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Abstract

Wetland ecosystems straddle both terrestrial and aquatic habitats, performing many ecological 

functions directly and indirectly benefitting humans. However, global wetland losses are 

substantial. Satellite remote sensing and classification informs wise wetland management and 

monitoring. Both pixel- and object-based classification approaches using parametric and non-

parametric algorithms may be effectively used in describing wetland structure and habitat, but 

which approach should one select? We conducted both pixel- and object-based image analyses 

(OBIA) using parametric (Iterative Self-Organizing Data Analysis Technique, ISODATA, and 

maximum likelihood, ML) and non-parametric (random forest, RF) approaches in the Barguzin 
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Valley, a large wetland (~500 km2) in the Lake Baikal, Russia, drainage basin. Four Quickbird 

multispectral bands plus various spatial and spectral metrics (e.g., texture, Non-Differentiated 

Vegetation Index, slope, aspect, etc.) were analyzed using field-based regions of interest sampled 

to characterize an initial 18 ISODATA-based classes. Parsimoniously using a three-layer stack 

(Quickbird band 3, water ratio index (WRI), and mean texture) in the analyses resulted in the 

highest accuracy, 87.9% with pixel-based RF, followed by OBIA RF (segmentation scale 5, 84.6% 

overall accuracy), followed by pixel-based ML (83.9% overall accuracy). Increasing the predictors 

from three to five by adding Quickbird bands 2 and 4 decreased the pixel-based overall accuracy 

while increasing the OBIA RF accuracy to 90.4%. However, McNemar’s chi-square test confirmed 

no statistically significant difference in overall accuracy among the classifiers (pixel-based ML, 

RF, or object-based RF) for either the three- or five-layer analyses. Although potentially useful in 

some circumstances, the OBIA approach requires substantial resources and user input (such as 

segmentation scale selection—which was found to substantially affect overall accuracy). Hence, 

we conclude that pixel-based RF approaches are likely satisfactory for classifying wetland-

dominated landscapes.
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1. Introduction

Wetlands are amongst the most productive and biodiverse ecosystems on Earth [1]. 

However, they have been lost at prodigious rates across the globe [2], and those that remain 

are imperiled. Junk et al. [3] estimated that 30–90% of global wetlands have been lost, and 

that climate change and concomitant temperature and sea level rise, along with precipitation 

pattern changes, will continue to stress the remaining wetlands. Davidson [2] reviewed 189 

reports of wetland area changes and determined that 64–71% of wetlands have been globally 

lost since approximately 1900 AD. With wetland areal loss comes loss in various ecological 

and environmental functions at both local and landscape scales. For instance, wetlands are 

known areas of high biogeochemical cycling (e.g., [4,5]), groundwater recharge and 

stormflow attenuation (e.g., [6,7]), and habitat for many biological species (e.g., [8–10]). 

Wetland processes that underlie these functions vary by habitat or vegetation structure. For 

instance, emergent (or non-woody) wetlands perform denitrification at different rates than 

forested wetlands [11,12]. Similarly, water storage in depressional wetlands—which 

decouple storm event flows—differs by wetland habitat [13]. Understanding wetland 

abundance and typology is therefore important to properly managing the existing wetland 

resources and their concomitant watershed functions.

Satellite remote sensing provides a useful mechanism to delineate, assess, and monitor 

wetland habitats [14]. Sub-meter to coarse-resolution image data have been analyzed to 

identify wetlands and demarcate wetland-upland boundaries as well as differentiate habitats 

within extensive wetland systems (see expansive reviews by [14–16]). Critical decisions on 

imagery acquisition include resolution, spectral bands, revisit period, and cost. The benefits 
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and detractions of various platforms have been—and will continue to be—assessed and 

debated as an increasingly large number of satellite systems are launched (e.g., [17]).

Analytical approaches also vary, from visual or manual classification to unsupervised 

assessments to increasingly complex—and powerful—approaches (e.g., object-oriented 

classification [18]; random forest [19]; and artificial neural networks [20]). Other 

approaches include the pixel-based unsupervised Iterative Self-Organizing Data Analysis 

Technique (ISODATA) [21–24] and the supervised maximum likelihood (ML [24,25]) image 

classification techniques of change-detection and pattern recognition [24,25].

In contrast with the parametric ML classifier, more recently developed approaches such as 

random forest (RF) include non-parametric classification algorithms with no assumption of 

Gaussian distribution of the input/predictor variables. As a powerful remote sensing image 

classification tool, RF is applicable for both pixel-based or object-based classifications under 

supervised or unsupervised settings [19,26,27]. Compared to ISODATA and ML, RF also 

has an advantage in providing the relative importance of the input variables in predicting the 

response variable by permuting the predictor variable value and measuring the error estimate 

before and after the permutation [26,28,29].

Unlike the aforementioned unsupervised and supervised pixel-based techniques (e.g., 

ISODATA and ML), the object-based image analysis (OBIA) approach considers contextual 

spatial information such as shape, smoothness, and compactness of geographical features of 

interest at different spatial scales [30,31]. However, OBIA workflow for image classification 

involves an iterative trial-and-error image segmentation and optimization step. This is 

followed by a bottom-up merging of image-objects with the spatial and spectral 

heterogeneity threshold of adjacent landscape objects constrained by a user-defined scale 

parameter, with a subsequent step of classifying the primitive image-objects at the object-

level using training data [30].

Numerous studies have used both pixel- and object-based image classification techniques 

with RF for various natural resource management applications, including wetlands. For 

instance, Husson et al. [32] used 5-cm spatial resolution true-color unmanned aircraft 

systems data for mapping non-submerged aquatic vegetation, classifying water (vs. 

vegetation), growth form, and dominant taxon using OBIA and RF classifiers, with overall 

accuracy results obtained for RF ranging from 62–90% for the growth form type to 52–75% 

for the dominant taxon classifications. Mahdianpari et al. [33] used synthetic aperture radar 

(SAR) data in a hierarchical object-based RF approach to discriminate eight herbaceous 

wetland cover types in the Canadian province of Newfoundland with an overall accuracy of 

94% achieved. Dronova et al. [31] used the 32-m Beijing-1 satellite data and fuzzy 

supervised classification methods and an OBIA technique to detect changes of the major 

wetland cover types (i.e., water, mudflat, vegetation, and sand) of Poyang Lake, the largest 

freshwater lake–wetland system in China, with comparatively higher overall accuracy 

achieved for vegetation and water (90% and 82%, respectively). Ariel et al. [34] applied a 

set of spatial and spectral image-object metrics to classify water and four vegetation types 

using RF with an overall accuracy of 92%. Tian et al. [35] found higher overall accuracy 

using the OBIA coupled with the RF classifier (overall accuracy 93%) when compared to 
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support vector machine and artificial neural network approaches in classifying nine land 

cover types, including wetlands.

Pixel- and object-based classification of landscape components is frequently further 

improved through the inclusion of spatial and spectral metrics in the algorithms. That is, in 

addition to the direct use of the spectral bands of the chosen sensor, numerical band 

combinations and band ratios may provide additional information [31]. For instance, the 

well-known Normalized Difference Vegetation Index (NDVI [36]) can be used as a proxy 

variable for indicating the presence and condition of vegetation (e.g., vigor, health, and 

abundance). This index can vary by vegetation types and habitats, thus providing useful 

information for improving land cover classification. Other vegetation indices have improved 

classification of remotely sensed data; their use is frequently dependent on site-specific 

conditions. For instance, to minimize the atmospheric aerosol scattering effect, the 

atmospherically resistant vegetation index (ARVI) [37] has been derived. Similarly, soil 

brightness can affect vegetation indexes, and this can be compensated by using the soil-

adjusted vegetation index (SAVI [38]). In another example, to simplify or reduce 

computation time and computer processing power requirements, the infrared percentage 

vegetation index (IPVI) has been used to replace the NDVI [39].

Furthermore, auxiliary input variables such as digital elevation model (DEM) and spatial 

metrics such as derivatives of the Grey Level Co-occurrence Matrix (GLCM) are also 

extensively used in various studies for improving land cover classification and prediction 

accuracies [28,31,40]. Topographic position, through its effect on hydrological processes 

[41] such as the prediction of areas of soil saturation in low-lying areas [31], can influence 

the distribution of wetland classes in a landscape. Rodriguez-Galiano et al. [40] have used 

elevation, slope, and aspect variables derived from a digital terrain model along with Landsat 

5 TM spectral data as input to a RF model to classify 14 land cover categories in Spain with 

overall accuracy of 92% [40]. Wright and Gallant [42] have found DEM-derived 

topographic variables to be relevant in improving wetland mapping by increasing their 

accuracy in better identifying and differentiating upland areas from wetlands.

These varied random forest and object-based classification approaches and different metrics 

are useful in assessing and classifying landscape components. However, the methods 

discussed above also suffer from limitations. It is difficult and resource-intensive to collect 

sufficiently large amounts of field data for training an object-based (RF) model. Despite 

widely reported improved performance of object-based over pixel-based image classification 

approaches, Dronova [31] indicated results vary by data type, spatial scale, and research 

objectives when applied in complex wetland systems (e.g., large wetlands with varied 

wetland vegetation structure and open water).

Wetlands in particular can be challenging landscape elements to classify due to their 

ecotonal location at the terrestrial–aquatic interface and complex hydroperiod and hydro-

patterning which control the vegetation structures found therein. However, their importance 

in contributing to landscape hydrological, biogeochemical, and habitat functions and 

massive wetland losses worldwide [2,3] make assessing the location and structure of wetland 

systems a critical research need. With the beguiling and varied approaches to classifying 
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wetland systems, in this study we sought to determine if pixel-based or objected-based 

approaches performed most satisfactorily in an analysis and classification of the lower 

Barguzin River Valley, a large wetland study area draining into Lake Baikal, a United 

Nations Educational, Scientific, and Cultural (“UNESCO”) World Heritage Site located in 

Siberian Russia. We furthermore compared the efficacy of parametric (ISODATA, ML) and 

non-parametric (RF) approaches and iteratively analyzed outputs with spatial and spectral 

classification metrics seeking a parsimonious and effective wetland classification solution. 

Thus, in addition to accurately classifying the wetland landscape to improve management 

options, we aimed to provide an assessment and recommendation of methodological 

approaches for consideration specific to classifying wetland landscapes.

In our literature review, we did not find wetland classification studies assessing and applying 

highly numerous structural or habitat classes. For instance, an extensive review of OBIA for 

wetland mapping [31] indicated few classified wetland systems into more than 10 or 11 

classes (e.g., open water, emergent marsh, submergent vegetation, etc.). Our review 

suggested that overall accuracy in wetland studies frequently fell below an arbitrary 

benchmark of ~85% when the total number of wetland-specific classes exceeded four.

Thus, in our field-based analyses of a large wetland system in Siberian Russia with nearly 20 

different structural and vegetative habitat and wetland classes, we sought analyze the 

differences in overall accuracy when comparing between three classification methods (pixel-

based ML and RF, and object-based RF), constraining our analyses to use the same input 

field and remote-sensing datasets. The outcome of this study, therefore, assists end-users in 

selecting (and parameterizing) the proper classifier to analyze the structure of the world’s 

imperiled and complex wetlands.

2. Materials and Methods

2.1. Study Area

The Barguzin River is a major tributary to Lake Baikal, the oldest, deepest (~1600 m), and 

most voluminous freshwater lake in the world with a catchment area of approximately 

571,000 km2 [43–45]. Located on the eastern boundary of Lake Baikal in south-central 

Siberia, Russia, the Barguzin River flows approximately 480 km with an average slope of 

2.8% before reaching Lake Baikal, where it provides ~9% of the total inflow to the lake 

[46,47]. The extensive wetland area in this study (approximately 500 km2, Figure 1) is 

termed the lower Barguzin Valley. The area experiences prolonged seasonal flooding 

associated with valley narrowing as the river reaches the southern edge of the Barguzin 

Mountain Range on the eastern Baikal periphery [46]. The regional climate is continental, 

with long, cold, and relatively dry winters [46]. Land use in the region is mostly 

undeveloped, with pastoral and subsistence farming. Both mining and forestry activities also 

occur in the approximately 21,000 km2 watershed.

2.2. Image Acquisition and Processing

We acquired ortho-ready Quickbird imagery (DigitalGlobe, Westminster, CO, USA) for four 

cloud-free dates in 2012: 7 June, 16 June, 22 June and 12 August with mean off-nadir view 
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angle of 20.8°, 17.8°, 26.4° and 17.0°, respectively. The Quickbird satellite collected 

panchromatic data (0.6-m nominal pixel size) plus four multispectral bands (at 2.4-m 

nominal pixel size): blue (B1, 450–520 nm), green (B2, 520–600 nm), red (B3, 630–690 

nm), and near-infrared (B4, 760–900 nm). Nominal locational accuracy was 23 m at nadir. 

The data-processing and workflow diagram is given in Figure 2. The images were converted 

to top-of-the-atmosphere (TOA) reflectance and mosaicked in PCI Geomatica (PCI 

Geomatics Enterprise, Inc., Markham, ON, Canada), taking advantage of the 0.2–0.8 km 

wide overlap between image tiles.

We conducted an initial unsupervised classification of the study area using the mosaicked 

four-band Quickbird TOA reflectance data (bands 1–4) and the aforementioned Iterative 

Self-Organizing Data Analysis Technique clustering algorithm (ISODATA; [21,22,48]) in 

ENVI (Harris Geospatial Solutions, Herndon, VA, USA, version 5.3). We arbitrarily began 

with 40 spectrally based thematic classes. We reduced these to 18 reasonably distinct classes 

for field analyses; 95% of all pairwise comparisons between unsupervised classes had 

Jeffries–Matusita separability values ≥1.8, indicating effective class fidelity [12,49,50]).

2.3. Field Data Collection

We collected field data from 6–10 unique locations in the Barguzin Valley for each of the 18 

initial ISODATA classes during an expedition in late August 2013. Sites were selected based 

on accessibility to roads, along river courses (for access via boats), and through a 

combination of approaches. Following Lane et al. [12,50], two teams of ecologists and 

botanists collected vegetation and habitat data from 142 vegetation plots (Figure 3). Data 

collected at each 100-m2 plot included dominant species (≥5% cover) and water depth. 

Photographs were taken from the center outwards at all cardinal points, as well as straight 

down. If more than 5% of the plot was determined to be bare ground, open water (without 

≥5% vegetation), filamentous algae, or thatch from graminoids (e.g., Carex spp.), that 

information was noted and used in the classification analyses below. We located the 

approximate center of each plot by averaging 20 GPS location readings of either a Trimble 

Nomad or a Trimble Yuma (Sunnyvale, CA, USA), with 2–5-m real-time accuracy. The 

collected species-level vegetation data were subsequently combined to genus-level relative 

abundance data for use in this study. Sixteen ground control points (GCPs) were collected 

and used to validate the geometric accuracy of the images. Non-ambiguous, man-made 

physical structures and road intersections were used for this purpose (see Figure 3); at each 

GCP, 100 GPS readings were averaged using the GPS receivers noted above, and 

photographs were taken of the GCP sites. Quickbird multispectral data were pan-sharpened 

using the Gram-Schmidt Pan-Sharpening method in ENVI for GCP validation. All but two 

GCPs were within two Quickbird-pixels (i.e., within 1.2 m) from their true ground location. 

Due to significantly high computational power and processing time requirements, the 

original non-pan-sharpened multispectral bands were used for classification.

2.4. Spatial/Spectral Metrics and Geospatial Data

We calculated 37 input predictor variables for our supervised classification of the Barguzin 

Valley study area (Table 1). Although many are similar, there are useful differences amongst 

the indices which we anticipated could be used to improve the fidelity and specificity of our 
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class discrimination. We conducted univariate linear correlation analyses amongst the 

variables (Table 2) that informed our subsequent analytical approaches. The variables 

include (see Table 1): Normalized Difference Vegetation Index (NDVI; [51]), Blue 

Normalized Vegetation Index (BNDVI; [52]), Green Normalized Vegetation Index (GNDVI; 

[52]), Atmospherically Resistant Vegetation Index (ARVI; [53]), Difference Vegetation 

Index (DVI; [51]), Soil Adjusted Vegetation Index (SAVI; [38]), the Infrared Percentage 

Vegetation Index (IPVI; [39]), Normalized Difference Water Index (NDWI; [54]), Water 

Ratio Index (WRI; [55]), and various Band Ratios (i.e., Blue/Green, B1/B2; NIR/Blue, 

B4/B1; NIR/Green, B4/B2; NIR/Red, B4/B3; Red/Blue, B3/B1; and Red/Green, B3/B2; 

[52]). Although certainly not a complete list of metrics, these vegetation indices and band 

ratios were selected to assist in discriminating amongst similar wetland habitats typically 

differentiated by botanists and ecologists based on vegetation structure. We additionally 

included eight spatial metrics of texture (Contrast, Correlation, Dissimilarity, Entropy, 

Homogeneity, Mean, Second Moment and Variance) calculated using the QuickBird NIR 

band, the native DEM value, and an additional 10 topographic metrics (Aspect, Cross-

sectional Convexity, Longitudinal Convexity, Maximum Curvature, Minimum Curvature, 

Plain Convexity, Profile Convexity, RMS Error and Percent Slope) calculated using DEM 

data to further differentiate among vegetation and habitat classes in the study area [56]. 

DEM-based metrics were derived using elevation data from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER 

GDEM). For processing compatibility with the rest of the input predictor variables, the 

ASTER GDEM (nominal pixel size: 24.2 m) was re-projected to WGS-1984 UTM-

Zone-49N and resampled to the original Quickbird multispectral nominal pixel size of 2.4 

m.

2.5. Supervised Image Classification

Subsequent to the field expedition, we developed supervised classification maps of wetland 

vegetation using both pixel-based and object-based approaches. As random forest is 

sensitive to uneven class distribution [27,28], while we initially conducted our analyses with 

unbalanced datasets, we report here the results using a balanced approach (n = 125). 

Approximately 70% of the points were randomly selected as the training set (n = 89), and 

the rest as the validation set (n = 36), with an equal number of data points allocated for each 

class (i.e., five and two points per class for training and testing, respectively). The one 

exception is for Class 10, which only had four points available for training. The partition 

into the training and testing datasets was performed by visually inspecting the point 

distribution so that the training and/or the testing datasets were distributed in space to 

maximize distances between points thereby minimizing the chances of spatial 

autocorrelation. We then delimited regions of interest (ROIs) for each of the 18 thematic 

classes from the 125 field survey sites used in the balanced approach. Each ROI was 

approximately 30 pixels in area and most, though not all, consisted of a single thematic 

class. In certain cases, the ROIs—which otherwise were centered around the field-based data 

point—were moved slightly to maintain thematic homogeneity while staying within the 

approximate bounds of the field-based sampling area.

Berhane et al. Page 7

Remote Sens (Basel). Author manuscript; available in PMC 2018 April 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



2.5.1. Pixel-Based Random Forest Classification—The random forest (RF) 

classification algorithm was implemented in R (RStudio, Inc., Boston, MA, USA, version 

0.99.90) using the package randomForest [57]. Two-thirds of the ROI training data described 

above were used for RF classifier training and the remainder were “out-of-bag” (OOB) 

samples for estimating internal classification error. Exploratory analyses determined that the 

highest predictive power was found with the following settings: two variables (mtry), 1000-

tree maximum (ntree), and 1000 bootstrap (or OOB) samples in the classification; these 

values were used in the final model run. The accuracy of the pixel-based RF model was 

assessed with pixels from the 30% hold-out ROIs across the study area. RF was conducted 

on the combination of four data layers (Quickbird bands 1–4) as well as bands 1–4 plus 33 

additional input variables described above (see Table 1). Random forest usefully provides 

quantitative variable importance measures, the Mean Decrease in Gini (MDG) and the Mean 

Decrease in Accuracy (MDA) values. MDG informs the accuracy of a particular class due to 

utilization of a given variable while the MDA provides the difference between OOB error of 

the original dataset and the OOB error from random permutations of a set of input predictor 

variable values [26].

2.5.2. Pixel-Based Maximum Likelihood Classification—Subsequent to our RF-

based approach, we conducted the Maximum Likelihood (ML; [58,59]) supervised method 

to classify the ROI training data into 18 supervised classes using the predictor variables that 

yielded the highest overall accuracy with the most parsimonious pixel-based-RF model (i.e., 

Quickbird band 3, WRI, and mean texture computed from Quickbird band 4; see results 

further described below). These layers were chosen because preliminary results using the 

pixel-based-RF model demonstrated only slight changes in accuracy (both positively and 

negatively affecting our results) with additional metrics. Furthermore, as many spectral 

metrics were highly correlated (e.g., |r| values ≥ 0.89; see Table 2), we sought to develop a 

parsimonious model that balanced processing requirements and accuracy and hence we 

initially limited the analyses to a three-layer stack. However, recognizing that additional 

bands may potentially improve the overall ML accuracy, two additional variables that 

comprised the five most important variables as determined by MDG, (i.e., Quickbird bands 2 

and 4, see below) were also analyzed along with the aforementioned three predictors.

2.5.3. Object-Oriented Random Forest Classification—Contrary to human 

landscapes with relatively well-defined geometric structures, natural environments such as 

wetlands have fewer “objects” with discrete distinctive spatial shapes [28,31]. That is, the 

natural environment tends to grade from one ecotype to another. However, as patterns 

emerge within and between natural systems, we explored the utility of an object-based 

image analyses (OBIA) classification of the study area using multi-resolution image 

segmentation in eCognition Developer (Trimble, Inc., Munich, Germany, v. 9.2). OBIA in 

eCognition is a hierarchical, region-growing segmentation algorithm where objects of 

similar properties starting from a single pixel are merged until the weighted intra-object 

heterogeneity is smaller than a defined scale parameter.

Segmentation scale affects the object size and hence the properties of discrete objects in the 

study area. We analyzed multiple scales in turn (e.g., 5–100; Figure 4) and determined via 
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accuracy assessment that segmentation at the spatial scale of 5 provided the optimum image-

object size. Color (multispectral heterogeneity) and shape (a function of smoothness and 

compactness heterogeneity) are the primary image-object features that are used for image-

segmentation and for improvement in primitive image-object creation [30]. We segmented 

color (i.e., spectral band information) and shape (compactness and smoothness metrics) to 

generate optimum pixel groups (i.e., image-objects) exhibiting intra- and inter-object 

spectral homogeneity and heterogeneity [60]. Initial analyses of the study area informed our 

decision to use shape and color segmentation weights of 0.1 and 0.9, and compactness and 

smoothness parameters of 0.5, respectively. Upon segmentation completion, we calculated 

the spatial and spectral metric average values for each of the 5,191,948 segmented objects in 

the study area. We then utilized the RF approach described above to classify the study area. 

Similar to the pixel-based ML approach, OBIA-RF was performed using three- and five-

stack layers to provide the opportunity to contrast amongst the methods in wetland 

classification.

2.6. Classification Accuracy

We assessed omission and commission errors of the 18 delineated and smoothed [61] classes 

using a 70:30 approach wherein 70% of the ROIs were randomly selected for training and 

the remaining 30% were used for validation of the pixel-based ML and RF and OBIA-RF 

approaches described above. We also conducted and report overall accuracy [62]. We 

quantitatively assessed if the observed difference in the classification accuracies between the 

three classifiers were statistically meaningful using McNemar’s test [63,64].

3. Results

3.1. Field Data Collection

Fifty-six different genera were identified as occurring at >5% frequency across the sampling 

locations. Members of the genera Carex and Equisetum were more commonly found (46 and 

25 times, respectively), followed by Calamagrostis, Myriophyllum, Agrostis, Nymphoides, 

and Potentilla. Twenty-three genera were only encountered a single time. We also noted the 

>5% abundance of open water (49 sites), thatch (33 sites), and bare ground (22 sites).

3.2. Classification Approaches

Satisfactory utilization of high-resolution geospatial products to detect and delineate wetland 

classes and aquatic habitats was achieved with the marriage of multispectral satellite and 

field data. Varied results were found using either pixel- or object-based approaches and a 

parsimonious suite of spatial and spectral metrics, which appeared to have sufficient class 

specificity and fidelity for successful classification. Accuracy was assessed through 

analyzing the ROIs from the hold-out dataset (n = 36). We developed and reported a final 

classification based on each approach and report both a class-based confusion table and both 

producer’s and user’s accuracy for each class (by classification type). We did not delve into 

the synecological vegetative or descriptive characteristics of each of the 18 thematic classes 

in this manuscript though these analyses are currently underway (see, e.g., [12,50]). A 

comparison between classification approaches using McNemar’s test resulted in no 

significant difference observed among the three classification methods (Table 3).
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3.2.1. Pixel-Based Random Forest and Maximum Likelihood Classification—
Pixel-based classification was conducted using both the RF and ML approaches. The pixel-

based RF approach was conducted with various predictor combinations, with overall 

accuracy ranging from 72.7% to 87.9% (Table 4). The highest overall accuracy, 87.9%, for 

pixel-based RF classification was achieved using Quickbird band 3, WRI, and mean texture 

(Figure 5a,b and Tables 4 and 5). This highest overall accuracy was achieved using the 

aforementioned three variables despite the fact that WRI and mean texture are highly 

correlated (|r| = 0.99; see Table 2). The overall accuracy, however, decreased to 80.1% when 

the 22 non-correlated variables were considered with the exclusion of WRI and inclusion of 

mean texture; accuracy dropped to 72.7% when mean texture was excluded (see Table 4). 

These results indicated it is paramount to include both mean texture and WRI for 

meaningful improvement in prediction accuracy of the wetland classifications—although 

mean texture without WRI improved the overall accuracy (e.g., from 72.7% to 80.1%).

A benefit of the RF approach is the derivation of variable importance factors based on the 

MDG values. We assessed MDG based on 100 RF runs. For the pixel-based RF, Quickbird 

bands 2, 3, and 4, WRI, and mean texture were consistently ranked as the five most 

important variables, the rank of importance for the remaining variables changed with 

different RF runs of the 100 iterations (Table 6). As the analytical process for ML and OBIA 

can be laborious, we used the MDG to inform our selection of variables to use in the ML 

and OBIA approaches.

The ML approach was conducted using the same three-layer stack image as the RF 

approach, and resulted in an overall accuracy of 83.9% (Table 7). ML analysis using the five 

most important predictor variables from the pixel-based RF analysis (Quickbird band 2–4, 

WRI, and mean texture) resulted in a decrease in overall accuracy from 83.9% to 80.2%.

Perfect producer’s (PA) or user’s accuracy was calculated for the pixel-based RF and ML 

approach class confusion matrix (Tables 5 and 7) using three bands for 11 and 8 of the 18 

classes, respectively. Comparatively higher classification error using pixel-based RF 

approach occurred with Class 3 (66.9% error), Class 6 (34.5% error), and Class 14 (35.6% 

error). Greater PA errors in the ML analyses occurred with Class 3 (30.2% error), Class 5 

(33.3% error), Class 6 (52.5% error), Class 9 (61.9% error), and Class 14 (48.4% error). The 

errors suggested open water, emergent, and submerged vegetation were more difficult to 

classify with remotely sensed data.

3.2.2. Object-Oriented Classification—The OBIA classification was conducted on the 

highest-performing three- and five-layer stacks of the pixel-based RF approaches, consisting 

of Quickbird band 3, WRI, and mean texture for the three-layer stack and those plus bands 2 

and 4 for the five-layer stack. We did not analyze additional permutations due to the high 

OBIA computational and resource requirements of analyzing the full suite of spatial and 

spectral metrics (see, e.g., Table 1) and then iteratively conducting RF on the over five 

million objects in the study area. We explored the effects of scale on our results using three 

layers. The highest three-layer OBIA accuracy rate (84.6%) was achieved using a 

segmentation scale of 5. Increasing the scale typically resulted in decreasing overall 

accuracy with the poorest results at the scale of 100 (37.4%; see Table 8). The only 
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exception to this is at segmentation scale of 50 where the overall accuracy was higher than at 

segmentation scale of 30.

In addition, we saw an improvement in overall accuracy from 84.6% (with three layers and 

OBIA) to 90.4% (with five layers and OBIA; Table 8). The likelihood of diminishing returns 

with additional data layers (and concomitantly the substantial resource requirements) 

through this approach informed our decision to use no more than five layers in our OBIA.

4. Discussion

4.1. Random Forest in Wetland Classification

Targeting overall accuracy above an arbitrary benchmark acceptable value of 85% in 

classifying complex wetland systems can be challenging [31], a challenge exacerbated by 

the inclusion of numerous wetland classes (i.e., 18 in this study). Studies using high-

resolution satellite data may consider the utility of “high-resolution” ecological data (i.e., 

field-based community data that go beyond structural classifications) in their systems of 

interest—although we hasten to add that the level of specificity is dependent on the 

questions asked and management purpose for which the data are often requested. High 

accuracy is also dependent on abundant field-based data, as well as cloud-free imagery and a 

combination of ecologically and spectrally concordant classes.

Accuracy is furthermore a product of the analytical approach employed and the number of 

predictor variables. In this study, we found the greatest overall accuracy to be achieved with 

the OBIA and RF classifier (~90%) using five predictor variables (and segmentation scale 

5); this decreased to <85% when three predictors were used. Pixel-based RF achieved 88% 

overall accuracy using only three predictors, and, as Duro et al. [65] also reported, required 

substantially less user interaction and processing time than conducting the OBIA. 

Furthermore, though differences are evident when visually comparing between the 

approaches (e.g., Figure 6), McNemar’s test found no significant overall difference between 

the varied approaches (see Table 5). Thus, although any of the approaches may be employed, 

our findings suggest a pixel-based RF approach may be best suited when considering 

classifying the wetland-dominated landscape.

That random forest has many advantageous features to consider in remote sensing 

applications is becoming increasingly evident [29,40,57,66]. Some of the advantages of RF 

include the fact that it is freely available (e.g., in the R statistical package) and relatively 

user-friendly with limited user selections required (in our instance, the number of variables 

for each node in a random subset of data (mtry) and the number of trees to grow in a forest 

(ntree) were specified). RF is computationally efficient in handling large datasets, even those 

with substantial “noise” and the presence of outliers [29,40]. The fact that RF uses the input-

predictor variables with replacement but not deletion (i.e., bagging) apparently allows more 

specificity when classifying, and as a non-parametric approach there are fewer restrictions 

on the distribution of the input data layers. Lastly, RF output includes the generation of 

variable importance (MDG) and unbiased internal estimates of error (MDA), which assists 

in the interpretation of the results [40,57]. Limitations of RF include the “black box” nature 

of the model, where limited information about the relationships between the predictor 

Berhane et al. Page 11

Remote Sens (Basel). Author manuscript; available in PMC 2018 April 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



variables and the response variables can be discerned [66]. Furthermore, RF results change 

when an unbalanced study design is employed [27,28]. We endeavored to sample at least 

five sites, and as many sites as ultimately possible for each class, during our short sampling 

window for the field-based expedition. However, following the suggestions (i.e., [27,28]), 

we ultimately did not use some of the data points acquired during the sampling period, 

which resulted in lost sampling efficiency and resource use.

However, the benefits of RF appear to outweigh the limitations, and consequently, numerous 

studies have used RF as the classifier of choice for both pixel- and object-based image 

classifications for various applications using data from multiple remote sensing platforms. 

For instance, Mallinis et al. [67] conducted a RF analysis using Quickbird to delineate 

vegetation polygons of dominant species for national forest database creation, and Smith 

[68] classified land cover classes using SPOT. The literature is increasingly replete with the 

use of RF in classifying landscapes (e.g., [19,25,69–71]).

4.2. Variable Importance in Wetland Classification

As noted, the use of RF makes a quantitative analysis of variable importance possible 

through MDG (Mean Decrease in Gini). For the pixel-based RF, Quickbird bands 2, 3, and 

4, WRI and mean texture were consistently ranked as the five most important variables (see 

Table 6). It is not surprising that Quickbird band 4, mean texture (derived from band 4), and 

WRI were the three most important variables in class discrimination. As water column 

absorption of energy in the NIR spectrum (i.e., band 4) is high [72], the abundance of water, 

a factor controlling wetland vegetation community development, would feature prominently 

in categorizing the studied system. Similarly, photosynthetically active vegetation reflects 

more energy in the near-infrared portion (e.g., [73]) while absorbing more energy in the blue 

and in the red-light regions of the spectrum. The WRI assess the abundance of the green, red 

and near-infrared band values to the blue band; with abundant water associated 

approximately with lower (<2.5), barren land with intermediate (2.5–4.0) and vegetated 

areas with higher (>4.0) WRI values. The Barguzin Valley is dominated by an extensive and 

spatially connected surface water hydrological system (submergent marshes, rivers, lakes, 

etc.) and the role of WRI is in differentiating the valley’s aquatic habitats from the uplands. 

This is particularly true in differentiating mixed pixels belonging to the water-soil and water-

vegetation traditional zones. As wetland vegetation was the main study object in this 

analysis, differences in spectral reflectance (Quickbird bands 2–3) would logically follow as 

a second group of important variables in group determination. It was, however, somewhat 

surprising that the abundant additional metrics that we calculated in an effort to provide 

greater discernment between wetland classes were not particularly relevant to the 

classification, as evidenced by their lack of relative importance and the decrease in overall 

accuracy when additional metrics were included (for the pixel-based approaches). Both the 

RF and ML approaches decreased in overall accuracy with increased predictors beyond our 

three-stack parsimonious model.

One potential reason for the lack of specificity with increased metrics is simply a limitation 

of the input data set. Quickbird has limited spectral bands (only four plus the panchromatic 

band), thus limiting to a degree the possible permutations of the data, at least the data based 
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on Quickbird’s available spectra (limited vis-à-vis more current satellite sensors). Of the 37 

different predictor variables we explored, only 22 were unique enough to warrant their 

inclusion when running our non-correlated model (see Table 2). Thus, although deriving the 

additional variables was not particularly laborious in the pixel-based assessments, it may not 

be warranted, at least in this study area, given the response across the breadth of classes.

In addition, it is worth noting that model parsimony is generally desirable. For instance, 

lower OOB-error estimates (i.e., better models) occur in RF classification with a lower 

number of variables (mtry) used for splitting the trees at each node and with a lower number 

of trees (ntree) constructed [74].

4.3. Object-Oriented Approaches for Wetland Classification

The use of the object-oriented approach allowed optimization of the classification results 

based on geometric and spectral homogeneity of image-objects. This, coupled with the RF 

classification approach, resulted in an overall classification of 84.6% and 90.4%, using the 

three and five most important predictor variables, respectively (see Tables 8 and 9). It is 

possible that further increased overall accuracy may be possible with the coupled OBIA and 

random forest plus additional predictors. However, as mentioned our accuracy achieved 

using five predictors (~90%) means only limited improvements can come from increasing 

the number of predictors. The OBIA approach requires substantial user inputs and 

processing; it is too time-consuming to consider the OBIA across the breadth of metrics (37) 

considered in this analysis.

However, OBIA may be useful for analyses, depending on characteristics of the “objects” 

within the study area. Thus, it is possible to harness the power of OBIA through iterative 

approaches of using different study-area segmentation parameters and scales to better 

generate image-object identification for subsequent input as predictor variables. For 

instance, in our study area, we found that a segmentation scale of 5 provided the greatest 

number of objects and was also the most informative; others may find a different scale 

useful [31,75,76]. Similar to this study’s exploration of segmentation scale on overall 

accuracy (see Table 8), Stumpf and Kerle [28] found decreasing model performance at larger 

segmentation scales. However, the smaller the segmentation scale, the more computational 

resources are required for data processing time and data storage for intermediate geospatial 

products. This factors into end-user decisions when processing high-resolution multispectral 

remote sensing data, particularly when additional derived and auxiliary dataset that are 

relevant for better wetland detection and delineation are integrated.

We therefore followed others (e.g., [28,29,31,32]) and first separated the image into 

segments and then used the RF classification algorithm to assign wetland classes based on 

the spectral data of the homogenous image-objects. We found that combining both OBIA 

and RF for segmentation and classification purposes, respectively, allowed the utilization of 

the strengths of each approach for better wetland delineation and mapping. Based on the 

results from our study, the hybrid OBIA-RF approach can likely be applied in similar 

settings where spectral information has more influence than shape in wetland class 

distinction and should be further explored, especially as processing power continues to 
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increase and non-proprietary software packages and algorithms are becoming more 

available.

5. Conclusions

The use of remote sensing to classify wetland landscapes is critical to the understanding of 

the structure that begets wetland functions, especially as the world’s finite wetland resources 

are lost [77]. Field-based data plus robust spectral analyses from satellite platforms provide 

useful information for effective management. There are many approaches that can be used to 

classify the landscape with remotely sensed data, from established and relatively simplistic 

(e.g., ISODATA) to the novel and increasingly complex (e.g., random forest, neural 

networks, etc.). Similarly, many different band combinations creating spectral metrics are 

used to further discriminate amongst landscape features (e.g., NDVI). To facilitate 

subsequent remotely sensed wetland analyses, we conducted both pixel- and object-based 

analyses using parametric and non-parametric approaches and progressively incorporated 

spatial and spectral metrics. The pixel-based maximum likelihood and random forest 

approaches performed well using a parsimonious Quickbird band 3, WRI, and mean texture 

variables, with accuracies of 83.9% and 87.9%, respectively. The inclusion of an additional 

two predictors to our “parsimonious” model degraded our accuracy using pixel-based 

maximum likelihood and random forest approaches. However, when an object-based image 

analysis approach was coupled with the random forest analysis, our overall accuracy 

increased from 84.6% with three predictors to 89.6% with five predictors; more predictors 

allowed greater discrimination between the >5 million objects in the analysis. Segmentation 

scale had an effect on these results; larger objects resulted in smaller overall accuracies. 

Fewer objects did, however, decrease the processing and time requirements for the study—

these trade-offs are thus important to consider when analyzing wetland-dominated 

landscapes. In addition, the object-oriented approach requires repeated iterations and 

additional subjective parameterization (e.g., compactness and smoothness values). 

Furthermore, OBIA was conducted using commercial software, an expense that these results 

suggest might not be warranted (as we found no significant difference between the overall 

accuracies in our analyses). Thus, we conclude that the random forest algorithm warrants its 

increased use as an analytical approach in effectively assessing and mapping wetland 

resources, be it through either pixel- or object-based approaches.
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Figure 1. 
Location of Lake Baikal and the lower Barguzin Valley study area and Quickbird imagery 

boundary.
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Figure 2. 
Field and remote sensing data-processing workflow.
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Figure 3. 
Field survey (n = 142) and ground-control sites (n = 16) within the lower Barguzin Valley 

study area overlain on an image composite (Quickbird bands 2, 3, and 4).
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Figure 4. 
Example of image-objects created at different segmentation scales using parameters of shape 

= 0.1 and compactness = 0.5. The number of objects created across the study area decreased 

with increasing segmentation scales: 5 (5,191,948 objects), 10 (1,474,823 objects), 15 

(711,351 objects), 30 (204,026 objects), 50 (81,026 objects), and 100 (23,091 objects).

Berhane et al. Page 22

Remote Sens (Basel). Author manuscript; available in PMC 2018 April 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Berhane et al. Page 23

Remote Sens (Basel). Author manuscript; available in PMC 2018 April 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 5. 
(a) Genus-level wetland and aquatic habitats classification map (pixel-based RF approach 

using three-layer stack). Four focal areas (5A–5D) are shown in finer detail in (b). Percent 

values given in parentheses represent the approximate abundance of each genus or habitat 

found in the field-based analyses for each class. (b) Finer-detailed genus-level wetland and 

aquatic habitat classification thematic maps developed using the pixel-based RF approach 

for the areas of interest shown by white-colored squares in (a). Classes correspond to the 

legend in (a).
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Figure 6. 
Contrasting the results between the varied methods using a three-layer predictor dataset for 

inset-5D in Figure 5a: (A) Quickbird imagery color composite of bands 2, 3, and 4; (B) 

pixel-based maximum likelihood classification; (C) object-based random forest 

classification; and (D) pixel-based random forest classification. Classes correspond to the 

legend in Figure 5a.
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Table 1

Description of the input predictor variables used in this study (B1–B4 are Quickbird multispectral bands, 

while B5–B37 are identifications assigned to the derived spatial and spectral matrices).

Input Data Layer 
(Stack)

Description Equations

B1234 Quickbird multispectral bands -

ARVI (B5) Atmospherically resistant vegetation index [37,53] (ρNIR − ρRB)
(ρNIR − ρRB)

BNDVI (B6) Blue-normalized difference vegetation index [52] (ρB − ρNIR)
(ρB + ρNIR)

DVI (B7) Difference vegetation index [36,51] ρNIR − ρR

GNDVI (B8) Green-normalized difference vegetation index [52] (ρNIR − ρG)
(ρNIR + ρG)

IPVI (B9) Infrared percentage vegetation index [39] ρNIR
(ρNIR + ρR)

NDVI (B10) Normalized difference vegetation index [51] (ρNIR − ρR)
(ρNIR + ρR)

NDWI (B11) Normalized difference water index [54] (ρG − ρNIR)
(ρG + ρNIR)

SAVI (B12) Soil adjusted vegetation index [38] (ρNIR − ρR)
(ρNIR + ρR + L) × (1 + L)

WRI (B13) Water ratio index [55] ρG + ρR + ρNIR
ρB

Ratio Transformation Ratio of reflectance spectra [52]; B14–B19 ρB/ρG; ρR/ρB; ρR/ρG; ρNIR/ρB; ρNIR/ρG; ρNIR/ρR

Texture Metrics Texture variables (contrast (B20), correlation (B21), 
dissimilarity (B22), entropy (B23), homogeneity 
(B24), mean (B25), 2nd moment (B26), and variance 
(B27)) computed as a measure of Gray Level Co-
occurrence Matrix (GLCM) using Band4 (Harris 
Geospatial Solutions, Herndon, VA, USA, version 
5.3).

Source: Harris Geospatial, Texture Metrics Background. 
Available online: www.harrisgeospatial.com/docs/
backgroundtexturemetrics.html (accessed on 26 December 
2017).

Topography Metrics Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTERGDEM)-Global 
Digital Elevation Model (GDEM). GDEM-derived 
variables (aspect (B28), cross-sectional convexity 
(B29), DEM (B30), longitudinal convexity (B31), 
maximum curvature (B32), minimum curvature 
(B33), plan convexity (B34), profile convexity 
(B35), RMS error (B36), and slope (%; B37) (Harris 
Geospatial Solutions, Herndon, VA, USA, version 
5.3)).

Source: Harris Geospatial, Topographic Modeling 
Background. Available online: www.harrisgeospatial.com/
docs/backgroundtopographicmodeling.html(accessed on 26 
December 2017).
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Table 3

McNemar’s chi-squared test summary of the classification accuracy differences observed by the three 

classifiers. No significant differences were found between the three classification methods we employed when 

using either a three- or five-layer stack.

Classifier
Chi-Squared p-Value

Pixel-Based ML Object-Based RF Pixel-Based ML Object-Based RF

Three-Layer Stack

Pixel-based RF 0.083 0.078 0.774 0.780

Pixel-based ML - 0.100 - 0.752

Five-Layer Stack

Pixel-based RF 0.128 0.058 0.720 0.810

Pixel-based ML - 0.096 - 0.756
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Table 4

Pixel-based random forest classification accuracy on training and testing datasets with various input variable 

combinations (including 95% confidence interval, CI). The data are sorted based on overall accuracy of the 

testing data.

Predictor Variables Training Data
OOB Error (%)

Testing Data

Overall Accuracy

% 95% CI

All non-correlated variables (with WRI, not mean texture; 22 variables) 1.3 72.7 72.6 72.9

All non-correlated variables (with mean texture, not WRI; 22 variables) 0.3 80.1 80.0 80.2

All non-correlated variables including both WRI and mean texture (23 variables) 0.4 80.1 80.1 80.2

All (37) variables 0.8 84.6 84.5 84.7

Ten most important variables 1.0 84.6 84.5 84.6

Five most important variables 0.9 84.9 84.8 85.0

Fifteen most important variables 1.2 85.6 85.5 85.8

Most parsimonious model (three variables: B3, WRI, and mean texture) 1.4 87.9 87.8 88.0
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Table 8

Object-based random forest classification accuracy on training and testing datasets with various input variable 

combinations. Quickbird bands 2, 3, and 4 are represented as B2, B3, and B4, respectively; also included are 

WRI (Water Ratio Index) and mean texture.

Predictor Variables Training Data
OOB Error (%)

Testing Data

Overall Accuracy

% 95% CI

B3 + WRI + mean texture

Scale 5 0.4 84.6 84.3 84.8

Scale 10 0.2 67.7 67.4 67.9

Scale 15 1.9 67.6 67.5 67.6

Scale 30 2.3 46.7 46.2 47.1

Scale 50 6.0 57.6 57.1 58.2

Scale 100 22.4 37.4 36.9 37.9

Scale 5
0.3 90.4 90.3 90.4

B2 + B3 + B4 + WRI + mean texture

Remote Sens (Basel). Author manuscript; available in PMC 2018 April 26.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Berhane et al. Page 35

Ta
b

le
 9

O
bj

ec
t-

ba
se

d 
ra

nd
om

 f
or

es
t c

la
ss

if
ic

at
io

n 
(s

eg
m

en
ta

tio
n 

sc
al

e 
of

 5
) 

co
nf

us
io

n 
m

at
ri

x 
(p

ix
el

-c
ou

nt
s)

 f
or

 g
en

us
-l

ev
el

 w
et

la
nd

 c
la

ss
es

 a
nd

 a
qu

at
ic

 h
ab

ita
ts

 

(t
hr

ee
-l

ay
er

 s
ta

ck
).

 P
A

, U
A

, a
nd

 O
A

 a
re

 p
ro

du
ce

r’
s,

 u
se

r’
s,

 a
nd

 o
ve

ra
ll 

ac
cu

ra
cy

, r
es

pe
ct

iv
el

y.
 S

ee
 th

e 
le

ge
nd

 in
 F

ig
ur

e 
5a

 f
or

 a
dd

iti
on

al
 in

fo
rm

at
io

n 

re
ga

rd
in

g 
th

e 
w

et
la

nd
 c

la
ss

 c
om

m
un

ity
 c

om
po

si
tio

n.

W
et

la
nd

 C
la

ss
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18

1.
00

60
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

59
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

3
1.

00
0

37
0

0
0

33
0

0
0

0
0

0
0

0
0

0
0

4
0

0
25

67
0

0
0

0
0

0
0

0
0

0
0

0
0

0

5
0

0
0

1.
00

63
0

0
0

0
0

0
0

0
0

0
0

0
0

6
0

0
1.

00
0

0
46

0
5

0
0

0
0

0
0

0
0

0
0

7
0

0
0

0
0

0
28

0
0

0
0

0
0

0
0

0
0

0

8
0

0
0

0
0

15
0

55
0

36
0

0
0

0
0

0
0

0

9
0

0
0

0
0

0
0

0
62

0
0

0
0

21
0

0
0

0

10
0

0
0

0
0

0
0

0
0

26
3

0
0

0
0

0
0

0

11
0

0
0

0
0

0
0

0
0

0
59

0
0

0
0

0
0

0

12
0

0
0

0
0

0
0

0
0

0
0

63
0

0
0

0
0

0

13
0

0
0

0
0

0
0

0
0

0
0

0
84

0
0

4
0

0

14
0

0
0

0
0

0
0

0
1.

00
0

2
0

0
41

0
0

0
0

15
0

0
0

0
0

0
0

0
0

0
0

0
0

0
65

0
13

0

16
0

0
0

0
0

0
0

0
0

0
0

1.
00

0
0

0
40

0
0

17
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
36

0

18
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
11

56

PA
 (

%
)

98
.4

10
0.

0
58

.4
98

.5
10

0.
0

75
.4

45
.9

91
.7

98
.4

41
.9

92
.2

98
.4

10
0.

0
66

.1
10

0.
0

90
.9

60
.4

10
0.

0

U
A

 (
%

)
10

0.
0

10
0.

0
52

.0
72

.7
98

.4
88

.5
10

0.
0

52
.0

74
.7

89
.7

99
.7

10
0.

0
95

.5
93

.2
83

.8
97

.6
10

0.
0

83
.9

O
A

 (
%

)
84

.6

Remote Sens (Basel). Author manuscript; available in PMC 2018 April 26.


	Abstract
	1. Introduction
	2. Materials and Methods
	2.1. Study Area
	2.2. Image Acquisition and Processing
	2.3. Field Data Collection
	2.4. Spatial/Spectral Metrics and Geospatial Data
	2.5. Supervised Image Classification
	2.5.1. Pixel-Based Random Forest Classification
	2.5.2. Pixel-Based Maximum Likelihood Classification
	2.5.3. Object-Oriented Random Forest Classification

	2.6. Classification Accuracy

	3. Results
	3.1. Field Data Collection
	3.2. Classification Approaches
	3.2.1. Pixel-Based Random Forest and Maximum Likelihood Classification
	3.2.2. Object-Oriented Classification


	4. Discussion
	4.1. Random Forest in Wetland Classification
	4.2. Variable Importance in Wetland Classification
	4.3. Object-Oriented Approaches for Wetland Classification

	5. Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9

