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Abstract: Smartphones can be used to collect granular behavioral data unobtrusively, over long time
periods, in real-world settings. To detect aberrant behaviors in large volumes of passively collected
smartphone data, we propose an online anomaly detection method using Hotelling’s T-squared test.
The test statistic in our method was a weighted average, with more weight on the between-individual
component when the amount of data available for the individual was limited and more weight on
the within-individual component when the data were adequate. The algorithm took only an O(1)
runtime in each update, and the required memory usage was fixed after a pre-specified number of
updates. The performance of the proposed method, in terms of accuracy, sensitivity, and specificity,
was consistently better than or equal to the offline method that it was built upon, depending on the
sample size of the individual data. Future applications of our method include early detection of
surgical complications during recovery and the possible prevention of the relapse of patients with
serious mental illness.

Keywords: online learning; anomaly detection; Hotelling’s T-squared test; digital phenotyping

1. Introduction

Digital phenotyping has been defined as “the moment-by-moment quantification of
the individual-level human phenotype in situ using data from personal digital devices,”
in particular smartphones [1]. Passively collected smartphone behavioral data [2] consist
of data from sensors, such as the built-in Global Positioning System (GPS) and accelerom-
eter, as well as phone usage data, such as communication logs and screen activity logs.
Anomalies in such multivariate time series (MTS) have been shown to be predictive of
relapse for patients with schizophrenia [3,4] and depressive symptoms for women at risk
of perinatal depression [5]. Barnett et al. [3] proposed an unsupervised semi-parametric
anomaly detection method that is robust against mis-specification of the distribution of
a time series. The method was applied to a passively collected smartphone behavioral
dataset to detect an escalation of symptoms or signs of a potential relapse. The method
decomposes the observed MTS into a general trend, a periodic component, and an error
component for each dimension. The error components are then used to build Hotelling’s
T-squared test statistic and identify anomalies. Henson et al. [6] applied the method to
predict relapse in schizophrenia and achieved 89% sensitivity and 75% specificity in a
cohort of 126 participants followed for 3–12 mo.

There are two main limitations to the method described by Barnett et al. [3]. First, the
offline algorithm is used mainly to identify anomalous behaviors in a one-time retrospective
analysis, where computational performance is not critical. If, however, the goal is to carry
out anomaly detection as data are being collected over time (and possibly even in real time)
rather than at the end of a data collection period, the method needs to scale to large cohorts
of individuals followed for months or years. Second, the offline method uses only within-
individual comparisons to overcome the heterogeneity of the data and requires at least two
weeks of data to establish the individual baseline for comparisons. This approach is not
ideal for anomaly detection in many health-related settings, from surgery to rehabilitation,
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in which the time period immediately following patient discharge is high risk for adverse
events. Forster et al. [7] found that nearly 20% of patients experience adverse events within
three weeks of discharge. Meta-analyses of suicide rates after discharge from psychiatric
facilities suggest that these rates remain high for several years, but are particularly high
in the first few weeks and months post-discharge [8–10]. Given that this time period is
most likely to incur anomalies, methods should perform well during this period. Last but
not least, since the primary goal of smartphone-based digital phenotyping is to passively
monitor health, there are no labels available from surveys or other sources of active data.

Recent research on unsupervised online anomaly detection mainly focuses on im-
proving accuracy using a customized neural network or a clustering method designed
for a specific scenario. Hsieh et al. [11] proposed an algorithm using a long short-term
memory (LSTM)-based autoencoder for smart manufacturing; Aminanto et al. [12] used the
isolation forest method to solve the threat-alert fatigue problem; Yu et al. [13] proposed an
algorithm called DDCOL, a density-based clustering method to detect anomalies in various
key performance indicators for IT companies; Karaahmetoglu et al. [14] combined LSTM
networks with a support vector data descriptor to process irregularly sampled sequences;
Hwang et al. [15] presented an anomaly traffic detection mechanism, D-PACK, which
consists of a convolutional neural network and an autoencoder for auto-profiling the traffic
patterns and filtering abnormal traffic. Jones et al. [16] applied an adaptive resonance
theory artificial neural network to identify cyberattacks on Internet-connected photovoltaic
system inverters; Scaranti et al. [17] developed an intrusion detection system based on
online clustering to detect attacks in an evolving network.

Our goal was to develop a lightweight, unsupervised online anomaly detection
method for passively collected smartphone behavioral multivariate time series data. We
specifically looked for a method that had low computational complexity and the ability
to detect anomalies after minimal training. To realize these goals, we took a different
approach from the research summarized above, and instead, we revisited the method of
Barnett et al., which has already proven effective in detecting anomalies in smartphone
behavioral data [3,6]. We review the method of Barnett et al. in Section 2.1, describe our
new method in Section 2.2, illustrate our method using simulated and real data in Section 3,
and discuss our method in Section 4.

2. Materials and Methods
2.1. Offline Anomaly Detection Method

In their offline method, Barnett et al. [3] first defined the expected behavior for each
individual by decomposing the observed MTS of p features into an overall trend, a weekly
component, and an error component for each dimension. For a given individual, let mi
be the number of days of follow-up where feature i is observed. Let yij = µij + sij + εij
be the value of the ith feature on day j of follow-up, where εij is the error component and
µij is the trend component estimated from a weighted average of the previous observed
feature values yi,j−1, yi,j−2, . . ., with more weight given to observations closer in time.
These weights are specified as a t-distribution with two degrees of freedom and scaling
parameter 10/ max mi. The weekly component sij is estimated to minimize the square
error under the restriction sij = si,j−7. After estimating the decomposition of the time
series as µ̂ij, ŝij, ε̂ij, the authors transformed the errors ε̂ij non-parametrically into Z-scores
by sorting the errors by rank across all days of follow-up for that feature, followed by a
standard normal transformation using the probability integral transform. Mathematically,

the transformed error ε̃ij can be expressed as ε̃ij = Φ−1
(

rank(ε̂ij)
mi+1

)
, with ε̃j = [ε̃1j, . . . , ε̃pj]

T

denoting the vector of transformed errors on day j and ε̃∗k = [ε̃k1, . . . , ε̃k,mi
]T denoting the

vector of transformed errors of feature k. The covariance between the transformed errors of
feature i and feature k is defined as Σik = cov(ε̃∗i , ε̃∗k ), which is estimated empirically across
all days where both are observed. Hotelling’s T-squared test statistic was constructed

as Qj = ε̃T
j Σ−1ε̃j, where Qj

p−→χ2
p under the null hypothesis that the observation is not

anomalous on day j. To correct for multiple comparisons, the method bootstraps the error
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components of the time series assuming stationarity to generate the null distribution for
the largest test statistic across all days of follow-up, and the α-quantile of the bootstrapped
values provides the threshold for significance at the α significance level.

The offline method was designed for retrospective analyses in studies with no inter-
vention component, where detecting anomalies at the end of data collection is sufficient
and computational performance is not critical. Notably, there are four steps to the offline
algorithm with linear or super-linear computational complexity: (1) calculating the general
trend using the weighted average of all historical observations, (2) estimating the periodic
term sij through linear regressions, (3) sorting the errors of each feature, and (4) computing
the empirical covariance matrix of the transformed errors. The value of anomaly detection
lies in the ability to detect anomalies and act on them in as close to real time as possible.
Although the offline method described above could be applied repeatedly, this would be
computationally very expensive. The method also needs at least two weeks of data to estab-
lish baselines for a given individual; yet in practice, these first two weeks of collected data
may be the most likely to have anomalies that need to be acted upon, for example if they
coincide with patient discharge from a facility, as discussed above. These considerations
motivated our online anomaly detection method, presented in the next section.

2.2. Online Anomaly Detection Method

In this section, we address the different components of our method separately.

2.2.1. Updating the General Trend and Periodic Terms

Estimation of both periodic and non-periodic trends requires assigning weights to
past observations. Even though a t-distribution with two degrees of freedom of the offline
method has thick tails, the weights for observations far away from the current observation
become negligible when mi is large. Instead of using all historical data to compute the aver-
age, we propose to use a subset of K most recent observations to reduce both computational
time and memory use. The periodic term in the original method was estimated through
linear regression, where the effect size of each day of the week is expressed as the mean
observed residual on that day of the week. Here, we used sample means instead of linear
regressions to estimate the periodic terms. The new estimates are identical to those from
linear regression, but given that we used the classic online approach [18] to calculate the
mean, the computational complexity was O(1), and it used less memory, as only a running
sum and the number of observations need to be stored.

2.2.2. Sorting the Errors

Our proposed online algorithm requires the ranks of the errors within each feature in
each update. The values of the errors are not fixed over time, but change periodically, which
makes the online sorting procedure a non-trivial problem. For example, if a data point on
the Wednesday of the third week is observed, then the periodic term for Wednesdays is
updated and the current error is computed. Assuming the new estimate of the periodic
term is larger than the previous estimate by δ, the values of the errors for the first and
second Wednesday should both be decreased by δ in this update, given the decomposition
yij = µij + sij + εij. Furthermore, given that µij is fixed once estimated, the rank of the
current error cannot be obtained by locating the index of the previously sorted error.
Rather than sorting the data from scratch in each update as in the offline method, we took
advantage of the trackable changes in the errors estimated by sample means and propose a
binning method that obtains approximate ranks of both the current error and all previous
errors by examining the quantiles of the empirical distribution of all errors.

We illustrate this idea assuming a weekly period. For each feature, we initialized a
histogram for the errors for each day of the week with H bins using the first M observations.
The bin width w for each feature was determined by the corresponding maximum and

minimum values w = R(max{S}−min{S})
H , where S =

{
yk|k = 1, 2, . . . , M

}
, yk is the feature

value on day k and R(> 1) is a hyperparameter that controls the range that the histogram
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can cover on the flanks of the observed range for unobserved future values. The locations of
the bins for each feature are lined up across the seven days of the week. When we applied
the method and observed a new value yn on day j of the week after M days, we first
updated the estimate of sj using the sample mean, then calculated the difference between
the new and old estimates δj = sj,n − sj,n−1 and the new error εn = yn − µn − sj,n. If the
difference δj was positive, the values of all previous errors on day j of the week decreased
by |δj|, which caused the corresponding histogram of the errors to shift b|δj|/wje bins to
the left, where be denotes rounding to the nearest integer. If the difference was negative, we
shifted the histogram to the right. We then located the bin of the new error εn and updated
the histogram again by adding one to the count of observations in that bin. Finally, we
aggregated all histograms for the seven days of the week and summed up the count in each
bin to obtain a final histogram of all errors. We located the percentile of the new error εn
by dividing the sum of counts, starting from the leftmost bin and proceeding to the right,
until we obtained a bin for which εn fell within the total sum. We converted the percentile
to a normal random variable using the inverse standard normal cumulative distribution
function. The number of bins H determines the precision of this method; empirically,
H = 100 appeared to achieve good performance.

2.2.3. Updating the Covariance Matrix

The classic online approach for updating the covariance matrix is to decompose the
new covariance matrix as a weighted sum of the old covariance matrix and an outer product
of the new error vector ε̃n, which can be expressed as Σ̂n = n−1

n Σ̂n−1 +
1
n ε̃n ε̃T

n , where Σj
denotes the covariance matrix after the jth update. However, in our setting, because the
values of all previous ε̃ change when a new data point is observed, we could not apply the
method directly to our problem. Note that each element in ε̃ is obtained by the standard
normal transformation; thus, ε̃ is a multivariate normal random vector with a variance of
each dimension 1 by the Cramér–Wold device, and the covariance matrix of ε̃ is essentially
a correlation matrix. Motivated by this observation, we propose an approximation whereby
we re-scaled the covariance matrix obtained by the classic approach to a correlation matrix
after each update. This was accomplished by multiplying the inverse diagonal matrix filled
by the standard deviation of each dimension in the front and at the end of the covariance
matrix, which can be expressed as corr = D−1ΣD−1, where D =

√
diag(Σ).

Thus far, every step in the offline method was modified to an online algorithm, sum-
marized as follows. Given a new observation, we decomposed it as described above and
computed the test statistic using the histograms and covariance matrix from the previous
update. If the corresponding p-value was smaller than the threshold, we sampled a dummy
variable I from Bernoulli(p). If I = 0, we classified the current observation as an anomaly;
otherwise, we considered it normal and updated the histogram and covariance matrix.

2.2.4. Incorporating the Between-Individual Comparison

Under the assumption of weekly periodicity, the method proposed by Barnett et al. [3]
uses only within-individual comparisons, and thus requires at least two weeks of data
from each individual to detect anomalies. For clinical applications, anomaly detection is
most helpful during periods of time when anomalies are most likely to occur, for example
following some intervention, such as surgery or rehabilitation. The risk of adverse events
or relapse is usually highest soon after the intervention, which is also the time period when
there may be little to no data collected from the individual. To address this limitation,
our method borrows information from other individuals so that it can identify anomalies
starting from the first day of follow-up. Though passive behavioral data exhibit a high
level of heterogeneity among individuals, a cohort-level baseline is still an acceptable
benchmark to start with if little to no information about a given individual is available.
Similar to the method described in Section 2.2, we constructed a cohort-level histogram of
the original feature values for each feature and each day of the week, and the percentile
of each observation in the cohort was used to derive the chi-squared test statistic. The
histograms were updated by simply adding the count of new observations in each bin;
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no shifting or other manipulations were needed. Let Qb denote the test statistic derived
from cohort-level (between-individual) percentiles and Qw denote the test statistic derived
from within-individual percentiles. We propose a weighted average of the two, namely

Q = wQb + (1− w)Qw, as the final test statistic, where Q
p−→ χ2

p since Qb is asymptotically
independent of Qw in the number of individuals. The value of w should be one in the first
two weeks, and it should vanish gradually as more data become available for the individual.
In addition, we suggest the use of a dynamic significance level to identify anomalies in
practice. For example, we could set α = 0.1 for the first month and decrease it gradually
to 0.05 over time. The trajectories of both w and α should be tailored for specific settings
and should depend on the relative likelihood of early vs. late anomalies (e.g., adverse
events, relapse).

2.2.5. Software Implementation

Our group developed the open-source Beiwe data collection platform for smartphone-
based digital phenotyping, with continuous development and use since 2013 [19]. We also
recently released Forest, an open-source Python data analysis library for Beiwe data. Forest
can be run independently of Beiwe, but the primary use case is for the two tools to be
fully integrated directly on the Amazon Web Services (AWS) back-end. Cloud-based data
analysis obviates the need to move large volumes of data and allows the implementation
of the preferred big data computing paradigm where computation is taken to data rather
than vice versa. It also makes the system more readily compliant with regional data
privacy regulations, such as the General Data Protection Regulation 2016/679 (GDPR) in
the European Union law that protects data and privacy in the European Union and the
European Economic Area [20].

We implemented the proposed online anomaly detection method as a module within
Forest. Thus, in addition to running the method using existing data, interested readers can
collect their own data using Beiwe and then run the online anomaly detection algorithm as
part of Forest on a daily basis. Results can be stored in a database in the AWS back-end,
and the open-source implementation provides an API for using Tableau or similar software
to visualize the results. The Forest module that implements the method as described in this
paper is called Banyan [21]. It consists of eight user-configurable parameters, including the
period of the data, the number of bins in the histogram, and the significance level.

3. Results
3.1. Simulation with Synthetic Data

The test statistic in our online method consists of a within-individual component as
the counterpart of the test statistic in the Barnett et al. method [3] and a between-individual
component. We studied two important aspects of the method. First, we compared the
within-individual component of the online test statistic with the offline test statistic. Second,
we compared the performance of the online method with the weighted test statistic and the
offline method. The logic is displayed in the flowchart in Figure 1. Our findings showed
that the value of the within-individual component of the test statistic approximates the
offline test statistic, but is faster to compute. Our proposed method of using the weighted
average of both components worked well in the first two weeks of data collection, and its
performance in terms of sensitivity and specificity converged to the offline method when
the follow-up period was long enough.

3.1.1. Comparison of the within-Individual Component of the Online Test Statistic and the
Offline Test Statistic

The within-individual component was derived using a two-step online algorithm,
where we first obtained the rank-based transformed errors from the observed features and
then updated the covariance matrix using these errors. We examined (1) the difference be-
tween the ranks given the same observed features, (2) the difference between the covariance
matrices given the same transformed errors, and (3) the difference between the test statistics
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given the same observed features for the two methods. We generated the observed features
using the decomposition yij = µij + sij + εij, where µij = 0, sij ∼ N(0, 2), sij = sij+7. The
error term εj = [ε1j, . . . , εpj] was generated in three different ways: (1) a standard multivari-
ate normal distribution, (2) p independent gamma distributions with α = 2, β = 0.5, and
(3) a multivariate normal distribution with a correlation of 0.7 between any two features.
The number of features was set to 20, 40, and 80, and the number of bins in the histogram
was set to 50, 100, and 500. The data generation procedure was repeated ten times, and the
results shown below are the averages of the replicates.

Figure 1. A flowchart of the simulation study described in Section 3.1.

Comparison of Ranks

In each scenario, the ranks of the errors from our online algorithm were obtained by
updating the histograms as described above, whereas the ranks from the offline method
were derived by sorting errors from scratch in each update. We initialized the histograms
using the first 100 observations and compared the ranks of the two methods starting from
Observation 101. We computed the average absolute difference, the average absolute
difference divided by the sample size, and the Spearman correlation between the two
sets of ranks using the most recent 50 observations in each update. Since the ranking
procedure happens within each feature, we only studied how the number of bins affected
the correlation using independent normal errors. As shown in Figure 2, the absolute
difference between the two sets of ranks increased as the sample size increased. This
happened because ranks that were close to one another ended up in the same bin. However,
when we divided the absolute difference by the sample size, we found that the ratio
converged to the reciprocal of the number of bins. This means the expected deviation in
ranks was 1/H of the sample size. The Spearman correlation was consistently above 99.5%
in all three scenarios, and the correlation was greater for more granular histograms (those
with a greater value of H).

0 500 1000 1500 2000 2500 3000
sample size

0

10

20

30

40

50

60

Absolute difference in ranks
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500 bins
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Figure 2. A comparison of the ranks obtained by sorting from scratch and using the online histogram
method. The left panel shows the average absolute difference between the two sets of ranks using
the most recent 50 observations in each update averaged over five replications. The middle panel
shows the average absolute difference over the sample size, and the right panel shows the Spearman
correlation in the same setting.
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Comparison between Covariance Matrices

As the covariance matrix depends on the transformed errors and those errors are
different between our online method and the offline method, for the purposes of this
simulation, we used the errors from the offline method to examine the performance of the
modified covariance updating algorithm for both methods. In our method, the covariance
matrix was updated as described in Section 2.2.3, while in the offline method, it was
estimated empirically from scratch in each update. We investigated the Frobenius norm of
the difference of the two matrices using simulated data with different numbers of features.
As presented in the upper panel in Figure 3, the Frobenius norm of the difference was
small, but grew with the number of updates. After sufficiently many updates, the norm
converged. The norm of the difference was larger when the number of features was larger
due to the higher dimensionality of the difference matrix.
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sample size
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0.5

0.6

0.7 offline, 20 features
offline, 40 features
offline, 80 features
online, 20 features
online, 40 features
online, 80 features

Figure 3. The upper panel shows the Frobenius norm of the difference between the covariance
matrices obtained from the empirical estimation and our proposed online algorithm in each update
averaged over five replications. The transformed errors were taken from the offline method and used
in both methods to calculate the covariance matrices. The lower panel is a comparison of the runtime
between the offline method and our proposed online method as the sample size increases from 100
to 3000. The runtime in each update was measured in seconds with an Intel® Xeon® CPU E5-2697
v3 @ 2.60GHz CPU. Since the difference in time caused by different numbers of bins and different
distributions of errors are too small to be seen on the graph, an average line is used to represent all
the scenarios given the method and the number of features.

Comparison of the Test Statistics

We evaluated our two-step algorithm to compute the within-individual test statistic
and focused on the distribution of the test statistic. The same features were used for both
algorithms, and the corresponding computation time and test statistics were compared
in various scenarios. The lower panel in Figure 3 shows that the runtime of each update
increased linearly as the sample size grew for the offline method and was greater than that
of our proposed method even when the sample size was small. The runtime of our method
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also increased linearly, but more slowly in the first 900 updates; it then became constant
because we chose K = 1000 (the size of the subset in Section 2.2.1) as the maximal number
of historical values in memory to determine the general trend in this example. Additionally,
the runtime was positively associated with the number of features. Since the difference in
runtime caused by different numbers of bins and different error distributions are too small
to be seen on the graph, an average line is used to represent each scenario.

Figure 4 shows the Spearman correlation between the test statistics from the offline
method and our proposed method using the most recent 50 updates in each update. In the
scenarios where the errors were generated from independent or correlated multivariate
normal distributions, the correlations were consistently higher than 0.95 after the first 200
updates; increasing the number of bins resulted in higher correlations and lower variances.
In scenarios where the errors were generated from independent Gamma distributions, the
correlations between the two sets of test statistics fell to 0.9 and stabilized after 2000 updates.
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Figure 4. Spearman correlations between the test statistics obtained from the offline method and our
proposed online method using the most recent 50 updates in each update. Each row represents a
different number of features; each column represents a different distribution of the error terms; each
color represents a different number of bins in the histogram method.

Figure 5 depicts the distributions of the test statistics from various methods compared
to a standard χ2 distribution with a degree of freedom specified as the number of features.
The density plots of the test statistics from the offline method and our method coincided
when the errors were normally distributed. However, when the errors followed a Gamma
distribution, the mean of the test statistics from our method was smaller than the mean
from the offline method and the mean of the asymptotic distribution. The absolute value of
the difference was positively associated with the number of features.
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3.1.2. Comparison of the Performance of the Online Method with the Weighted Test
Statistic and the Offline Method

To simulate anomalies in the features, we generated an MTS using the sine function

with different scale (aj) and phase (bj) parameters, namely T(tij) = aj sin
( tij

c + bj

)
, where

T is an intermediate variable used later to generate the observed features, i denotes the ith
observation, j denotes the jth feature, and c is a parameter that fixes the periodicity of the
function to seven days. Next, we let yi1 = T(ti1) and yij = p1T(ti,j−1) + p2T(tij) with j > 1
and p1 + p2 = 1 to induce correlations in the features. Gaussian noise (with zero mean
and unit standard deviation) was added to each feature of the original MTS to increase the
difficulty of detecting the anomalies and make the data more realistic. To generate artificial
anomalies, we randomly selected m% of the sample, then for each observation, we again
randomly selected [30%,70%] of the features and altered their magnitudes by multiplying
them by a uniformly distributed random variable u ∼ U[0, 3]. We replicated the procedure
100 times to generate the observed features for 100 individuals. In each replication, we set
the number of features to 10 and the number of observations to 540.

0 10 20 30 40 50 60
0.00

0.02

0.04

0.06

20 features with independent normal errors
Asymptotic
offline
50 bins
100 bins
500 bins

0 10 20 30 40 50 60
0.00

0.02

0.04

0.06

20 features with independent Gamma errors

0 10 20 30 40 50 60
0.00

0.02

0.04

0.06

20 features with correlated normal errors

20 40 60 80
0.00

0.01

0.02

0.03

0.04

0.05
40 features with independent normal errors

20 40 60 80
0.00

0.01

0.02

0.03

0.04

0.05
40 features with independent Gamma errors

20 40 60 80
0.00

0.01

0.02

0.03

0.04

40 features with correlated normal errors

40 60 80 100 120 140
0.00

0.01

0.02

0.03

80 features with independent normal errors

40 60 80 100 120 140
0.00

0.01

0.02

0.03

80 features with independent Gamma errors

20 40 60 80 100 120 140
0.000

0.005

0.010

0.015

0.020

0.025

0.030

80 features with correlated normal errors

Figure 5. Empirical distributions of the test statistics obtained from the offline method and our
proposed online method, compared to a standard χ2 distribution with a degree of freedom equal to
the number of features. Each row represents a different number of features; each column represents a
different distribution of error terms; each color represents a different method.

In one simulation, we set the anomaly rate to zero and the significance level to 0.05 to
study the type I error of the online method. Figure 6a shows that the online method had an
initially inflated false positive rate, which then decreased to the nominal level after about
100 updates. In another simulation, we set the anomaly rate to 0.05 and the significance
level to 0.05. In the online method, the weight of the within-individual component was
zero for the first four weeks, increased linearly to one on Day 112, and remained at one
afterward. The accuracy, sensitivity, and specificity were calculated after each update
and are presented in Figure 6b–d. The online method was able to detect the anomalies in
the first 14 d with a corresponding average accuracy, sensitivity, and specificity of 91.2%,
50.4%, and 93.3%, respectively. From Day 15 to Day 112, the online method had a higher
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sensitivity, but slightly lower specificity. From Day 112 on, the online method only used
the within-individual component, and its performance was similar to that of the offline
method. Note that, as expected, the runtime of the online method was much faster, as
shown in Figure 3.

Figure 6. The average false positive rate, accuracy, sensitivity, and specificity of the proposed online
method for 540 d across 100 synthetic datasets of 100 individuals. The underlying anomaly rate is 0
for studying the type I error, and the underlying anomaly rate is 0.05 for studying other metrics. The
significance level is 0.05.

3.2. Simulation with Pseudo-Data

Panda et al. [22] conducted a study to collect raw smartphone accelerometer data
continuously for six months from adults who had a cancer diagnosis and were scheduled
for surgery between July 2017 and April 2019. The study was designed to discover if
smartphones could capture novel postoperative recovery metrics among the patients. Most
patients (45, 73%) experienced no clinically significant postoperative events, and those who
experienced such an event did not report the exact date of when they started to feel unwell.
Since there was no reliable ground-truth available for the timing of these types of anomalies,
we instead chose to create artificial anomalies for patients who did not experience any.
We constructed a dataset by first calculating the mean of each metric µ for each of the 45
individuals who did not report an anomaly. We then calculated the individual-specific
residuals ε, a difference vector of the actual observation, and the mean vector for each day.
To create a dataset of pseudo-observations with K days of follow-up, we bootstrapped the
errors K times and added them to the mean vector. To create anomalies, in the bootstrapping
step, we randomly sampled 5%× K of the residuals and multiplied them by an inflation
factor z, where z ∈ {1, 2, 3, 4}. In other words, for each day, the pseudo-observation was
generated as µ + zε. When z = 1, the dataset did not have any anomalies, and we expected
our method to recover the nominal false positive rate. We repeated the procedure 50 times
and calculated the average accuracy, sensitivity, and specificity every 30 d with various z
values across the 45 individuals. As shown in Table 1, our online method achieved nominal
sensitivity when z = 1. When z > 1, the sensitivity increased as the sample size increased
and then plateaued to a stable level. As expected, the sensitivity was higher for greater
values of z. The corresponding accuracy is listed in Table 2.
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Table 1. The sensitivity of the online method to detect an artificial anomaly at different stages of
follow-up among 45 patients over 50 repetitions with an anomaly rate of 0.05. For each day, the
data are generated by µ + zε, where µ is the mean feature vector, ε is the individual-specific residual
generated by bootstrapping empirical residuals, and z controls the severity of the anomaly.

z\Day 1–30 31–60 61–90 91–120 121–150 151–180

1 0.0566 0.0547 0.0514 0.0501 0.0492 0.0490

2 0.3765 0.4204 0.4143 0.4305 0.4254 0.4352

3 0.4505 0.4949 0.4849 0.4858 0.4915 0.4986

4 0.4558 0.5079 0.5071 0.5216 0.5355 0.5393

Table 2. The accuracy of the online method to detect an artificial anomaly, where the accuracy is
defined as the rate of a correct classification.

z\Day 1–30 31–60 61–90 91–120 121–150 151–180

1 0.8916 0.8945 0.9016 0.9007 0.8998 0.9023

2 0.9405 0.9446 0.9482 0.9489 0.9485 0.9451

3 0.9482 0.9533 0.9556 0.9577 0.9586 0.9589

4 0.9490 0.9551 0.9586 0.9609 0.9646 0.9648

4. Discussion and Conclusions

Smartphones are promising tools for detecting behavioral anomalies given the ubiquity
of the devices and the feasibility of using them for long-term follow-up, especially if
relying on passively collected data. Our online anomaly detection method is simple, and it
performed well in the studied setting. We believe that its transparency and interpretability
are important strengths in future research and clinical applications.

The proposed online anomaly detection algorithm is a natural extension of the offline
method proposed by Barnett et al. [3], and the computational complexity of each update in
the method was O(1). The method requires a minimal training dataset and is able detect
anomalies starting from the first day, which is particularly important in health studies. In
addition, our method can leverage information from other individuals, which is another
improvement over the offline method. The performance of the two methods is similar in
terms of accuracy, sensitivity, and specificity when the number of observations for each
individual is sufficiently large. The online method has also been implemented as a Python
package in the Forest library [19].

The proposed method has some limitations. First, the errors derived by the decompo-
sition may not reflect the extent to which the observation is anomalous if the feature is not
self-predictive or the pattern is too complex to be approximated by a general trend and a
periodic term. Second, the approach requires some expertise from the user to determine a
reasonable period for transitioning from cohort-level data to individual-level data. Third,
the test statistic is essentially a Mahalanobis distance, which measures the distance between
the current observation and the median. It standardizes all features such that they have
equal weights in the test statistic. However, some features may be more informative than
others, and the current method does not provide a way for determining this possibility.
Fourth, the distribution of the test statistic is asymptotically a Chi-squared distribution;
however, in practice, the empirical distribution is more concentrated around the mode, and
sometimes, the mode can even shift away from the expected value, as we saw with the
Gamma distributed errors. This behavior results from approximating the true percentiles
using a histogram, a non-continuous grid. Hence, the p-value derived from the asymptotic
distribution may not be accurate. However, in general, the method is robust against the
mis-specification of the distribution since it is rank based. Fifth, the anomalies are deter-
mined by a user-specified threshold, the significance level, rather than an estimate of the
underlying anomaly rate. Thus, when the true anomaly rate is very small, the method is
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expected to have a large false positive rate. Finally, in our simulation studies, the estimated
mean of the various daily features included data from the anomalous periods. Ideally, when
estimating the mean, one should use data from healthy controls only or exclude anomalous
time periods from those subjects who experience anomalies. The main challenge with this
approach is that it would require knowledge of the existence and timing of the anomalies
beforehand, whereas the goal of the method is to detect those anomalies. In practice, the
bias in the estimated mean caused by the inclusion of anomalous time periods is very small
because anomalies are rare. Furthermore, the inclusion of anomalies in estimating the mean
has the effect of reducing the size of the resampled residuals, thus biasing the test towards
the null, i.e., making it slightly more conservative.
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