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ABSTRACT
We investigate the behavior of the Lasso for selecting invalid instruments in linear instrumental variables
models for estimating causal effects of exposures on outcomes, as proposed recently by Kang et al. Invalid
instruments are such that they fail the exclusion restriction and enter the model as explanatory variables.
We show that for this setup, the Lasso may not consistently select the invalid instruments if these are rela-
tively strong. We propose a median estimator that is consistent when less than 50% of the instruments are
invalid, and its consistency does not depend on the relative strength of the instruments, or their correla-
tion structure. We show that this estimator can be used for adaptive Lasso estimation, with the resulting
estimator having oracle properties. The methods are applied to a Mendelian randomization study to esti-
mate the causal effect of bodymass index (BMI) on diastolic blood pressure, using data on individuals from
the UK Biobank, with 96 single nucleotide polymorphisms as potential instruments for BMI. Supplementary
materials for this article are available online.

1. Introduction

Instrumental variables estimation is a procedure for the iden-
tification and estimation of causal effects of exposures on out-
comeswhere the observed relationships are confounded by non-
random selection of exposure. This problem is likely to occur
in observational studies, but also in randomized clinical trials
if there is selective participant noncompliance. An instrumental
variable (IV) can be used to solve the problem of nonignorable
selection. To do this, an IV needs to be associated with the expo-
sure, but only associated with the outcome indirectly through its
association with the exposure. The former condition is referred
to as the “relevance” and the latter as the “exclusion” condi-
tion. Examples of instrumental variables are quarter-of-birth for
educational achievement to determine its effect on wages, see
Angrist and Krueger (1991), randomization of patients to treat-
ment as an instrument for actual treatment when there is non-
compliance, see, for example, Greenland (2000), andMendelian
randomization studies use IVs based on genetic information,
see, for example, Lawlor et al. (2008). For recent reviews and fur-
ther examples see, for example, Clarke and Windmeijer (2012),
Imbens (2014), Burgess, Small, andThompson (2017), andKang
et al. (2016).

Whether instruments are relevant can be tested from the
observed association between exposure and instruments. The
effects on the standard linear IV estimator of “weak instru-
ments,” that is, the case where instruments are only weakly
associated with the exposure of interest, have been derived for
the linear model using weak instrument asymptotics by Staiger
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and Stock (1997). This has led to the derivation of critical val-
ues for the simple F-test statistic for testing the null of weak
instruments by Stock and Yogo (2005). Another strand of the
literature focuses on instrument selection in potentially high-
dimensional settings, see, for example, Belloni et al. (2012),
Belloni et al. (2014), Chernozhukov et al. (2015), and Lin et al.
(2015), where the focus is on identifying important covariate
effects and selecting optimal instruments from a (large) set of
a priori valid instruments, where optimality is with respect to
the variance of the IV estimator.

In this article, we consider violations of the exclusion con-
dition of the instruments, following closely the setup by Kang
et al. (2016) for the linear IV model where some of the available
instruments can be invalid in the sense that they can have a
direct effect on the outcomes or are associated with unobserved
confounders. Kang et al. (2016) proposed a Lasso-type proce-
dure to identify and select the set of invalid instruments. Liao
(2013) and Cheng and Liao (2015) also considered shrinkage
estimation for identification of invalid instruments, but in their
setup there is a subset of instruments that is known to be valid
and that contains sufficient information for identification and
estimation of the causal effects. In contrast, Kang et al. (2016)
did not assume any prior knowledge about which instruments
are potentially valid or invalid. This is a similar setup as in
Andrews (1999) who proposed a selection procedure using
information criteria based on the so-called J-test of over-
identifying restrictions, as developed by Sargan (1958) and
Hansen (1982). The Andrews (1999) setup is more general than
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that of Kang et al. (2016) and requires a large number of model
evaluations, which has a negative impact on the performance of
the selection procedure.

This article assesses the performance of the Kang et al.
(2016) Lasso-type selection and estimation procedure in their
setting of a fixed number of potential instruments. If the set
of invalid instruments were known, the oracle two-stage least
squares (2SLS) estimator would be the estimator of choice in
their setting. As the focus is estimation of and inference on
the causal effect parameter, denoted by β , and as the standard
Lasso approach does not have oracle properties, see, for exam-
ple, Zou (2006), we show how the adaptive Lasso procedure by
Zou (2006) can be used to obtain an estimator with oracle prop-
erties. To do so, we propose an initial consistent estimator of the
parameters that is consistent also when the irrepresentable con-
dition for consistent Lasso selection of Zhao and Yu (2006) and
Zou (2006) fails. The oracle property in this setup is when an
estimator for β has the same limiting distribution as the oracle
2SLS estimator.

Applying the irrepresentable condition to this IV setup, we
derive conditions under which the Lasso method does not con-
sistently select the invalid instruments. As is well known from
Zhao and Yu (2006), Zou (2006), Meinshausen and Bühlmann
(2006), andWainwright (2009), certain correlation structures of
the variables prevent consistent selection. New in our results are
the conditions on the strength of the invalid instruments rela-
tive to that of the valid ones that result in violations of the irrep-
resentable condition, where the strength of an instrument is its
standardized effect on the exposure. From this we can show that
consistent selection of the invalid instrumentsmay not be possi-
ble if these are relatively strong, even when less than 50% of the
instruments are invalid, which is a sufficient condition for the
identification of the parameters.

We show that under the condition that less than 50% of the
instruments are invalid, a simple median-type estimator is a
consistent estimator for the parameters in the model, indepen-
dent of the strength of the invalid instruments relative to that
of the valid instruments, or their correlation structure. It can
therefore be considered for use in the adaptive Lasso procedure
as proposed by Zou (2006). With n the sample size, we show
that the median estimator converges at the

√
n rate, but with an

asymptotic bias, as the limiting distribution is that of an order
statistic. It does, however, satisfy the conditions for the adaptive
Lasso procedure to enjoy oracle properties.

Because of this oracle property, and as in practice instru-
ment strength is very likely to vary by instruments and invalid
instruments could be relatively strong, it will be important to
consider our adaptive Lasso approach for assessing instrument
validity and estimating causal effects. In Mendelian random-
ization studies it is clear that genetic markers have differential
impacts on exposures from examining the results from genome-
wide association studies and one cannot rule out ex ante that
invalid instruments with a direct effect are also stronger predic-
tors for the exposure. (Bowden et al. (2015) and Kolesar et al.
(2015) allowed for all instruments to be invalid and showed that
the causal effect can be consistently estimated if the number of
instruments increases with the sample size under the assump-
tion of uncorrelatedness of the instrument strength and their
direct effects on the outcome variable.)

The next section, Section 2, introduces the model and the
Lasso estimator as proposed by Kang et al. (2016). In Section
3, we derive the irrepresentable condition for this particular
Lasso selection problem and present the result on the rela-
tionship between the relative strengths of the instruments and
consistent selection. Section 4 presents the median estimator,
establishes its consistency, and shows that its asymptotic prop-
erties are such that the adaptive Lasso estimator enjoys oracle
properties. Section 5 presents some Monte Carlo simulation
results. In Section 5.2, we link the Andrews (1999) method to
the Lasso selection problem and show how the test of overi-
dentifying restrictions can be used as a stopping rule. Section
5.3 investigates how close the behavior of the adaptive Lasso
estimator is to that of the oracle 2SLS estimator in the Monte
Carlo simulations, by comparing the performances of the Wald
tests on the causal parameter under the null for different sample
sizes. Further analyses and simulation results investigating
the effects of varying the information content by varying the
strength of the instruments and the size of the direct effects of
the invalid instruments on the outcome are presented in Section
B in the supplementary materials. In Section 6, the methods
are applied to a Mendelian randomization study to estimate
the causal effect of body mass index (BMI) on diastolic blood
pressure using data on individuals from the UK Biobank, with
96 single nucleotide polymorphisms as potential instruments
for BMI. Section 7 concludes.

The following notation is used in the remainder of the article.
For a full column rank matrix X with n rows, MX = In − PX ,
where PX = X(X′X)−1X′ is the projection onto the column
space of X, and In is the n -dimensional identity matrix. A k-
vector of ones is denoted as ιk. The lp-norm is denoted by ‖.‖p,
and the l0-norm, ‖.‖0, denotes the number of nonzero compo-
nents of a vector. We use ‖.‖∞ to denote the maximal element
of a vector.

2. Model and Lasso Estimator

We follow Kang et al. (2016; KZCS from now on), who consid-
ered the following potential outcomes model. For i = 1, . . . , n,
let Y (d,z)

i , be the potential outcome if the individual i were to
have exposure d and instrument values z. The observed out-
come for an individual i is denoted by the scalar Yi, the treat-
ment by the scalar Di, and the vector of L potential instruments
byZi.. The instrumentsmay not all be valid and can have a direct
or indirect effect. For two possible values of the exposure d∗, d
and instruments z∗, z , assume the following potential outcomes
model

Y (d∗,z∗)
i −Y (d,z)

i = (
z∗ − z

)′
φ + (

d∗ − d
)
β (1)

E
[
Y (0,0)
i |Zi.

] = Z′
i.ψ, (2)

where φ measures the direct effect of z on Y , and ψ represents
the presence of unmeasured confounders that affect both the
instruments and the outcome.

We have a random sample {Yi,Di,Z′
i.}ni=1. Combining (1) and

(2), the observed datamodel for the random sample is given by

Yi = Diβ + Z′
i.α+ εi, (3)
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where α = φ + ψ;

εi = Y (0,0)
i − E

[
Y (0,0)
i |Zi.

]
and hence E[εi|Zi.] = 0. For ease of exposition, we further
assume that E[ε2i |Zi.] = σ 2

ε .
The KZCS definition of a valid instrument is then linked

to the exclusion restriction and given as follows: Instrument
j, j ∈ {1, . . . , L}, is valid if α j = 0 and it is invalid if α j �= 0. As
in the KZCS setting, we are interested in the identification and
estimation of the scalar treatment effect β in large samples with
a fixed number L of potential instruments.

Let y and d be the n-vectors of n observations on {Yi} and
{Di}, respectively, and let Z be the n × L matrix of potential
instruments. As an intercept is implicitly present in the model,
y, d, and the columns of Z have all been taken in deviation from
their samplemeans. Following the notation of Zou (2006), letZA
be the set of invalid instruments, A = { j : α j �= 0} and αA the
associated coefficient vector. The oracle instrumental variables
or two-stage least square (2SLS) estimator is obtained when the
set ZA is known. Let RA = [d ZA ], the oracle 2SLS estimator is
then given by

θ̂or =
(
β̂or
α̂A

)
= (

R′
APZRA

)−1 R′
APZy. (4)

Let d̂ = PZd, with individual elements D̂i, then θ̂or is the OLS
estimator in the model

Yi = D̂iβ + Z′
A,i.αA + ξi,

where ξi is defined implicitly, and hence

α̂A = (
Z′
AMd̂ZA

)−1 Z′
AMd̂y = (

Z′
AMd̂ZA

)−1 Z′
AMd̂PZy. (5)

The oracle 2SLS estimator for β is given by

β̂or = (̂
d′MZA d̂

)−1
d̂′MZAy.

Under standard assumptions, as defined below,
√
n

(
β̂or − β

) d−→ N
(
0, σ 2

βor

)
, (6)

where

σ 2
βor

= σ 2
ε

(
E[Zi.Di]′E[Zi.Z′

i.]
−1E[Zi.Di]

−E[ZA,i.Di]′E[ZA,i.Z′
A,i.]

−1E[ZA,i.Di]
)−1
. (7)

The vector d̂ is the linear projection of d on Z. If we define
γ̂ = (Z′Z)−1Z′d, then d̂ = Zγ̂ , or D̂i = Z′

i.γ̂ . We specify

Di = Z′
i.γ + vi, (8)

where γ = E[Zi.Z′
i.]−1E[Zi.Di], and henceE[Zi.vi] = 0. Further,

as in KZCS, let � = E[Zi.Z′
i.]−1E[Zi.Yi] = γβ + α. Then define

π j as

π j ≡ 
 j

γ j
= β + α j

γ j
, (9)

for j = 1, . . . , L. Theorem 1 in KZCS states the conditions
under which, given knowledge of γ and �, a unique solution
exists for values of β and α j. A necessary and sufficient condi-
tion to identify β and the α j is that the valid instruments form
the largest group, where instruments form a group if they have
the same value of π . Corollary 1 in KZCS then states a sufficient

condition for identification. Let s = ||α||0 be the number of
invalid instruments. A sufficient condition is that s < L/2, as
then clearly the largest group is formed by the valid instruments.

In model (3), some elements of α are assumed to be zero, but
it is not known ex ante which ones they are and the selection
problem therefore consists of correctly identifying those instru-
ments with nonzero α. KZCS proposed to estimate the parame-
ters α and β by using l1 penalization on α and to minimize

(̂
α(n), β̂ (n)

) = argmin
α,β

1
2
‖PZ

(
y − dβ − Zα

) ‖22 + λn‖α‖1,
(10)

where ‖α‖1 = ∑
j |α j|. This method is closely related to the

Lasso, and the regularization parameter λn determines the
sparsity of the vector α̂(n). From (5), a fast two-step algorithm
is proposed as follows. For a given λn solve

α̂(n) = argmin
α

1
2
‖Md̂PZy − Md̂Zα‖22 + λn‖α‖1 (11)

and obtain β̂ (n) by

β̂ (n) = d̂′ (y − Zα̂(n)
)

d̂′̂d
. (12)

To find α̂(n) in (11), the Lassomodification of the LARS algo-
rithmof Efron et al. (2004) can be used andKZCShad developed
an R-routine for this purpose, called sisVIVE (some invalid and
some valid IV estimator), where the regularization parameter λn
is obtained by cross-validation.

For the random variables and iid sample {Yi,Di,Z′
i.}ni=1, and

model (3) and (8), we assume throughout that the following con-
ditions hold:
Assumption 1. E[Zi.Z′

i.] = Q, with Q a finite and full-rank
matrix.
Assumption 2. Let ui = (εivi)

′. Then E[ui] = 0; E[uiu′
i] =[

σ 2
ε σεv

σεv σ 2
v

]
= . The elements of are finite.

Assumption 3. plim(n−1Z′Z) = E[Zi.Z′
i.]; plim(n−1Z′d) =

E[Zi.Di]; plim(n−1Z′ε) = E[Zi.εi] = 0; plim(n−1Z′v) = E[Zi.
vi] = 0; plim(n−1 ∑n

i=1 ui) = 0; plim(n−1 ∑n
i=1 uiu

′
i) = .

Assumption 4. γ = (E[Zi.Z′
i.])−1E[Zi.Di], γ j �= 0, j = 1, . . . , L.

The setting is thus a relatively straightforward one with fixed
parameters β , α, and γ , and fixed number L � n of potential
instruments. This is the setting underwhich the oracle 2SLS esti-
mator has the limiting distribution (6), and is a setting of interest
inmany applications. To identify in this simple setting an ex ante
unknown subset of invalid instruments using the Lasso is chal-
lenging, as highlighted in the next section where we investigate
the irrepresentable condition for this setting.

For the case of many weak instruments, even the oracle 2SLS
estimator would not be the estimator of choice, due to its poor
asymptotic performance, and the median estimator may not be
consistent. Oracle estimators with better asymptotic properties
in this setting are the limited information maximum likelihood
(LIML) estimator, see Bekker (1994) andHansen, Hausman and
Newey (2008), or the continuous updating estimator (CUE), see
Newey andWindmeijer (2009). Selection of invalid instruments
in this setting is outside the scope of this article.
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3. Irrepresentable Condition

As Z′Md̂Md̂PZy = Z′Md̂PZy = Z′Md̂y, it follows that

‖Md̂
(
PZy − Zα

) ‖22 = y′PZMd̂PZy − 2y′Md̂Zα+ α′Z′Md̂Zα

= y′PZMd̂PZy − 2y′Z̃α+ α′Z̃′Z̃α,

where Z̃ = Md̂Z. As

‖y − Z̃α‖22 = y′y − 2y′Z̃α+ α′Z̃′Z̃α,

it follows that the Lasso estimator α̂(n) as defined in (11) can
equivalently be obtained as

α̂(n) = argmin
α

1
2
‖y − Z̃α‖22 + λn‖α‖1. (13)

This minimization problem looks very much like a standard
Lasso approach with Z̃ as explanatory variables. However, an
important difference is that Z̃does not have full rank, but its rank
is equal to L − 1. This is related to the standard Lasso case where
we have an overcomplete dictionary implying that the OLS solu-
tion is not feasible. Intuitively, we cannot set λn = 0 in (13) as we
have to shrink at least one element of α to zero to identify the
parameter β . All just-identified models with L − 1 instruments
included as invalid result in a residual correlation of 0, and hence
setting λn = 0 does not lead to a unique 2SLS estimator.

We assume throughout that E [̃Zi.Z̃′
i.] is finite. Let

C = plim(n−1Z̃′Z̃) , then it follows from Assumptions 1, 3,
and 4 that C = Q − Qγ(γ ′Qγ )−1γ ′Q is finite.

We follow Zhao and Yu (2006) and Zou (2006), who devel-
oped the irrepresentable conditions for consistent Lasso variable
selection. As before, let A = { j : α j �= 0} and assume wlog that
A = {1, 2, . . . , s}, s < L. (We will use subscripts A and 1 inter-
changeably from here onward, and subscript 2 for associations
with the set Ac = { j : α j = 0}.) Let

C =
[
C11 C′

21
C21 C22

]
, (14)

where C11 is an s × s matrix. Further, define Ân = { j : α̂(n)j �=
0}. Let s(α1) denote the vector sgn(α1), where α1 = αA =
(α1, . . . , αs)

′, sgn(a) = 1 if a > 0, sgn(a) = −1 if a < 0, and
sgn(a) = 0 if a = 0. The irrepresentable condition∥∥C21C−1

11 s (α1)
∥∥

∞ < 1, (15)

is an (almost) necessary and sufficient condition for consistent
Lasso variable selection. While (15) refers to the formulation of
the weak irrepresentable condition of Zhao and Yu (2006), they
showed that in this setting of a random design with fixed L and
constant parameters α, their strong and weak irrepresentable
conditions are equivalent to (15) almost surely (Zhao and Yu
2006, p. 2544).

If (15) is satisfied, and if λn satisfies λn/n → 0 and λn/
√
n →

∞, then limn→∞ P(Ân = A) = 1, see Theorem 1 in Zhao and
Yu (2006). Necessity means that consistent model selection
implies the irrepresentable condition. As Zou (2006) showed,
if limn→∞ P(Ân = A) = 1 and under the same conditions
λn/n → 0 and λn/

√
n → ∞, then the following conditionmust

hold ∥∥C21C−1
11 s (α1)

∥∥
∞ ≤ 1. (16)

While in the standard linear model setup λn/n → 0 guarantees
estimation consistency, see Lemma 1 in Zou (2006), this is not
the case in the IV setup here because of the rank deficiency of Z̃.
Choosing λn = 0 in the standard setup would simply result in
consistent OLS estimation of a model that includes all variables,
which is not possible here as discussed above. Therefore, if the
necessary irrepresentable condition (16) does not hold, consis-
tent Lasso selection is not possible and even λn/n → 0 does not
guarantee estimation consistency in this rank deficient IV case.

We now analyze under what conditions the irrepresentable
condition does or does not hold in the IV setup, focusing par-
ticularly on the relative strengths γ1 and γ2 of the invalid and
valid instruments.

Partition Q = plim(n−1Z′Z) and γ commensurate with the
partitioning of C as

Q =
[
Q11 Q′

21
Q21 Q22

]
, γ =

(
γ1
γ2

)
, (17)

where the instruments have been standardized such the diago-
nal elements of Q are equal to 1. In contrast to C, Q is not rank
deficient. Then for the Lasso specification (13), we have the
following result.

Proposition 1. Consider the observational models (3) and
(8) under Assumptions 1, 3, and 4. Let C = plim(n−1Z̃′Z̃);
Q = plim(n−1Z′Z); and C11, C21, Q11, Q21, Q22, γ1, and γ2 as
specified in (14) and (17 ). Then C21C−1

11 is given by

C21C−1
11 = Q21Q−1

11 − Q̃22γ2
γ ′
1 + γ ′

2Q21Q−1
11

γ ′
2Q̃22γ2

, (18)

where

Q̃22 = Q22 − Q21Q−1
11 Q

′
21 = plim

(
n−1Z′

2MZ1Z2
)
.

Proof. See Section A.1 in the supplementary materials. �

Proposition 1 shows that consistent selection of the instru-
ments is not only affected by the correlation structure of the
instruments, but also by the values of γ1 and γ2. The next Propo-
sition derives conditions on γ1 and γ2 under which the nec-
essary condition for consistent variable selection (16) does not
hold.

Proposition 2. Under the assumptions of Proposition 1, if
|γ ′

1s(α1)| > ‖γ2‖1, then
∥∥C21C−1

11 s(α1)
∥∥

∞ > 1.

Proof. It follows from (18) that∣∣γ ′
2C21C−1

11 s (α1)
∣∣ = ∣∣γ ′

1s (α1)
∣∣ .

Therefore,

‖γ2‖1
∥∥C21C−1

11 s (α1)
∥∥

∞ ≥ ∣∣γ ′
1s (α1)

∣∣
∥∥C21C−1

11 s (α1)
∥∥

∞ ≥
∣∣γ ′

1s (α1)
∣∣

‖γ2‖1
.

Hence,
∥∥C21C−1

11 s(α1)
∥∥

∞ > 1 if |γ ′
1s(α1)| > ‖γ2‖1. �

Remark 1. If s(α1) = s(γ1), then |γ ′
1s(α1)| = ‖γ1‖1, its maxi-

mum. Regardless of the correlation structure of the instruments,∥∥C21C−1
11 s(α1)

∥∥
∞ > 1 and hence the necessary condition for

consistent Lasso variable selection does not hold in that case
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if ‖γ1‖1 > ‖γ2‖1, that is, when the invalid instruments are
stronger (in l1-norm) than the valid ones.

From Proposition 1, we can investigate consistent selection
for various cases of interest. Related to the Monte Carlo simula-
tions in KZCS and in Section 5, Corollary 1 considers the case
with γ1 = γ̃1ιs and γ2 = γ̃2ιL−s.

Corollary 1. If γ1 = γ̃1ιs and γ2 = γ̃2ιL−s, then |γ ′
1s(α1)| >

‖γ2‖1 if | γ̃1
γ̃2

||ι′ss(α1)| > L − s. Let g = |ι′ss(α1)|, then it fol-
lows that

∥∥C21C−1
11 s(α1)

∥∥
∞ > 1 if | γ̃1

γ̃2
|g > L − s. Hence, if g = s,

||C21C−1
11 s(α1)||∞ > 1 if s > L/(1 + | γ̃1

γ̃2
|).

When instruments are uncorrelated, such thatQ = IL, it fol-
lows that

∥∥C21C−1
11 s(α1)

∥∥
∞ < 1 if s < L − | γ̃1

γ̃2
|g. Hence, if g = s,

||C21C−1
11 s(α1)||∞ < 1 if s < L/(1 + | γ̃1

γ̃2
|).

Remark 2. For equal strength instruments, γ̃1 = γ̃2, the result
of Corollary 1 shows that the necessary condition (16) does not
hold for all possible configurations ofα1 if s > L/2. For uncorre-
lated equal strength instruments, the irrepresentable condition
(15) holds for all possible configurations of α1 if s < L/2.

4. A Consistent Estimator when s < L/2 and Adaptive
Lasso

As the results above highlight, the Lasso path may not include
the correctmodel, leading to an inconsistent estimator ofβ . This
is the case even if less than 50% of the instruments are invalid
because of differential instrument strength and/or correlation
patterns of the instruments. Indeed, we find in the simulation
exercise of Section 5.1 that the Lasso selects the valid instru-
ments as invalid if these are relatively weak, ‖γ2‖1 < ‖γ1‖1, for
a design with s(α1) = s(γ1). In this section, we present an esti-
mation method that consistently selects the invalid instruments
when less than 50%of the potential instruments are invalid. This
is the same condition as that for the Lasso selection problem to
satisfy the irrepresentable condition for equal strength uncor-
related instruments, but the proposed estimator below is con-
sistent when the instruments have differential strength and/or
have a general correlation structure.

We consider the adaptive Lasso approach of Zou (2006) using
an initial consistent estimator of the parameters. In the standard
linear case, the OLS estimator in the model with all explanatory
variables included is consistent. As explained in Section 3, in
the instrumental variables model this option is not available.We
build on the result of Han (2008), who shows that the median of
the L IV estimates of β using one instrument at the time is a
consistent estimator of β in a model with invalid instruments,
but where the instruments cannot have direct effects on the out-
come, unless the instruments are uncorrelated.

Let �̂ = (Z′Z)−1Z′y; γ̂ = (Z′Z)−1Z′d and let π̂ be the
L-vector with jth element

π̂ j = 
̂ j

γ̂ j
. (19)

Under the standard assumptions, Theorem 1 shows that the
median of the π̂ j, denoted β̂m, is a consistent estimator for β
when s < L/2, without any further restrictions on the relative
strengths or correlations of the instruments. Theorem 1 also

shows that
√
n(β̂m − β) converges in distribution to that of an

order statistic. From these results it follows that the consistent
estimator α̂m = �̂− γ̂β̂m can be used for the adaptive Lasso
approach of Zou (2006), resulting in oracle properties of the
resulting estimator of β .

Theorem 1. Under model specifications (3) and (8) with
Assumptions 1–4, let π̂ be the L-vector with elements as defined
in (19). If s < L/2, then the estimator β̂m defined as

β̂m = median (π̂)

is a consistent estimator for β ,

plim
(
β̂m

) = β.

Let π̂2 be the L − s vector with elements π̂ j, j = s + 1, . . . , L.
The limiting distribution of β̂m is given by

√
n

(
β̂m − β

) d−→ q[l],L−s,

where for L odd, q[l],L−s is the lth-order statistic of the limiting
normal distribution of

√
n(π̂2 − βιL−s), where l is determined

by L, s, and the signs of δ j = α j

γ j
, j = 1, . . . , s. For L even, q[l],L−s

is defined as the average of either the [l] and [l − 1]-order statis-
tics, or the [l] and [l + 1]-order statistics.

Proof. See Section A.2 in the supplementary materials. �

Given the consistent estimator β̂m, we obtain a consistent
estimator for α as

α̂m = (
Z′Z

)−1 Z′ (y − dβ̂m
) = �̂− γ̂β̂m,

which can then be used for the adaptive Lasso specification of
(13) as proposed by Zou (2006). The adaptive Lasso estimator
for α is defined as

α̂
(n)
ad = argmin

α

1
2
‖y − Z̃α‖22 + λn

L∑
l=1

|αl |∣∣α̂m,l∣∣υ , (20)

and, for given values of υ can be estimated straightforwardly
using the LARS algorithm, see Zou (2006). The resulting adap-
tive Lasso estimator for β is obtained as

β̂
(n)
ad =

d̂′
(
y − Zα̂(n)ad

)
d̂′̂d

.

As the result for the limiting distribution of the median esti-
mator shows, β̂m, although converging at the

√
n rate, has an

asymptotic bias. This clearly also results in an asymptotic bias of
α̂m. As

√
n(̂αm − α) = Op(1), Theorem2 togetherwithRemark

1 in Zou (2006) states the following properties of the adaptive
Lasso estimator α̂(n)ad , where Âad,n = { j : α̂(n)ad, j �= 0}.

Proposition 3. Suppose that λn = o(
√
n) and (

√
n)ν−1λn → ∞,

then the adaptive Lasso estimator α̂(n)ad satisfies
1. Consistency in variable selection: limn→∞ P(Âad,n =

A) = 1.
2. Asymptotic normality:

√
n(̂α(n)ad,A − αA)

d−→ N(0, σ 2

C−1
11 ).

Proof. See Zou (2006), Theorem 2 and Remark 1. �
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From the results of Proposition 3, it follows that the limiting
distribution of β̂ (n)ad is that of the oracle 2SLS estimator of β , as
stated in the next Corollary.

Corollary 2. Under the conditions of Proposition 3, the limiting
distribution of the adaptive Lasso estimator β̂ (n)ad is given by

√
n
(
β̂
(n)
ad − β

) d−→ N
(
0, σ 2

βor

)
, (21)

with σ 2
βor

as defined in (7).

5. Simulation Results

5.1. Relative Strength of Instruments

We start with presenting some estimation results from a Monte
Carlo exercise which is similar to that in KZCS. The data are
generated from

Yi = Diβ + Z′
i.α+ εi

Di = Z′
i.γ + vi,

where (
εi
vi

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
;

Zi. ∼ N(0, IL);
and we set β = 0; L = 10; ρ = 0.25; s = 3, and the first s
elements of α are equal to a = 0.2. Further, γ1 = γ̃1ιs and
γ2 = γ̃2ιL−s. Note that none of the estimation results presented
here and below depend on the value of β . Table 1 presents
estimation results for estimators of β in terms of bias, stan-
dard deviation, root mean squared error (rmse), and median
absolute deviation (mad) for 1000 replications for sample sizes
of n = 500, n = 2000, and n = 10,000 for an equal strength
design, with γ̃1 = γ̃2 = 0.2.

The information content for IV estimation can be summa-
rized by the concentration parameter, see Rothenberg (1984).

For the oracle estimation of β by 2SLS, the concentration
parameter is given by μ2

n = γ ′
2Z′

2MZ1Z2γ2/σ
2
v . For this data-

generating process with independent instruments, the concen-
tration parameter is therefore approximately n(L − s)(0.22) and
hence equal to 140 , 560, and 2800 for the three sample sizes. μ2

n
can be seen as a populationWald statistic for testingH0 : γ2 = 0.
The corresponding population F-statistics are equal to n(0.22),
or 20, 80, and 400 for the sample sizes 500, 2000, and 10,000,
respectively.

A summary measure of the information content for Lasso
selection is the (squared) signal-to-noise ratio (SNR), denoted
by η2. It is defined as

η2 = α′
1C11α1

σ 2
ε

,

see, for example, Bühlmann and van der Geer (2011, p. 25).
Analogously to the concentration parameter, nη2 can be inter-
preted as a populationWald statistic for testingH0 : α1 = 0. We
analyze the effects of varyingμ2

n and η2 more extensively in Sec-
tion B.2 in the supplementary materials, where we derive that,
for this design,

η2 = (L − s) a2(
γ̃1
γ̃2

)2
+ L−s

s

, (22)

resulting in η2 = 0.084 for the parameter values considered in
Table 1.

The “2SLS” results are for the naive 2SLS estimator of β
that treats all instruments as valid. The probability limit of this
estimator is given by

plim
(
β̂naive

) = β + γ ′Qα
γ ′Qγ

= β + γ ′
1Q11α1 + γ ′

2Q21α1

γ ′
1Q11γ1 + 2γ ′

2Q21γ1 + γ ′
2Q22γ2

. (23)

Table . Estimation results for SLS and Lasso estimators for β ; L = 10, s = 3, γ̃1 = γ̃2 .

av. # instr freq. all
selected as invalid invalid instr

β bias std dev rmse mad [min, max] selected

n = 500
SLS . . . .  
SLS or . . . .  
Lassocv . . . . . [,] .
Post-Lassocv . . . .
Lassocvse . . . . . [,] .
Post-Lassocvse . . . .
n = 2000
SLS . . . .  
SLS or . . . .  
Lassocv . . . . . [,] 
Post-Lassocv . . . .
Lassocvse . . . . . [,] 
Post-Lassocvse . . . .
n = 10,000
SLS . . . .  
SLS or . . . .  
Lassocv . . . . . [,] 
Post-Lassocv . . . .
Lassocvse . . . . . [,] 
Post-Lassocvse . . . .

NOTE: Results from  MC replications; β = 0; ρ = 0.25; a = 0.2; γ̃2= 0.2.

F. WINDMEIJER ET AL.1344



Therefore, in the design specified here, we have plim(β̂naive) =
s/L = 0.3.

The “2SLS or” is the oracle 2SLS estimator that correctly
includes the three invalid instruments in the model as explana-
tory variables. For the Lasso estimates, the value for λn has been
obtained by 10-fold cross-validation, using the one-standard
error rule, as in KZCS. This estimator is denoted “Lassocvse” and
is the one produced by the sisVIVE routine. We also present
results for the cross-validated estimator that does not use the
one-standard error rule, denoted “Lassocv.” For the Lasso esti-
mation procedure, we standardize throughout such that the
diagonal elements of Z̃′Z̃/n are equal to 1.

We further present results for the so-called post-Lasso esti-
mator, see, for example, Belloni et al. (2012), which is called the
LARS-OLS hybrid by Efron et al. (2004). This is here simply
the 2SLS estimator in the model that includes ZÂn

, the set of
instruments with nonzero estimated Lasso coefficients. Clearly,
when Ân = A, the post-Lasso 2SLS estimator is equal to the ora-
cle 2SLS estimator. The post-Lasso 2SLS estimator is expected to
have a smaller bias as it avoids the bias in the Lasso estimate of β
due to the shrinkage of the Lasso estimate of α toward 0, see also
Hastie, Tibshirani, and Friedman (2009, p. 91). This shrinkage
bias effect on β̂ (n) formodels whereA ⊆ Ân is in the direction of
the bias of β̂naive, where α is assumed to be 0. (In an OLS setting,
Belloni and Chernozhukov (2013) showed that the post-Lasso
estimator can perform at least as well as Lasso in terms of rate
of convergence, but is less biased even if the Lasso-based model
selection misses some components of the true model.)

Further entries in Table 1 are the average number of instru-
ments selected as invalid, that is, the average number of instru-
ments in Ân = { j : α̂(n)j �= 0}, together with the minimum and
maximum number of selected instruments, and the proportion
of times the instruments selected as invalid include all three
invalid instruments.

The results in Table 1 reveal some interesting patterns. First
of all, the Lassocv estimator outperforms the Lassocvse estimator
in terms of bias, rmse, and mad for all sample sizes, but this is
reversed for the post-Lasso estimators, that is, the post-Lassocvse
outperforms the post-Lassocv. The Lassocv estimator selects on
average around 6.5 instruments as invalid, which is virtually
independent of the sample size. The Lassocvse estimator selects
on average around 3.8 instruments as invalid for n = 2000 and
n = 10,000, but fewer, 3.16 for n = 500. Although the three
invalid instruments are always jointly selected as invalid for
the larger sample sizes, the Lassocvse is substantially biased,
the biases being larger than twice the standard deviations. The
post-Lassocvse estimator performs best, but is still outperformed
by the oracle 2SLS estimator at n = 10,000. Although the
post-Lassocvse estimator has a larger standard deviation than
the Lassocvse estimator, it has a smaller bias, rmse, and mad for
all sample sizes.

We focus below on the performance of the median and adap-
tive Lasso estimators for a design with invalid instruments that
are stronger than the valid ones, but for comparison we present
results for these estimators for this equal strength instruments
design in Section B.1 in the supplementarymaterials, which also
includes a more detailed analysis of the differences in perfor-
mances of the Lasso and post-Lasso estimators in this design.

Table 2 presents estimation results for the same Monte Carlo
design as in Table 1, but now with stronger invalid than valid
instruments, with γ̃2 = 0.2 and γ̃1 = 3γ̃2. At these relative val-
ues, the necessary condition (16) is not satisfied and the Lasso
selection will here select the valid instruments as invalid. Note
that the behavior of the oracle 2SLS estimator is the same as in
Table 1. In this case, β + a/γ̃2 = 0 + 0.2/0.6 = 0.33 , which is
the parameter value estimated by the invalid instruments. From
(22), it follows that the SNR is smaller here, with η2 = 0.0247.
The estimation results for the adaptive Lasso are based on

Table . Estimation results for estimators of β ; L = 10, s = 3, γ̃1 = 3γ̃2 .

av. # instr freq. all
selected as invalid invalid instr

β bias std dev rmse mad [min, max] selected

n = 500
Post-Lassocv . . . . . [,] .
Post-Lassocvse . . . . . [,] 
β̂m . . . .
ALassocv . . . . . [,] .
Post-ALassocv . . . .
ALassocvse . . . . . [,] .
Post-ALassocvse . . . .
n = 2000
Post-Lassocv . . . . . [,] .
Post-Lassocvse . . . . . [,] .
β̂m . . . .
ALassocv . . . . . [,] .
Post-ALassocv . . . .
ALassocvse . . . . . [,] .
Post-ALassocvse . . . .
n = 10,000
Post-Lassocv . . . . . [,] 
Post-Lassocvse . . . . . [,] 
β̂m . . . .
ALassocv . . . . . [,] 
Post-ALassocv . . . .
ALassocvse . . . . . [,] 
Post-ALassocvse . . . .

NOTE: Results from  MC replications; a = 0.2; β = 0; γ̃2= 0.2, ρ = 0.25.
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setting υ = 1. The resulting estimators are denoted as “ALasso.”
As L is even here, themedian is defined as β̂m = (π̂[5] + π̂[6])/2,
where π̂[ j] is the jth-order statistic.

The results in Table 2 confirm that, for large sample sizes, the
Lasso selects the valid instruments as invalid because of the rel-
ative strength of the invalid instruments. The post-ALassocvse
estimator does not perform well for n = 500, but does for the
sample sizes of n = 2000, and n = 10,000, with results for the
latter very similar to the oracle 2SLS results. The Post-ALassocv
estimator performs better at n = 500, as it selects more instru-
ments as invalid with a larger proportion correctly selecting all
invalid instruments, although it is outperformed there by the
simple median estimator β̂m.

5.2. Alternative Stopping Rule

The results for the Lasso estimator in Table 1 show that the
10-fold cross-validation method tends to select too many valid
instruments as invalid over and above the invalid ones, and that
the ad hoc one-standard error rule does improve the selection.
The fact that the cross-validation method selects too many vari-
ables is well known, see, for example, Bühlmann and van der
Geer (2011), who argued that use of the cross-validationmethod
is appropriate for prediction purposes, but that the penalty
parameter needs to be larger for variable selection, as achieved
by the one-standard error rule. Selecting valid instruments as
invalid in addition to correctly selecting the invalid instruments
clearly does not lead to an asymptotic bias, but results in a less
efficient estimator as compared to the oracle estimator.

We propose a stopping rule for the LARS/Lasso algorithm
based on the approach of Andrews (1999) formoment selection,
which is particularly well-suited for the IV selection problem.
We can use this approach because the number of instruments
L � n. This stopping rule is computationally less expensive than
cross-validation.

Consider again the oracle model

y = dβ + ZAαA + ε = RAθA + ε. (24)

Let gn(θA) = n−1Z′(y − RAθA), and Wn a kz × kz weight
matrix, then the oracle generalizedmethod ofmoments (GMM)
estimator is defined as

θ̂A,gmm = argmin
θA

gn(θA)′W−1
n gn(θA),

see Hansen (1982). 2SLS is a one-step GMM estimator, setting
Wn = n−1Z′Z. Given themoment conditionsE[Zi.εi] = 0, 2SLS
is efficient under conditional homoscedasticity, E(ε2i |Zi. ) = σ 2

ε .
Under general forms of conditional heteroscedasticity, an effi-
cient two-step oracle GMM estimator is obtained by setting

Wn = Wn (̂θA,1) = n−1
n∑

i=1

(
(yi − R′

A,i.̂θA,1)
2Zi.Z′

i.
)
,

where θ̂A,1 is an initial consistent estimator, with a natural choice
the 2SLS estimator. Then, under the null that themoment condi-
tions are correct, E[Zi.εi] = 0, the Hansen (1982) J-test statistic
and its limiting distribution are given by

Jn
(̂
θA,gmm

)
= ngn

(̂
θA,gmm

)′
W−1

n

(̂
θA,1

)
gn

(̂
θA,gmm

)
d→ χ2

(L−dim(RA))
.

For any set A+, such that A ⊂ A+, we have that

Jn
(̂
θA+,gmm

)
d→ χ2

(L−dim(RA+ ))
,

whereas for any set A−, such that A �⊂ A−, Jn (̂θA−,gmm) =
Op(n).

Note that the J-test is a robust score, or Lagrange multiplier,
test for testing H0 : αC = 0 in the just identified specification

y = dβ + ZBαB + ZCαC + ε,

where ZB is a kB set of instruments included in the model and
ZC is any selection of L − kB − 1 instruments from the L − kB
set of instruments not in ZB, see, for example, Davidson and
MacKinnon (1993, p. 235). This makes clear the link between
the J-test and testing for additional invalid instruments of the
form as specified in model (3).

We can now combine the LARS/Lasso algorithm with the
Hansen J-test, which is a directed downward testing proce-
dure in the terminology of Andrews (1999). Compute Jn(θ̂Â[ j]

n
)

at every LARS/Lasso step j = 0, 1, 2, . . ., where Â[0]
n = ∅ and∥∥Â[1]

n

∥∥
0 = 1, compare it to a corresponding critical value ζn,L−k

of the χ2
(L−k) distribution, where k = dim(RÂ[ j]

n
) . We then select

the model with the largest degrees of freedom L − k, for which
Jn(θ̂Â[ j]

n
) is smaller than the critical value. If two models of the

same dimension pass the test, which can happen with a Lasso
step, the model with the smallest value of the J-test gets selected.
(If there is no empirical evidence at all for any invalid instru-
ments, that is, if Jn(θ̂Â[0]

n
) is smaller than its corresponding crit-

ical value, then the model with all instruments as valid gets
selected.) Clearly, this approach is a post-Lasso approach, where
the LARS/Lasso algorithm is used purely for selection of the
invalid instruments. For consistent model selection, the critical
values ζn,L−k need to satisfy

ζn,L−k → ∞ for n → ∞, and ζn,L−k = o (n) , (25)

see Andrews (1999).
As the oracle model is on the adaptive LARS/Lasso path

in large samples, this approach leads to consistent selec-
tion, limn→∞ P(Âad

n,ah = A) = 1, the subscript ah standing for
Andrews/Hansen. AsGuo et al. (2018, Theorem 2) showed, con-
sistent selection implies that the limiting distribution of the 2SLS
estimator β̂Âad

n,ah
is the same as that of the oracle 2SLS estima-

tor, that is,
√
n(β̂Âad

n,ah
− β)

d→ N(0, σ 2
βor
).We call β̂Âad

n,ah
the post-

ALassoah estimator. This approach also leads to consistent selec-
tion along the Lasso path when the irrepresentable condition
(15) holds, resulting in oracle properties of the resulting post-
Lassoah estimator.

Let ζn,L−k = χ2
L−k(pn) be the 1 − pn quantile of the χ2

L−k dis-
tribution. Here, pn is the p-value of the test. This combination of
the Andrews/Hansen method with the LARS/Lasso steps there-
fore results in having to choose a p-value pn instead of a penalty
parameter λn. Keeping n fixed, choosing a large value for pn
leads to selecting a larger set as invalid instruments as compared
to choosing a smaller value for pn. Finite sample inference will
not be straightforward, as this method is essentially a sequential
approach where the model at step j is only considered when the
model at step j − 1 is rejected. Using the consistent selection
properties, wewill investigate the behavior of theWald test in the
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Table . Results for post-(A)Lassoah SLS estimators for β ; L = 10, s = 3.

av. # instr freq. all
selected as invalid invalid instr

n bias std dev rmse mad [min, max] selected

post-Lassoah
γ̃1 = γ̃2  . . . . . [,] .

 . . . . . [,] 
, . . . . . [,] 

post-ALassoah
γ̃1 = 3γ̃2  . . . . . [,] .

 . . . . . [,] .
, . . . . . [,] 

NOTE: Results from  MC replications; β = 0; a = 0.2; γ̃2= 0.2; ρ = 0.25.

next section and find in our simulation designs that this method
performs quite well and similar to the ALassocvse method in
the unequal instrument strength design, and also performs
well using the post-Lassoah estimator for the equal strength
design.

Table 3 presents the estimation results using this stop-
ping rule as a selection device for the Lasso estimator for
the design with equal strength instruments and the adaptive
Lasso estimator for the unequal instrument strength design,
as in Tables 1 and 2. We denote the resulting 2SLS estima-
tors as ”post-(A)Lassoah.” The p-values here are chosen as
pn = 0.1/ ln(n), following Belloni et al. (2012), and are equal
to 0.0161, 0.0132, and 0.0109 for n equal to 500, 2000, and
10,000, respectively. For the equal strength design, the ah
approach selects too few invalid instruments for n = 500,
resulting in an upward bias, with bias, std dev, rmse, and mad
very similar to those of the post-Lassocvse estimator in Table 1.
For n = 2000 and n = 10,000, this post-Lasso procedure per-
forms well with properties very similar to that of the oracle
2SLS estimator, and with smaller bias, rmse, and mad than the
post-Lassocvse method. For the unequal strength design, for
n = 10,000 the results are virtually identical to those of the ora-
cle and post-ALassocvse estimators, whereas the post-ALassoah
estimator performs better in terms of bias, std dev, rmse,
and mad than the post-ALassocvse estimator when n = 2000.
Again, when n = 500, the method does not select the invalid
instruments.

5.3. Inference

From the limiting distribution result (21), a simple approach to
estimating the asymptotic variance of the post-ALasso 2SLS esti-
mator for β is by calculating the standard 2SLS variance estima-
tor. The post-ALasso 2SLS estimator is given by

β̂
(n)
ad,post =

(̂
d′MZÂad,n

d̂
)−1

d̂′MZÂad,n
y

and its estimated variance given by

v̂ar
(
β̂
(n)
ad,post

)
= σ̂ 2

ε

(̂
d′MZÂad,n

d̂
)−1

, (26)

where σ̂ 2
ε = ε̂′̂ε/n, ε̂ = y − dβ̂ (n)ad,post − ZÂad,n

α̂
(n)
Âad,n,post

. Under
the conditions of Proposition 3, the standard assumptions and
conditional homoscedasticity, nv̂ar(β̂(n)ad,post)

p→ σ 2
βor
. A standard

robust version, robust to general forms of heteroscedasticity, is

given by

v̂arr
(
β̂
(n)
ad,post

)
=

(̂
d′MZÂad,n

d̂
)−1

d̂′MZÂad,n
ĤMZÂad,n

d̂
(̂
d′MZÂad,n

d̂
)−1

,

where Ĥ is an n × n diagonal matrix with diagonal elements
Ĥii = ε̂2i , for i = 1, . . . , n. The robust Wald test for the null
H0 : β = β0 is then given by

Wβ,r =
(
β̂
(n)
ad,post − β0

)2
v̂arr

(
β̂
(n)
ad,post

) .

From the results for the post-ALassocvse and post-ALassoah
estimators for the unequal strength instruments design as
presented in Tables 2 and 3, respectively, one would expect this
approach to work well for the large sample case, n = 10,000, as
there the estimation results are very close to those of the oracle
2SLS estimator. The robust Wald test for the null H0 : β = 0,
the true value of β , at the 10% level for n = 10,000 has a rejec-
tion frequency of 9.3% and 9.2% for the post-ALassocvse and
post-ALassoah estimators, respectively, very close to that of the
robust Wald test based on the oracle 2SLS estimator, which has
a rejection frequency of 9.0%.

For the equal strength instruments design, we perform the
same analysis for the post-Lasso estimators. Figures 1(a)–1(c)
shows the performance of the robust Wald test Wβ,r, its rejec-
tion frequency at the 10% level, as a function of the sample size
in steps of 500, n = 500, 1000, . . . , 5000. Figures 1(a) and 1(b)
shows the results for the post-Lasso and post-ALasso estimators
for the equal strength instruments design. Figure 1(c) shows the
results for the post-ALasso estimators for the unequal strength
instruments design.

Figure 1(a) clearly shows that the Lassocv and Lassocvse pro-
cedures do not result in consistent selection and the resulting
post-Lasso estimators do not have oracle properties. The Wald
test rejection frequencies remain constant for increasing sample
size and larger than those of the oracle estimator. In contrast, the
post-Lassoah estimator behaves very similar to the oracle esti-
mator in this design from n = 1500 onward. Figure 1(b) shows
that both the post-ALassocvse and post-ALassoah behave like the
oracle estimator, again from n = 1500 onward in this design.
The results in Figure 1(c) show that for the unequal instruments
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Figure . (a–c) Rejection frequencies of robust Wald tests for H0: β = 0 at % level as a function of sample size, in steps of . Equal strength instruments design,
Post-Lasso in (a), Post-ALasso in (b). Unequal strength instruments design, Post-ALasso in (c). Based on 1000MC replications for each sample size.

strength design considered here, the performances of the post-
adaptive Lasso estimators are far from that of the oracle estima-
tor in small samples, as expected from the results in Tables 2 and
3. The post-ALassoah behaves like the oracle estimator here from
n = 4000 onward, with the post-ALassocvse estimator behaving
similarly, but having a larger rejection frequency for all sample
sizes considered here that are less than n = 5000.

The results in Tables 1–3 and Figures 1(a)–1(c) show clearly
that the information content in the data, given the parameter
values chosen here, is insufficient at n = 500 for the (adaptive)
Lasso procedures to correctly select the invalid instruments
and hence the resulting estimators have poor properties, far
removed from those of the oracle estimator. At these levels of
information, the ALassocv estimator is actually the preferred
estimator as it counteracts the selection of too few invalid
instruments of the ALassocvse and ALassoah estimators. We
further explore how the performances of the estimators depend
on the information content of the data-generating process in
Section B.2 in the supplementary materials.

6. The Effect of BMI on Diastolic Blood Pressure Using
Genetic Markers as Instruments

We use data on 105,276 individuals from the UK Biobank and
investigate the effect of BMI on diastolic blood pressure (DBP).
See Sudlow et al. (2015) for further information on the UK

Biobank. We use 96 single nucleotide polymorphisms (SNPs) as
instruments for BMI as identified in independent GWAS stud-
ies, see Locke et al. (2015).

With Mendelian randomization studies, the SNPs used as
potential instruments can be invalid for various reasons, such as
linkage disequilibrium, population stratification, and horizon-
tal pleiotropy, see, for example, von Hinke et al. (2016) or Davey
Smith and Hemani (2014). For example, an SNP has pleiotropic
effects if it not only affects the exposure but also has a direct
effect on the outcome. While we guard against population strat-
ification by considering only white European origin individuals
in our data, the use of the Lassomethods can be extremely useful
here to identify the SNPs with direct effects on the outcome and
to estimate the causal effect of BMI on diastolic blood pressure
taking account of this.

Because of skewness, we log-transformed both BMI and
DBP. The linear model specification includes age, age2, and sex,
together with 15 principal components of the genetic related-
ness matrix as additional explanatory variables. Table 4 presents
the estimation results for the causal effect parameter, which is
here the percentage change in DBP due to a 1% change in BMI.
As p-value for the Hansen test-based procedures we take again
0.1/ ln(n) = 0.0086.

The OLS estimate of the causal parameter is equal to 0.206
(s.e. 0.003), whereas the 2SLS estimate treating all 96 instru-
ments as valid is much smaller at 0.087 (s.e. 0.016), with a 95%
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Table . Estimation results, the effect of ln(BMI) on ln(DBP).

estimate rob st err # instr p-value J-test
selected as invalid

OLS . .
SLS . .  .

Lassocv . 
Post-Lassocv . . .
Lassocvse . 
Post-Lassocvse . . .
Post-Lassoah . .  .

median, β̂m .
ALassocv . 
Post-ALassocv . . .
ALassocvse . 
Post-ALassocvse . . .
Post-ALassoah . .  .

NOTE: Sample size n = 105,276; L = 96.

confidence interval of [0.056, 0.118]. The J-test, however, rejects
the null that all the instruments are valid. The Lassocv estima-
tor identifies a large number of 56 instruments as invalid and
the Lassocv estimate is equal to 0.126, the post-Lassocv estimate
is equal to 0.145. The Lassocvse procedure identifies 20 instru-
ments as invalid and the Lassocvse estimate is equal to 0.111. The
post-Lassocvse estimate is larger and equal to 0.142, which is in
line with our findings above that the Lasso estimator is biased
toward the 2SLS estimator that treats all instruments as valid due
to shrinkage. The post-Lassoah procedure selects a subset of 12
instruments as invalid, and the post-Lassoah parameter estimate
is equal to 0.122.

The median estimate β̂m is equal to 0.148. Using this esti-
mate for the adaptive Lasso results in the cvmethod selecting 54
instruments as invalid and the cvse method selecting 17 instru-
ments as invalid. The adaptive Lassoahmethod selects a subset of
11 instruments as invalid. The post-ALassocv, post-ALassocvse,
and post-ALassoah estimates are equal to 0.161, 0.151, and 0.163,
respectively, with the 95% confidence intervals of the post-
ALassocvse and post-ALassoah estimators given by [0.113,0.189]
and [0.127,0.198 ], respectively. These results indicate that the
OLS estimator is less confounded than suggested by the 2SLS
estimation results using all 96 instruments as valid instruments.

The strongest potential instrument is the FTO SNP. For all
Lasso estimators in Table 4, it is selected as an invalid instru-
ment. The value for π̂FTO = −0.009, that is, negative, which is
contrary to the direction of the found causal effect.

The F-test statistic for H0 : γ2 = 0 for the model resulting
from the ALassoah procedure is equal to 18.21 with the associ-
ated estimate of the concentration parameter equal to 1547.81.
The F-test result indicates that the 2SLS estimator may have
some many weak instruments bias, see Stock and Yogo (2005).
However, the LIML (limited information maximum likelihood)
estimator in this model is very similar to the 2SLS estimator and
is equal to 0.159 (s.e. 0.019), indicating that there is not a many
weak instruments problem here, see Davies et al. (2015).

7. Conclusions

Instrumental variables estimation is a well-established pro-
cedure for the identification and estimation of causal effects
of exposures on outcomes where the observed relationships

are confounded by nonrandom selection of exposure. The
main identifying assumption is that the instruments satisfy
the exclusion restriction, that is, they only affect the outcomes
through their relationship with the exposure. In an important
contribution, Kang et al. (2016) showed that the Lasso method
for variable selection can be used to select invalid instruments
in linear IV models, even though there is no prior knowledge
about which instruments are valid.

We have shown here that, even under the sufficient condi-
tion for identification that less than 50% of the instruments are
invalid, the Lasso selection may select the valid instruments as
invalid if the invalid instruments are relatively strong, that is,
the case where an invalid instrument explains more of the expo-
sure variance than a valid instrument. Consistent selection of
invalid instruments also depends on the correlation structure of
the instruments.

We show that amedian estimator is consistent when less than
50% of the instruments are invalid, and its consistency does not
depend on the relative strength of the instruments or their corre-
lation structure. This initial consistent estimator can be used for
the adaptive Lasso estimator of Zou (2006) and we show that it
performswell for larger sample sizes/information settings in our
simulations. This adaptive Lasso estimator has the same limiting
distribution as the oracle 2SLS estimator, and solves the incon-
sistency problem of the Lassomethodwhen the relative strength
of the invalid instruments is such that the Lasso method selects
the valid instruments as invalid.

Supplementary Materials
The document contains the proofs of Proposition 1 and Theorem 1 in Sec-
tion A, and further simulation results and discussions in Section B.

The Stata module “SIVREG” implements the post-ALassoah method.
Further details and documentation are provided in Farbmacher (2017).
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