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Citizen-science reveals changes in the oral microbiome in Spain
through age and lifestyle factors
Jesse R. Willis1,2,3, Ester Saus 1,2,3, Susana Iraola-Guzmán 1,2,3, Ewa Ksiezopolska1,2,3, Luca Cozzuto1,4, Luis A. Bejarano1,
Nuria Andreu-Somavilla 1,4, Miriam Alloza-Trabado1,4, Andrea Blanco1, Anna Puig-Sola1,4, Elisabetta Broglio1,4, Carlo Carolis1,4,
Julia Ponomarenko1,4, Jochen Hecht1,4 and Toni Gabaldón 1,2,3,4,5,6✉

The relevance of the human oral microbiome to our understanding of human health has grown in recent years as microbiome
studies continue to develop. Given the links of the oral cavity with the digestive, respiratory and circulatory systems, the
composition of the oral microbiome is relevant beyond just oral health, impacting systemic processes across the body. However, we
still have a very limited understanding about intrinsic and extrinsic factors that shape the composition of the healthy oral
microbiome. Here, we followed a citizen-science approach to assess the relative impact on the oral microbiome of selected
biological, social, and lifestyle factors in 1648 Spanish individuals. We found that the oral microbiome changes across age, with
middle ages showing a more homogeneous composition, and older ages showing more diverse microbiomes with increased
representation of typically low abundance taxa. By measuring differences within and between groups of individuals sharing a given
parameter, we were able to assess the relative impact of different factors in driving specific microbial compositions. Chronic health
disorders present in the analyzed population were the most impactful factors, followed by smoking and the presence of yeasts in
the oral cavity. Finally, we corroborate findings in the literature that relatives tend to have more similar oral microbiomes, and show
for the first time a similar effect for classmates. Multiple intrinsic and extrinsic factors jointly shape the oral microbiome.
Comparative analysis of metabarcoding data from a large sample set allows us to disentangle the individual effects.
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INTRODUCTION
The oral cavity is inhabited by an abundant and diverse microbial
community, the oral microbiome, which has been related to
processes relevant for health and disease1. The mouth is highly
vascularized2, and is an entry point to the respiratory and
digestive systems. As a result, changes in the composition of the
oral microbiome can reflect and/or influence systemic changes
across the human body, and as such it has an important
diagnostic and therapeutic potential. A multitude of factors, both
intrinsic (e.g., pH, immune system, chronic disorders) and extrinsic
(e.g., lifestyle, diet), have the potential to shape the oral
microbiome, but these are as yet only poorly understood.
Increasing our knowledge on how these factors alter the oral
microbiome is important for unveiling the specific roles that
certain oral microbes play in disease processes, which in turn may
pave the way for the development of innovative microbiome-
based diagnostic and therapeutic approaches.
Most studies on the oral microbiome have focused on

delineating its changes in the context of common oral diseases
such as periodontitis, gingivitis, or dental caries3,4. In recent years,
however, the relationships of the oral microbiome with systemic
diseases or chronic disorders have received growing attention.
These include, among others, different cancer types5,6, cardiovas-
cular diseases7,8, diabetes9, celiac disease10–12, Down Syndrome
(DS)13, or cystic fibrosis (CF)14. Thanks to these studies, we are
beginning to understand how oral or systemic disorders relate to
changes in the composition of the oral microbiome. However, given

the strong focus on disease, we still lack a sufficient understanding
of non-disease parameters that shape the healthy oral microbiome.
These intrinsic (host biology) or extrinsic (environment, lifestyle)
factors are pervasive and likely influence not only the overall
composition of the oral microbial ecosystem, but also how it will
respond in the context of disease, perhaps predisposing one to
either relative dysbiosis or resilience.
A relevant intrinsic factor that has been poorly studied in

relation to the oral microbiome is age. To our knowledge, there
are no studies using high throughput sequencing techniques
which focus specifically on the effects of aging on the oral
microbiome in a state of relative health and which include a
representative spectrum of ages. Recent reviews that have
explored aging largely highlight the tendency toward increased
periodontitis and dental caries, but they rely primarily on studies
using culture-based identification techniques in regards to
alterations in particular taxa15–17. Some studies which have
compared age groups have some limitations, such as narrow
age ranges or a focus on age only in the context of particular
diseases15,18–20. Nonetheless, there are conjectures throughout
the literature in reference to the oral microbiome’s role in, and
impact from, the physiological changes that occur during the
human aging process. Perhaps most notable is the chronic low-
grade systemic inflammation sometimes called “inflammaging”,
which coincides with immunosenescence, wherein the adaptive
immune system declines and the efficiency of innate immunity
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diminishes with age17,21. Thus, further investigation into the
connections between age and the oral microbiome is warranted.
Lifestyle and hygiene are perhaps the most studied extrinsic

factors with respect to changes in the oral microbiome22,23.
Smoking24–27, wearing braces28–31, and the composition of
drinking water28,32 are factors that have been shown to drive
particular changes in the oral microbiota. Extrinsic variables like
these impact the oral microbial composition, and in fact, multiple
studies have demonstrated that lifestyle, social structures, and
shared environments are generally more significant than intrinsic
factors like the human hosts’ genetics. Family members have
been shown to display more similar microbiome compositions to
each other than to non-family members, while there was not a
greater similarity amongst monozygotic twins than amongst
dizygotic twins20,33–36.
Bacteria have received most of the attention in microbiome

studies, but other organisms like fungi are also important
components. In the oral cavity, species like Candida albicans have
been implicated in dental caries37, wherein it can adhere to the
biofilms of the bacterial species Streptococcus mutans and both
can act to demineralize tooth enamel38,39. One study showed two
distinct mycotypes (clusters of samples based on the fungal
composition), with one being dominated by Candida species, and
the other with higher fungal diversity and Malassezia as the main
genus40. This and another study41 distinguished associations with
bacterial taxa in Candida-dominated versus other samples, though
those results do not seem to coincide entirely. The interactions
between bacteria and fungi are an interesting aspect of the oral
microbiome that deserves greater attention.

Here, we have taken advantage of the second edition of a large-
scale citizen science-based project called “Saca La Lengua” (SLL2 -
“Stick Out Your Tongue” in English)28,42 to explore the effects of
some of these factors in the oral microbiome. Citizen science has
been defined by the European Citizen Science association as “an
approach that actively involves citizens in scientific endeavor that
generates new knowledge or understanding”43. Contrary to
disease-focused studies, studies on the overall population enabled
by citizen-science provide a unique opportunity to infer the
effects of commonly present factors. The dataset comprises 1648
oral rinse samples taken from locations across Spain, representing
a broad and balanced range of ages. A subset of the samples were
from individuals with chronic disorders that are relevant to the
physiology of the oral cavity, and all participants filled out a
comprehensive survey with questions about lifestyle, diet, and
hygiene habits. We coupled this information with 16 S rRNA
metabarcoding, as well as culture and proteomics-based identi-
fication of fungi to study some of the influences on and of the oral
microbiome.

RESULTS
Oral microbiome changes through age
To assess the impact of aging on the oral microbiome, we
compared the microbial profiles of oral rinse samples across ages,
using a subsampling strategy that ensures comparable sample
sizes (see Materials and Methods). We first tested for changes in
the overall microbiome composition across age, including gender
and population as fixed effects in 100 such subsamples (see
Materials and Methods). PERMANOVA tests based on an Aitchison

Fig. 1 Homogeneity, distinction of composition, and alpha diversity across age. A Boxes of the R² values are from the PERMANOVA tests
run separately for each of the 100 subsamples. The n in both plots indicates the number of samples in a given age bin in each subsample. Red
stars indicate the magnitude of the mean adjusted p-values for the PERMANOVA tests. The representation of p-values are represented with
symbols as indicated in the following value intervals: 0 “***” 0.001 “**” 0.01 “*” 0.05, Not significant. B Boxes for the distances to the spatial
median represent those distances of each sample from the spatial median of its particular age bin, as calculated by the betadisper function.
The spatial medians for age bins and the associated ANOVAs were run separately for each of the 100 subsamples, but the boxes here display
all such distances for each age bin. C–F Tests of the four alpha diversity measures (Shannon, Simpson, Faith’s PD, species richness) were also
run with those same 100 subsamples, using age as a continuous value, and the statistical values are summarized in Table 1. The four
respective scatter plots here display only the values from one of those subsamples to give a representative depiction of the trend (the same
subsample is used for all four), with age (in years) along the x-axis. G Genera that increase with age tend to be found at lower abundances
while those that decrease with age tend to have greater abundances. Boxes display the distributions of abundances of genera (samples were
divided into two age groups merely to generalize the tendencies across age: 13–60 years old, or older than 60). The first six genera were those
that increased with age (the red boxes for >60 year old individuals are highlighted), and these have notably low abundances in general, while
the latter six genera, which decreased with age (the blue boxes for 13–60 year old individuals are highlighted), tend to be found at high
abundance, with the exception of Streptobacillus, which is more variable.
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distance matrix considering age as a continuous value were
consistently significant (mean adjusted P= 0.001, mean R2=
0.023, mean F statistic= 4.37). To further explore the age ranges
that were most distinct, we also used age as a categorical variable,
subsampling from the following age bins so that each bin had
25–33 samples: 13–20 years old (964 total samples), 20–30 (41
total samples), 30–40 (28 total samples), 40–50 (85 total samples),
50–60 (46 total samples), >60 (42 total samples), which also
showed significant differences (mean adjusted R= 0.001, mean
R2= 0.051, mean F statistic= 1.90). Interestingly, when comparing
each age bin separately against the group of all others, we
observed a sort of parabolic effect, where only those comparisons
of the extreme bins (13–20 and >60) against all other bins had a
significant result on average across the 100 subsamples, and the
differences involving the intermediate bins (30–40 and 40–50)
were not significant (Fig. 1A). We further calculated the homo-
geneity in the microbial composition of samples within a given
bin. This homogeneity test first calculates a spatial median for
each age bin (a sort of hypothetical centroid composition of the
samples within a given age bin, derived from an Aitchison
distance matrix), then calculates the distance of each sample in

that bin to the spatial median. This test resulted in a similar
parabolic effect to that of the PERMANOVA tests (mean adjusted
ANOVA P= 0.0016, mean F= 4.85), wherein the 40–50 bin was the
most homogeneous in terms of microbiome composition, and the
>60 bin was the most variable (Fig. 1B).
We performed the same PERMANOVA and homogeneity tests

to explore age bins based on both weighted and unweighted
UniFrac distances (Supplementary Fig. 1). The PERMANOVA tests
were significant for both the weighted UniFrac distance (mean
adjusted P= 0.006, mean R^2= 0.115, mean F statistic= 4.58) and
the unweighted UniFrac distance (mean adjusted P= 0.001, mean
R^2= 0.063, mean F statistic= 2.37). When comparing each age
bin separately against the group of all others, for the weighted
UniFrac distance, the youngest bin (13–20) was the only bin with a
significant result on average across the 100 subsamples (Supple-
mentary Fig. 1A), while for the unweighted UniFrac distance both
the youngest (13–20) and oldest (>60) bins were significant
(Supplementary Fig. 1B). The results of the homogeneity test were
not significant for either the weighted UniFrac (mean adjusted
ANOVA P= 0.549, mean F= 1.41, Supplementary Fig. 1C) or the
unweighted UniFrac (mean adjusted ANOVA P= 0.583, mean
F= 1.33, Supplementary Fig. 1D) distances.
In addition, some alpha diversity measures showed parabolic

relationships with age, wherein Shannon and Simpson diversity
values were lower in the middle ages, consistent with the above
result that these were the most homogeneous samples, while
Faith’s phylogenetic diversity (PD) and species richness each
increased with age, especially in older individuals, though with
less statistical significance than the Shannon and Simpson
diversities (Fig. 1C–F, Table 1). In Table 1, the p-values from
ANOVA tests for both quadratic and linear models for these alpha
diversity values are displayed, showing that indeed the quadratic
model better explains the trends across age.
We next investigated which organisms show significant

differences across age. Our results (Table 1) show a number of
taxa that increase with age, including the genera Anaeroglobus,
Eikenella, Fretibacterium, Comamonas, Olsenella, and Phocaeicola,
as well as the phylum Synergistetes, or decrease with age,
including the genera Alloprevotella, Streptobacillus, Haemophilus,
Prevotella, Granulicatella, and Bergeyella, as well as the phyla
Bacteroidetes and Proteobacteria. Of note, genera that increase
with age are typically found at low abundance among all samples,
whereas those that decrease with age tend to display the opposite
trend (Fig. 1G). There was also a marked decrease in pH and
increase in BMI as age increased (Table 1).

Chronic disorders, smoking, and the presence of yeasts in the
oral cavity, are important drivers of the oral microbiome
composition
We collected a comprehensive questionnaire regarding over 80
aspects of lifestyle, diet, hygiene, and health from all of the 1648
participants in this study. To assess which of the considered
variables had the largest effects on the overall composition of the
oral microbiome, we used a PERMANOVA test for each variable
with an Aitchison distance matrix, including age, gender, and
population as fixed effects (see Materials and Methods). For each
of the tested variables, 100 subsamples were taken to match the
groups in that variable (Yes vs No) by geographic location, age,
and gender. In these comparisons, we excluded samples from
donors with any reported chronic disorders, except when the
variable of interest was such a disorder. Our results (Fig. 2A) show
that chronic disorders like CF (mean adjusted P= 0.0011, mean R2

= 0.054, mean F statistic= 3.39) and DS (mean adjusted P=
0.0013, mean R2= 0.059, mean F statistic= 3.33) were the
variables that were most distinct between groups. The detection
of yeast species in a sample (as well as the detection of Candida
specifically), smoking, celiac disease, hypertension, and the

Table 1. Significance of differentially abundant taxa and alpha
diversity measures as age increases.

Tax level/
variable

Organism/value Across age Mean adj. P # of
sig. tests

Genus Anaeroglobus ↗ 0.0004 100

Eikenella ↗ 0.0033 100

Fretibacterium ↗ 0.0013 99

Comamonas ↗ 0.02 92

Olsenella ↗ 0.028 87

Phocaeicola ↗ 0.037 75

Alloprevotella ↘ 0.0003 100

Streptobacillus ↘ 0.0026 100

Haemophilus ↘ 0.0072 98

Prevotella ↘ 0.016 93

Granulicatella ↘ 0.02 93

Bergeyella ↘ 0.035 83

Phylum Synergistetes ↗ 0.0002 100

Bacteroidetes ↘ < 0.0001 100

Proteobacteria ↘ 0.031 80

Physiology BMI ↗ < 0.0001 100

pH ↘ 0.0026 100

Alpha
Diversity

Simpson’s
diversity

↘ - ↗ Q= 0.0031
L= 0.26

Q= 100
L= 0

Shannon’s
diversity

↘ - ↗ Q= 0.021
L= 0.99

Q= 90
L= 0

Species Richness ➙ - ↗ Q= 0.04 L
= 0.071

Q= 83
L= 52

Faith’s PD ➙ - ↗ Q= 0.076
L= 0.12

Q= 0
L= 9

Columns indicate, in this order, the taxonomic level or type of variable, the
organism name or variable name, the tendency of the change across age
(“↗”: increases with age, “↘”: decreases with age, “↘ - ↗”: parabolic
effect seen in age, “➙ - ↗”: steady across most ages with an increase
particularly in older samples), the mean adjusted p-value from the ANOVA
of the generalized linear or quadratic model, and the number of
subsamples for which the test is significant. Rows are ordered first by
the tendency with age, with organisms/variables that increase first, and
then by mean adjusted p-value. In the last two columns for the alpha
diversity measures, values are displayed for models based on both
quadratic functions of age (Q) and linear functions of age (L).
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reported use of antibiotics also had significant (mean adjusted P <
0.05) PERMANOVA results. We could corroborate the general
magnitudes of these effects using a multinomial test which
included each of the variables mentioned here, as well as age as a
continuous value (Supplementary Fig. 2) and age bins as
described in the previous section (Supplementary Fig. 3).
A test of homogeneity of each variable showed significant

differences when compared to the respective matched controls
for CF, DS, the presence of yeast, smoking, and celiac disease
(Fig. 2B). As described above with age groups, the result of this
test indicates that the samples of one group for a given variable
(e.g., those with CF) were significantly more similar to their median
composition than the samples of the other group for that variable
(e.g., those without CF) were to their own median composition.
Interestingly, those samples in which yeasts were not detected
were more homogeneous than those in which yeasts were
detected. Meanwhile the individuals with CF, DS, and celiac
disease, as well as smokers were more homogeneous than those
without these disorders and non-smokers, respectively. There was
no difference in homogeneity based on hypertension, the use of
antibiotics, or the presence of Candida, though as with the general
detection of yeast, the absence of Candida did tend to present
greater homogeneity. We included only Candida specifically here
because it makes up the majority of the yeasts that were detected
(present in 236 of 264 samples in which yeast was detected) and
no other genus of yeast appeared in more than eight samples.
Some of these variables displayed particular significant

differences when compared to their matched controls (Table 2).
CF14 and DS13 have been explored in detail elsewhere, and so are
not included in this table. Celiac samples had higher abundances

of the genera Phocaeicola and Staphylococcus, and also had lower
Faith’s PD values and species richness (the number of species
detected in a sample). Smokers had higher abundances of
Megasphaera, Fretibacterium, and Streptococcus, and lower abun-
dances of Fusobacterium, Capnocytophaga, Bergeyella, Porphyro-
monas, Leptotrichia, Haemophilus, Neisseria, Lautropia, and an
unclassified genus of the class Gracilibacteria, and also had lower
Simpson and Shannon alpha diversity values. Samples in which
yeast were detected, in particular those with Candida, had higher
abundance of Lactobacillus. There were no individual taxa that
differed significantly for hypertension or antibiotics.
Co-occurrence networks represent patterns of taxa that present

correlated abundances across different samples44. We con-
structed such networks for groups of samples differing in the
studied variables and compared them in the search of unique
associations between taxa. From these network comparisons, we
derived a score that indicates the relative network uniqueness
(i.e., the fraction of significant co-occurrences that are unique to
that variable—see Materials and Methods) (Supplementary Fig.
4). The most unique co-occurrence networks were seen in
samples with CF (the specifics of this network were discussed in
a previous publication14) and hypertension, followed by the
absence of yeast (and specifically the absence of Candida), then
the other two chronic disorders, DS and celiac, and finally
smoking, and the reported use of antibiotics. This largely follows
the trend in the PERMANOVA results presented above, wherein
the samples that are more distinct from their matched controls
largely display the more unique sets of significant co-occurrences,
though did not necessarily follow the same pattern as the
explained variances from those PERMANOVA tests. DS had

Fig. 2 Homogeneity and distinction of composition across variables. A Boxes show the distribution of R2 values (the proportion of sum of
squares from the total) from the PERMANOVA tests comparing groups of a given variable for the 100 subsamples. B Boxes represent the distances
of each sample from the spatial median of its group (Yes in yellow, No in blue), as calculated by the betadisper function. The spatial medians for
groups and the associated ANOVAs were run separately for each of the 100 subsamples, but the boxes here display all such distances for each
group. Pairs of boxes in both plots are ordered by the absolute value of the difference between the pairs. The n in both plots indicates the number
of samples for which a given variable was indicated (the same number of matched controls were selected for each subsample test). Red stars in
(A) and blue stars in (B) indicate the magnitude of the mean adjusted p-values for the PERMANOVA tests and the ANOVAs of the betadisper tests,
respectively. The representation of p-values are as follows: 0 “***” 0.001 “**” 0.01 “*” 0.05, Not significant.
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greater R² values than hypertension and the detection of yeast,
and Candida specifically, yet generally had a less unique network
than those three variables. Neither did the network uniquenesses
show the same trend as the homogeneity results, as hyperten-
sion, for instance, showed no difference in homogeneity, yet had
the second most unique network, while smoking showed one of
the strongest differences in homogeneity, and was the second
least unique network.
We performed predictions of the functional content of our oral

microbiome samples in different contexts. The only variables
found to show significant differences in any KEGG orthologs (KOs)
were smoking and DS (Supplementary Fig. 5 shows the only other
variables that had p-values from ANOVA tests less than 1.0).
Smoking had not only the most KOs that differed significantly
(430), but also the strongest differences, as seen in that heatmap.
DS had a total of 99 significantly different KOs. Those 430 KOs that
differed with smoking and those 99 that differed with DS were
associated with 168 and 88 pathways, respectively. However, there

were many instances of pathways that were associated with some
KOs that were increased in smokers and others that were
decreased in smokers, and the same for DS (Supplementary Fig.
6). Nonetheless, we used a text mining approach to search for
articles that found links between a given pathway and either
smoking or DS, also shown in Supplementary Fig. 6. The most
prominent pathways found to be significant here and that are
associated with smoking in the literature were carbon metabolism
(500 articles), fatty acid metabolism (322), purine metabolism
(263), base excision repair (197), and biosynthesis of amino acids
(188). For DS, the most prominent were also biosynthesis of amino
acids (130 articles), carbon metabolism (28), and oxidative
phosphorylation (18).
We found that the pH of the oral cavity was anti-correlated with

some measures of alpha diversity, including Faith’s PD (p= 2.97e-5)
and species richness (p= 6.23e-5), while there was no association
with either Shannon or Simpson diversity (Supplementary Fig. 7).
There were also trends, either positive or negative, with a number
of particular genera (Supplementary Table 1).

Similarity of the oral microbiome composition among family
members and classmates
Our study included groups of samples that belong to members of
the same family, and specified different degrees of relationship,
such as parents and children, grandparents and grandchildren,
partners, siblings, and twins. In addition, given the active
participation of schools in our project, we had several groups of
samples from students attending the same school. Using an
anosim test (analysis of similarities) on Aitchison distance matrices,
we compared the similarity between the microbiome profiles of
members of the same family or classroom, to determine whether
the similarity was significantly higher than when compared to
samples from different families or classes. With the exception of
grandparents and grandchildren, all other relationships showed
significantly greater similarity in oral microbiome compositions
than was seen between samples from other families or classes
(Fig. 3). This similarity was highest for twins, followed by siblings,
partners, family members (which included all of the non-classmate
connections), parents-children, and classmates. Although the
anosim statistic was higher for twins than for siblings, that merely
indicates that the trend was stronger in twins. But twins were not
statistically more significant to each other than siblings were to
each other (P= 0.33 for the Mann–Whitney test of Aitchison
distances among twins vs those distances among non-twin
siblings, the values represented by the blue boxes in Fig. 3).

DISCUSSION
Our study builds on the first edition of the citizen-science project
“Saca La Lengua”28, which included 1319 samples that were
almost exclusively from 13–15 year old students in relative health.
This first edition provided a comprehensive snapshot of the oral
microbiome composition in adolescents and how it varied with
different lifestyle parameters. In this second edition, we targeted a
broad age range (7–85) as well as a few particular chronic
disorders, namely CF, DS, and celiac disease, in collaboration with
relevant local and national patient associations. Participants also
completed a comprehensive questionnaire about various daily
habits, hygiene, and diet. When collecting samples, we encour-
aged participants to bring along family members, and in the end,
311 of the 1648 total samples from this second edition of “Saca La
Lengua” (SLL2) had some familial connection. To our knowledge,
this is the first study to explore differences in the oral microbiome
across a range of ages that is both balanced and encompasses
most of the full range of the average human life expectancy (in
Spain, recent estimates were 86 years for women and 80 for
men45). We have reported separately on the specific connections

Table 2. Significance of differentially abundant taxa and alpha
diversity measures between indicated variable and matched controls.

Sample group Organism/
diversity

Tendency Mean
adj. P

# of
sig tests

Celiac Phocaeicola ↗ 0.08 63

Staphylococcus ↗ 0.09 50

Faith’s PD ↘ 0.0009 100

Species richness ↘ 0.0004 100

Smokers Megasphaera ↗ 0.0017 100

Fretibacterium ↗ 0.037 77

Streptococcus ↗ 0.07 66

Phylum:
Synergistetes

↗ 0.003 100

Phylum:
Firmicutes

↗ 0.042 76

Fusobacterium ↘ 0.0003 100

Capnocytophaga ↘ 0.0004 100

Bergeyella ↘ 0.0028 100

Porphyromonas ↘ 0.018 89

Leptotrichia ↘ 0.022 88

Haemophilus ↘ 0.03 83

Neisseria ↘ 0.031 77

Lautropia ↘ 0.051 65

C.Gracilibacteria.
UCG

↘ 0.056 70

Phylum:
Fusobacteria

↘ 0.0016 100

Phylum:
Patescibacteria

↘ 0.025 93

Simpson diversity ↘ 0.002 100

Shannon diversity ↘ 0.029 83

Yeast detected Lactobacillus ↗ 0.053 61

Candida detected Lactobacillus ↗ 0.01 96

Columns indicate, in this order, the variable considered, the organism
name or the alpha diversity value, the tendency of the difference in the
considered variable (“↗”: higher in those samples where the variable is
true, “↘”: lower), the mean adjusted p-value of the ANOVA of the statistical
comparison between variable and matched controls, and the numbers of
matched control subsamples for which the test is significant. Rows are
ordered first by the tendency in the indicated variable, with organisms/
diversities that were greater first, and then by mean adjusted p-value
within each variable group.
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of the oral microbiome with DS13 and CF14, and here we present
results based on the full SLL2 dataset. It is important to note that,
as these analyses are based on 16 S rRNA gene amplicon
sequencing, there is an inherent limitation in the resolution of
taxonomic classification, and here the comparisons of particular
taxa are performed at the genus level.

Oral microbiome changes through age
Studies exploring the trajectory of changes across the human
lifespan have been limited, either comparing very disparate age
groups46, a limited age range19, or categorizing samples into very
wide age ranges that do not effectively represent that entire
range20. By spanning adolescence to late adulthood, our dataset
provides some new insights into the topic. Our results show
significant shifts in composition across time, wherein the younger
and older samples were the most distinct, and the middle ages
appear to represent an intermediate phase in which the oral
microbiome is at its most homogeneous. The parabolic trend in
homogeneity was matched by the trend in both the Shannon and
Simpson alpha diversity metrics, which were both lowest in
approximately the 30–50 year old range. We can extrapolate
similar results to ours from some of the studies mentioned above.
In one, samples from women between the ages of 53 and
81 showed no significant change in alpha diversity19, and at these
ages, the diversity values in our samples have already risen to a
relative plateau. In another study, a citizen-science project much
like our own, youth samples (ages 8–16 with a mean age of 10)
showed greater alpha diversity than adult samples (ages 20–75
with a mean age of 34)20. Though their “adult” group reaches up
to age 75, the mean age of 34 suggests a similar result to our own.
Despite the parabolic trends in both alpha diversity and

homogeneity across age, we did not find evidence of these
patterns in the abundances of any particular organisms. Instead,

we saw that with age there were statistically significant decreases
in the genera Alloprevotella, Streptobacillus, Haemophilus, Prevotella,
Granulicatella, and Bergeyella, and increases in Anaeroglobus,
Eikenella, Fretibacterium, Comamonas, Olsenella, and Phocaeicola.
As noted above, a typical trend in the aging oral cavity is an
increase in the prevalence and severity of periodontal disease15–17.
With the exception of Olsenella, each of the genera that were
increased with age in our samples has been associated with
periodontitis47–57. While we do not have data on salivary flow rate
or nitrate levels from our samples, salivary flow rate has also been
shown to decrease in the elderly46,58, and is proportional to the
systemic concentrations of anti-inflammatory nitric oxide (NO)59,
the local concentrations of immunoglobulins and various mole-
cules important for the mineralization of tooth enamel, and also
maintains pH by removing substrates for the microbiota, as well as
their acidic byproducts60. Indeed, we also found that pH decreased
with age in our samples. Thus, future studies which track oral
microbiome changes across age along with periodontal health,
salivary nitrate levels and systemic NO levels, which result from an
enzymatic process in oral commensal bacteria that humans cannot
perform themselves61,62, and how these combinations relate to
inflammaging, would warrant further attention.
A noteworthy observation in the changes across age in our

study is that those genera that decreased with age were typically
among the most abundant oral taxa, while those that increased
were found at relatively low or median abundances (Fig. 1G). We
speculate that the elderly oral microbiome may be more
susceptible to colonization and establishment of rare opportunis-
tic species whose growth is hindered by the more efficient
immune responses in younger oral cavities. This would be in line
with hypotheses proposed to explain the higher prevalence of
periodontitis through aging17, which relate it to different factors,
such as the accumulation of tissue damage, weaker immunity,

Fig. 3 Anosim analyses of family units of various degrees of relationships, as well as classmates. Boxes show the distributions of Aitchison
distance values between samples from the same unit (blue) or different units (red). The anosim R statistic is shown for those relationships that
had significant results (anosim P < 0.05). The y axis labels indicate, for each relationship type, the number of samples for which that
relationship occurred in at least one other sample, and the number of different units of two or more samples for which that relationship
occurred.
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increased adipose tissue (a source of cytokines), decreased anti-
immflamatory sex hormones, diminished physical activity, and
increased oxidative damage. Some of these factors may also
explain the relatively high alpha diversity values in the elderly
samples, though not necessarily in the teenaged samples. These
instead may be a result of the continually developing microbiome
composition, which appears to reach a more stable state in the
30 s and 40 s. It should also be noted that two of the alpha
diversity measures we looked at (Faith’s phylogenetic distance
and species richness) were only higher in the older samples, and
remained consistent up to the ages of approximately 50–55. Thus
younger and older microbiomes present higher diversities of
somewhat different natures, with the elderly being characterized
by a higher number of species (Species richness) and more
phylogenetically diverse compositions (Faith’s PD), whereas both
extreme age groups present similarly diverse microbiomes in
terms of balanced representations of the different taxa (namely
Shannon’s and Simpson’s diversity indexes). Other age groups, in
comparison, are characterized by less diverse microbiomes, with
more clear separations between dominant and minority taxa. The
results of the PERMANOVA tests using the two UniFrac distances
further support this hypothesis of differing diversities across age
(Supplementary Fig. 1A, B). For instance, both weighted and
unweighted distances showed strong differences in the youngest
age bin (13–20), but only the unweighted distance showed strong
differences for the oldest age bin (>60). This would suggest that,
while the youngest group shows high variability in both rare and
common organisms, the oldest group is strongly affected by rare
and low abundance organisms and not the most common and
abundant organisms, and that the differentiation of those older
samples is driven largely by phylogenetically distinct organisms.

Chronic disorders, smoking and the presence of yeasts in the
oral cavity, are important drivers of the oral microbiome
composition
The presence of chronic disorders such as CF and DS, the most
impactful factors seen in this dataset, and their particular impacts
were described elsewhere13,14. Persons with CF, DS, or celiac
disease, as well as smokers, had significantly more homogeneous
compositions compared to the matched controls without these
disorders and non-smokers, respectively. This finding suggests
that those three disorders and smoking not only differentiate
those samples significantly from their matched controls, but also
that the bacterial compositions are shaped in consistently similar
directions (i.e., toward a specific signature), while the controls are
comparatively more variable. The reverse was the case for the
detection of yeast, so that perhaps greater prevalence of these
fungi promote a departure from typical bacterial ecosystems. This
supports the existence of diverse synergistic and antagonistic
ecological interactions between yeasts and bacterial species, and a
role of fungi as keystone species in the oral ecosystem.
Alternatively, the presence of yeasts might be a consequence of
already unbalanced microbiomes, suggesting they are opportu-
nistic colonizers. In both cases, they could be considered as
potential biomarkers for altered microbiomes. Finally, hyperten-
sion and antibiotics displayed significant differences to their
matched controls, but there was no difference in homogeneity, so
these factors did not direct the differences in any specific manner,
perhaps depending on the specific antibiotic used or the severity
of hypertension, for which we do not have specific information.
The particular differences seen in some of these variables here

corroborate some findings in the literature. A study found that
never-smokers and former smokers did not differ from each other
in composition, but both differed significantly from current
smokers, and that smokers had higher Streptococcus and
Atopobium, and lower Capnocytophaga, Leptotrichia, and Peptos-
treptococcus24. We found the same for Streptococcus,

Capnocytophaga, and Leptotrichia. Three studies found smokers
had increased Megasphaera and decreased Neisseria25–27, though
one of those25 reported the family Veillonellaceae, of which
Megasphaera is a member. There was also agreement with our
finding of a decrease in Haemophilus26,27, Lautropia, Fusobacter-
ium, and Leptotrichia27, though depending on the study, there
were opposite findings for Fusobacterium, Streptococcus, and
Porphyromonas. A study that described two distinct oral myco-
types (sample clusters defined by the fungal composition), found
that one of these was dominated by Candida, and was enriched in
Lactobacillus and Propionibacterium40, the former of which
matches our own finding here. If their reported mycotypes are
indeed ubiquitous structures of fungal composition, it may be that
our samples also follow this dichotomy and the non-Candida
samples would perhaps fall in the other mycotype, which was
much more diverse in fungi, though this would require further
investigation.
Although the relative scores of uniqueness of the co-occurrence

networks of the different variables mentioned here did not
precisely match the patterns from either the PERMANOVA or
homogeneity tests, the unique co-occurrences among particular
sample groups suggest underlying ecological differences present
under the various conditions. The networks of CF, for instance,
were discussed at length elsewhere14. Moreover, there was greater
variation in the uniqueness scores for hypertension and absence
of yeasts/Candida than in the other variables, as can be seen in
Supplementary Fig. 4B, and thus a greater proportion of the
associations in these networks were also seen in the networks of
other variables. CF, as a contrasting example, had relatively little
variation, and thus consistently displayed many of the same
associations that did not appear in the networks of other variables,
so its network is more universally unique. Similarly, although the
uniqueness score for smokers was relatively low, it also had low
variation, so the relatively few unique associations were also
universally unique. The caveat to these findings is that here we
only compare the networks of those eight variables, which we
found to significantly differentiate individuals from matched
controls (as in Fig. 2). To better understand the underlying
ecologies, a more expansive comparative exploration of co-
occurrence networks in particular cohorts should be performed.

Similarity of the oral microbiome composition among family
members and classmates
Our finding that the oral microbiomes among family members are
more similar to each other than to those of non-family members
corroborates the trends seen in the literature20,33–35. One of these
studies found that twins were not more similar to each other than
non-twin siblings20, which we have corroborated in our results
here, and another found that monozygotic twins were not more
similar to each other than dizygotic twins33, which was also seen
in the gut microbiome36. Moreover, a study using a genome-wide
analysis of SNPs to compare genetic similarity with microbiome
composition found no significant association34. All of this
evidence points to the conclusion that the shared environment
of the home strongly influences oral microbiome composition,
more so than host genetics. In agreement with this, the only
familial relationship that did not show a significant similarity in our
data was that of the grandparent and grandchild, which is the
connection least likely to share a living space. Indeed, while twins
had the highest similarity score, they were not significantly more
similar to each other than non-twin siblings, further supporting
the findings in the literature. We even saw that, among the
teenage samples obtained from different high schools, the oral
microbiomes were more similar among classmates than non-
classmates, though this was the comparison with the lowest
magnitude of similarity among those that were significant (lowest
anosim R statistic), as would be expected since it generally entails
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more distanced interactions than those among family members.
The result about classmates may suggest that a regularly shared
environment, even if only for a few hours a day, could impact the
oral microbiome composition. Future studies could explore this
notion further, for instance focusing on workplaces with close
physical proximity like shared offices in contrast to more distanced
outdoor working groups, as in construction sites.

Citizen-science reveals the relative impacts of important
factors shaping the composition of the oral microbiome
This second edition of the citizen-science project Saca La Lengua
(SLL2) extends the results of the first edition28, which provided a
snapshot of the oral microbiome of teenagers in relative health
across Spain. Here we have displayed the differences that occur
across age, wherein a number of genera of bacteria either
increase or decrease in abundance, and people in middle ages
typically have more homogeneous compositions than teens or
seniors, as well as lower alpha diversity, and seniors tend to
harbor a greater number of low abundance organisms and a
more acidic oral environment. In SLL2 we also compared the
general influence of a number of different health and lifestyle
factors on the oral microbiome composition. CF and DS were the
most impactful in terms of differentiating the composition, and
the samples with these chronic disorders were significantly more
homogeneous than matched controls, suggesting the disorders
tend to direct the composition of the oral microbiome in specific
and consistent ways. A similar effect was seen with celiac disease,
smoking, and the absence of yeast species, while hypertension
and recent use of antibiotics significantly differentiated samples,
but did not show a difference in homogeneity. Nonetheless,
hypertension, along with CF, displayed more unique associations
between bacterial taxa in co-occurrences networks compared to
these other variables, suggesting particular underlying ecologies.
We also expanded upon findings in the literature that shared
environments are important in shaping the oral microbiome. We
saw that family members that typically live within the same
household tend to have significantly more similar compositions
compared to non-family members, and that twins are not
significantly more similar than non-twin siblings, supporting the
idea that the environment, more than host genetics, shape the
microbiome. Furthermore, we saw that students in the same
school were more similar to each other than those from different
schools. This opens a door to further studies of shared spaces, like
different working environments, as our finding suggests that
regularly sharing the same environment for even a few hours
impacts the microbiome. This study describes the manners in
which an assortment of factors affect the oral microbiome in the
Spanish population. The results lay some groundwork for future
studies to expand upon in dedicated cohorts for particular
factors, as well as in other populations.

METHODS
Sample collection
All participants signed an informed consent form allowing the use of their
saliva samples for microbiological research. For participants under the age
of 18, the consent form was also signed by one of the parents or a legal
guardian. This project was approved by the ethics committee of the
Barcelona Biomedical Research Park (PRBB). Samples were collected from
January to November 2017, and a map of the locations from which they
were collected is presented in Supplementary Fig. 8. Participants were
asked not to ingest any food or beverage (except water) for 1 h before
collecting the sample. All donors received clear indications about the
sample collection procedure in person, and the collection of the samples
was carried out with the assistance of a researcher involved in the project,
following a demonstration. All participants responded to a uniform
questionnaire about lifestyle, diet, hygiene, and health. Before collection
of the oral rinse, the pH of the saliva was measured using pH test strips

(MColorpHast, Merck, range 5.0–10.0; 0.5 accuracy units), the accuracy of
which have been previously validated28. Saliva samples were collected
using a mouthwash as described earlier28. Different oral collection
methods have been shown not to significantly affect taxonomic
classification at the genus level, while the oral rinse method, as used in
this study, has been shown to yield greater quantities of genetic material
as compared to spitting or passive drooling63. In brief, the protocol is as
follows: participants rinsed their mouth with 15mL of sterile phosphate-
buffered saline (PBS) solution, for 1 min. Then, they returned the liquid into
a 50mL tube. The samples were then centrifuged at 4500 g for 12min at
room temperature (r.t.) in an Eppendorf 5430 centrifuge equipped with an
Eppendorf F-35-6-30 rotor. The supernatant was discarded and the pellets
were resuspended with the remaining PBS, transferred to 1.5 ml tubes and
centrifuged at 4500 g for an additional 5 min at r.t. using an Eppendorf FA-
45-24-11-HS rotor. Supernatants were discarded, and pellets were frozen
and stored at −80 °C until further analysis.
The methods used for DNA extraction and 16 S amplicon sequencing,

fungal composition analysis, the pre-processing of 16 S rRNA sequence
reads and taxonomy assignment, as well as the alpha and beta diversity
measures that we employed, were described in previous publications
which used the same dataset13,14.

Subsampling for analyses
When running statistical tests for a given variable, we first randomly select
representative matched controls 100 times to ensure consistency in the
results. In the case of binary variables, such as smoking, where the values
are either “yes” or “no”, we randomly selected an equal number of
samples from each group, and checked if each group had similar
distributions of age, geographic location (based on the autonomous
community within Spain from which the sample was collected), and
gender. If there were over 100 total samples in both the “yes” and “no”
groups for a given variable, 100 of each were selected for each of the
100 subsamplings, otherwise the total number of the smaller group were
selected and a matched random selection of the same size from the other
group. In the case of age groups, we first classified our samples into six
bins of ages: 13–20 (964 samples), 20–30 (41 samples), 30–40 (28 samples),
40–50 (85 samples), 50–60 (46 samples), >60 (42 samples). We then
ensured that the six age bins had balanced geographical distributions and
genders. The 100 subsamples based on the age bins were also used for
calculations with age as a continuous variable, in order to ensure an even
distribution of ages, as well as to account for the geographical
distributions and genders. In all cases, the number of samples taken
from each group within a given variable were consistently the same across
all 100 subsamples. For instance, in each of the 100 subsamples based on
age bins, the following were the number of samples from each bin: 13–20
years old (33 samples), 20–30 (28 samples), 30–40 (25 samples), 40–50
(32 samples), 50–60 (31 samples), >60 (32 samples). And in this case, the
differences in sample numbers between these age bins stems from the
availability of samples from the balanced ranges of gender and
geographical distribution. In all instances, samples that were excluded
from control groups were those that had any reported chronic disorder
(311 samples), were missing data regarding age or gender, or that were
collected from a region other than those from which the samples with the
variable of interest were collected, since control groups were selected to
match the range of ages and proportions of gender and geographic
locations. Relevant p-values mentioned throughout the text are the
average from the tests across the 100 subsamplings, corrected with the
“fdr” method in the p.adjust function from the base “stats” package
(version 3.6.3)64, unless otherwise stated.

Statistical analyses
Comparisons of compositions. In order to determine the effects of
variables on the composition of the oral microbiome, we performed a
permutational multivariate analysis of variance (PERMANOVA) based on
Aitchison distance metric using the adonis function from the “vegan” R
package (version 2.5-6)65. The model included the following fixed effects:
variable of interest (e.g., smoking or age), gender, age (when it is not the
primary variable of interest), and population of the city/town from which
the sample came (as a generalized proxy of both location and lifestyle).
We used the betadisper function from the “vegan” package to test the

homogeneity of group variances within the groups for a given variable to
compare, for example, smokers versus non-smokers, or among the six age
bins. Using the anova function from the “stats” package on the betadisper
object, we could obtain a p-value to determine whether there was a
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significant difference in the homogeneity of the compositions of samples
between groups. The betadisper objects also hold the distance of each
sample within a group from that group’s spatial median, a measure of the
centroid composition for each group, and we use these values to display
the differences between groups in boxplots.
We used the anosim function from the “vegan” package to perform an

analysis of similarities based on the Aitchison distance metric among
family members and classmates. The different relationships considered
were siblings, twins, partners, parents-children, grandparents-grandchil-
dren, all family members (includes any of the previously mentioned
relationships), and classmates (samples from students in the same school).
For an anosim test of a given relationship, only those samples which had
at least one relationship of that type were included. For example, there
were 70 samples that had a sibling that also provided a sample, so the
sibling anosim test included those 70 samples, wherein 34 distinct groups
of siblings occurred (for any relationship, groups were by necessity of two
samples or more).

Differential abundance and diversity calculations. Then, to determine
differential abundances of taxa and variation in other variables like alpha
diversity, oral pH, or the measurements of ions in drinking water, we
performed a generalized linear model using the function glm from the
“stats” package, again using the same fixed effects as for the PERMANOVA
test. The abundance values used for these tests were the centered log
ratios of the amplicon sequence variant (ASV) counts, as described
elsewhere13,14. For the alpha diversity measures in relation to age in
particular, we further used the bs function from the base R package
“splines” to treat age as a second order fixed effect, in order to detect a
parabolic trend. The Anova function from the “car” R package (version
3.0-7)66 was used to calculate type-II ANOVA tables, from which p-values
were taken for each fixed effect in the models. These p-values were
corrected for multiple testing with the p.adjust function from the “stats”
package, using the “fdr” method.

Inferred co-occurrence networks. To produce co-occurrence networks
within the groups for a given variable, we first filtered out very rare taxa
to avoid spurious associations in taxa that do not appear regularly, by
using the filterTaxonMatrix function from the “seqtime” R package (version
0.1.1)67. We retained those taxa that had at least 15 counts in at least
20 samples. Then we calculated the networks for each of the groups in a
given variable (for instance, for smokers and for non-smokers) in each of
the 100 subsamplings using the spiec.easi function from the “SpiecEasi”
package (version 1.0.7)44, from which we could derive the strengths of the
significant associations, both positive and negative, between particular
taxa. The chord diagrams that we used to represent the uniqueness of
networks for particular variables were produced using the chordDiagram
function from the “circlize” package (version 0.4.8)68. To calculate the
relative uniqueness of networks, we developed a score that is relative to
the eight variables that we considered, which were those found to be
significant with the PERMANOVA test. The scores were calculated as
follows: for each variable, the co-occurrence networks were calculated
among each of the 100 subsamples, and we retained those associations
which occurred only in the groups of interest (samples with the indicated
disorder, smokers, antibiotic users, or those samples in which yeast was
absent). Then for each variable, we calculated, pairwise with each other
variable, the number of only those associations which occurred in all
100 subsamples and in 0 subsamples of the other variable being
compared, weighted by the strengths of those associations that were
determined by the spiec.easi function.

Multinomial tests and biplot visualizations. Multinomial regression was
performed using the multinomial function from the songbird tool (version
1.0.4)69 through Qiime 270. The parameters used which differed from the
default values were the following: epochs= 5000, batch-size= 164, num-
random-test-examples= 247, differential-prior= 0.2, summary-interval=
1. Biplots were produced with the Qiime 2 view tool, based on the output
of the emperor biplot tool (version 1.0.3)71.

Functional prediction analyses. We used the t4f function from the
themetagenomics R package (version 1.0.2)72 to predict the functional
content of the oral microbiome in different contexts. This tool produced
abundances of KEGG orthologs and associated pathways, which we then
checked for differential abundances based on our metadata variables
using linear models in the same manner as described for taxa above and
using the same fixed effects. The heatmap of the logs of p-values from

these tests was produced using the d3heatmap function from the
d3heatmap R package (version 0.9.0)73. Then we used a text mining
approach with the fetch_pubmed_data function from the easyPubMed R
package (version 2.13)74 to search for articles which connected a given
variable with pathways that differed significantly.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The fastq files for the paired forward and reverse reads of the 16 S rRNA sequencing
of the 1648 oral rinse samples used for the analyses in this study (57,221 Mb) were
uploaded to the Sequence Read Archive (SRA) with the BioProject accession number
PRJNA667146 and can be found here: We also provide a table with the results of
MALDI-TOF analyses of fungal composition (44 kb), which can be found here: https://
github.com/Gabaldonlab/ngs_public/tree/master/SLL2. The unique and anonymized
identifiers for each sample can be found at the beginning of each fastq file, and these
correspond to the row names in the fungal composition tables.

CODE AVAILABILITY
The R code used to perform the statistical analyses can be found here: https://github.
com/Gabaldonlab/ngs_public/tree/master/SLL2.
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