, 124]. The

acid lipase family includes gastric lipases, pregastric or lingual lipase, pregastric esterase and

lysosomal acid lipases (LAL) [126], which function in the intracellular hydrolysis of cholesteryl

esters and triglycerides that are internalized through receptor mediated endocytosis of lipopro-

tein particles.

Lipids accumulated as fat reserves in the fat body provide energy for insect growth and

development. Fatty acid synthase (FAS) plays an important role in lipid synthesis, which is a

key enzyme for biosynthesis of endogenous fatty acid in both vertebrates and invertebrates

[127]. In D. melanogaster genome, three distinct type I FAS genes (CG3523, CG3524 and

CG17374) were identified [122]. RNA in situ hybridization of these three genesin D. melanoga-
ster adult males showed that CG3523 was expressed only in the adult fat body and the other

two were expressed in oenocytes [122, 128]. Three FAS I genes (RPRC00269, RPRC002909 and

RPRC000123) were identified from the R. prolixus genome [122]. In this study, a total of five

unigenes putatively encoding FAS were identified (S11 Table). Phylogenetic analysis with

genes from other insects was carried out, and two unigenes (Unigene17317_Z, Unige-

ne17318_Z) showed homology with FAS1 from B. dorsalis, D. melanogaster and A. aegypti.
Unigene12878_Z and Unigene20112_Z were exclusively detected in Drosophila oenocytes

(CG17374) and B. dorsalis FAS gene, respectively (Fig 15). It has been reported that biochemi-

cal deficiencies in FAS1 inhibit de novo lipid biosynthesis in A. aegypti blood fed mosquitoes,

as well as impact eggshell formation and blood digestion [10]. Moreover, when FAS1 expres-

sion was knocked down at mRNA levels inhibition of fatty acid biosynthesis in A. aegypti
blood fed mosquitoes by RNAi [10]. In Colaphellus bowringi, FAS plays a central role in lipid

metabolism during diapause, and knockdown of FAS2 reduced lipid accumulation as well as

affected stress tolerance genes expression and water content of this species [127].

Both FAS products and fatty acids taken up from the diet are further elongated into very

long chain fatty acids (VLCFA) [122]. Elongases of very long chain fatty acid (ELOVL) are

enzymes that are essential for the biosynthesis of VLCFAs and elongation of long-chain fatty

acids [129]. ELOVLs, which are conserved from microorganisms to mammals, play key roles

in various biological processes [130]. In insects, a large number of ELOVL genes have been

identified from their genomes although most of their functions remain mostly unknown,

including D. melanogaster, B. mori and R. prolixus [122, 129, 131]. In the present study, we

obtained a total of six unigenes encoding ELOVL proteins from the P. utilis fat body transcrip-

tome (S12 Table). All of these unigenes were used for phylogenetic analysis with other insects.

Phylogenetic analysis revealed that they divided into three clades: ELOVL 3/6, ELOVL 1/7 and

“ELOVL X clades” (Fig 16). No genes belong to ELOVL 2/5 and ELOVL 4 clade. The “ELOVL

1/7 clade” includes the P. utilis genes Unigene3318, this clade possibly plays an important role

in elongating saturated/monounsaturated fatty acids. Within these clades, functional
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characterization is available for the mosquito Aedes albopictus (ACS37245), which play a criti-

cal role to control the dehydration resistance of diapause eggs by regulating hydrocarbon for-

mation from VLCFA precursors [132]. Four ELOVL unigenes of P. utilis (Unigene15322,

Unigene25406, Unigene10414 and Unigene1062) belong to the ELOVL 3/6, this clade includes

an ELOVL gene of the fruit fly gene baldspot (CG3971) (Fig 16), which is involved in the sex

pheromone production, viability, and sperm development [131]. The remaining unigene (Uni-

gene19540) in the insect-specific ELOVL clusters “ELOVL X clades,” which related to both the

ELOVL 1/7 and ELOVL 4 clades (Fig 16). This clade includes two ELOVL genes of the fruit

fly: elongase F (CG16905) and james bond (CG6921), which are also involved in sex phero-

mone production, viability, and sperm development [131].

Conclusions

Here we report the first comprehensive analysis of the fat body transcriptome of P. utilis using

Illumina sequencing technology. We assembled the raw reads into 30,559 unigenes with an

average length of 539 bp. Among these unigenes, 21,439, 13,657, 12,188, 12,405, 12,925, 13,149

and 9,354 unigenes matched to Nr, Nt, SwissProt, KEGG, KOG, InterPro and GO databases,

respectively. A number of unigenes that are associated with detoxification (P450s, GSTs, CarEs

and ABC transporters), immunity (serpin, PGRPs and lysozymes) and energy metabolism

(lipase, FAS and ELOVL) were identified from the annotated unigenes. Specific information

of these unigenes identified in this study is shown in S2–S12 Tables. In addition, the fat body-

specific transcriptome analysis generated a great deal of unigenes newly identified in P. utilis,
which provided a major genomic resource for investigating the fat body of P. utilis and laid the

foundation for future functional genomics studies.

Fig 14. Neighbor-joining phylogenetic analysis of lipases genes from the P. utilis fat body (●) and other insects.

Numbers at each branch node represent bootstrap values.

https://doi.org/10.1371/journal.pone.0226039.g014

Fig 15. Gene identification of P.utilis FASs. Numbers at each branch node represent bootstrap values.

https://doi.org/10.1371/journal.pone.0226039.g015
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Supporting information

S1 Table. Distribution of simple sequence repeat (SSR) types found in the Procecidochares
utilis transcriptome unigenes.

(XLSX)

S2 Table. Unigene sequences for cytochrome oxidase P450s identified in the Procecido-
chares utilis transcriptome.

(XLSX)

Fig 16. Neighbor-joining phylogenetic analysis of ELOVL genes from the P. utilis fat body(●) and other insects. Numbers at each

branch node represent bootstrap values.

https://doi.org/10.1371/journal.pone.0226039.g016
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(XLSX)
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S8 Table. Unigene sequences for peptidoglycan recognition proteins identified in the Pro-
cecidochares utilis transcriptome.

(XLSX)
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89. Aittomäki S, Valanne S, Lehtinen T, Matikainen S, Nyman TA, Rämet M, et al. Proprotein convertase
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