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With the increasing incidence of diabetic nephropathy (DN), there is an urgent

need to find effective DN preventive and therapeutic modalities. It is widely

believed that effective exercise is good for health. However, the beneficial role

of exercise in kidney disease, especially in DN, and the underlying molecular

mechanisms have rarely been reported. Muscle is not only an important motor

organ but also an important endocrine organ, secreting a group of proteins

called “myokines” into the blood circulation. Circulating myokines then move

to various target organs to play different biological roles. In this review, we

summarize the currently knownmyokines and the progress in research relating

them to DN and discuss its potential as a therapeutic target for DN.
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Introduction

Diabetic nephropathy (DN) has been the main cause of end-stage renal disease

(ESRD) in developed countries. With social-economy development of and the

improvement of people’s living standards, DN incidence has increased drastically over

the past two decades (1–3). DN is often accompanied by severe retinopathy (4, 5),

neuropathy (6, 7), cardiomyopathy (8, 9), and other complications. Therefore, there is an

urgent need to find effective preventive and therapeutic modalities for DN. Recently,

research on the treatment of DN has focused on inter-organ crosstalk.

Muscle is the largest tissue in the body, accounting for approximately 30% - 40% of

the total body weight (10). Muscle weight is affected by many factors, such as diet,

chronic diseases, and tumors (11). In humans, muscles are of various different types,

including skeletal muscle, cardiac muscle, and smooth muscle, depending on their

position and function. These are responsible for maintaining the human body’s

movement and balance, producing heat and the mechanics internal organs, such as

the heart, digestive organs, and blood vessels (12). It is well known that exercise is good
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for human health. Recent research has revealed that muscles can

secrete a group of proteins called “myokines” in response to

external stimuli to participate in the maintenance of

homeostasis. Myokines are secreted by muscles into the blood,

from where they are circulated to other cells, tissues, and organs

to perform various functions (13–16) (Figure 1). In this review,

we summarize the currently discovered myokines and the

progress in research relating them to DN and we also discuss

its potential as a therapeutic target for DN.
Myokines and DN

Interleukin-6

Interleukin-6 (IL-6) is a cytokine that plays an important

role in inflammation, immune response and hematopoiesis (17,

18). The relationship between IL-6 and muscle was found in

1998 when Ostrowski et al. demonstrated that blood IL-6 levels

increased significantly after exercise (19) and its levels increased

in preference to those of other cytokines (20). After exercise,

plasma IL-6 levels can be more than 100 times higher than those

at rest (21, 22); after an ultramarathon, plasma IL-6 levels can
Frontiers in Endocrinology 02
even rise to an astonishing 8,000 times those at rest (23). It was

believed that such an increased in IL-6 levels after exercise is

thought to be a consequence of muscle damage. Pedersen et al.

showed that the increase in plasma IL-6 levels after exercise did

not result from muscle injury but rather from the intensity of

exercise (20). Moreover, exercise involving only a few muscles is

not enough to increase plasma IL-6 levels (24–26); only exercise

involving all muscles, such as running, can significantly increase

plasma IL-6 levels. Additionally, the expression of IL-6 mRNA

was found to be low in muscles during rest, but it increased to

more than 100 times the level at rest after exercise (27, 28). These

findings suggest that muscle contraction during exercise releases

large amounts of IL-6, increasing its plasma levels. Interestingly,

several studies have shown that more physical activity is

associated with lower levels of plasma IL-6 (29–31).

Several studies have provided insight into the role of IL-6 in

DN, which is a metabolic inflammatory disease. Senthilkumar

et al. demonstrated that the levels of IL-6 and insulin were

notably increased in the serum of type 2 diabetes mellitus

(T2DM) patient patients with DN compared to those in

T2DM patients without DN (32). Similarly, plasma IL-6 levels

were elevated in the early stages of CKD but not further up-

regulated with progression to in the more severe stages of CKD
FIGURE 1

The muscle-renal axis. Effective exercise increases the production of myokines, such as IL-6, irisin, myonectin, FABP3, FGF21 and GDF15, from muscles
and their secretion into the blood circulation. Myokines then travel through the bloodstream to the kidneys, among other organs, where they exert
various biological effects. For example, irisin exerts renoprotective effects through different pathways. It can activate AMPK/SIRT1/PGC-1a pathway to
inhibit ALCAT1 expression and thus anti-apoptosis, and activate GPX4 through AMPK/SIRT1/Nrf2 pathway to inhibit ferroptosis.
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(33). The levels of IL-6 and other inflammatory factors were also

increased in mice with STZ-induced DN (34). Another report

revealed that miR-34b could relieve inflammation and apoptosis

of HK-2 cells under high glucose intervention by inhibiting the

IL-6R/JAK2/STAT3 signaling pathway (35). Systemic

inflammation is aggravated in DN, and the resulting increase

in IL-6 levels further aggravates DN progression. Conversely,

inhibition of IL-6 can alleviate kidney damage caused by high

glucose. These findings indicating that intense exercise leads to

high plasma IL6 levels seem to contradict the idea that exercise is

good for health. However, it may be that exercise only

temporarily increases plasma IL-6 levels, while significantly

decreasing baseline plasma IL-6 levels (29, 30). Prolonged low

baseline plasma IL-6 levels may alleviate systemic inflammation

and thus delay the progression of DN.
Irisin

In 2012, Boström et al. showed that transgenic mice

overexpressing peroxlsome proliferator-activated receptor-g
coactlvator-1a (PGC1a) had increased production of

FUNDC5 protein in their muscle (36). FUNDC5 contains a

signal peptide, a fibronectin III domain, a hydrophobic

transmembrane domain, and a carboxy-terminal domain (37).

After a series of processing and modification steps, such as

proteolytic lysis and glycosylation, FUNDC5 was reconstituted

as a new protein mainly containing the fibronectin III domain

called irisin (38–40). Irisin is made up of 112 amino acids and its

amino acid structure is identical between humans and mice (41).

In humans, FUNDC5 is mainly expressed in muscle and adipose

tissue and has low expression in the pancreas and liver. Muscle is

the main source of circulating irisin. In mice, muscle-derived

irisin accounts for about 78% of the total circulating irisin; the

remaining 22% may be derived from adipose tissue (37).

Exercise was shown to be closely related to irisin secretion

from muscle. Boström et al. demonstrated that mice that ran

regularly for three weeks had a 65% increase in irisin levels

compared to control mice (36). Huh et al. observed that

circulating irisin levels in untrained healthy women who

underwent whole-body vibration training increased by 9.5%

and 18.1% at week 0 and 6, respectively; six weeks of training

did not change circulating irisin levels in the resting state, but it

significantly increased the magnitude of the training-induced

increase in irisin levels (42). Similarly, single high-intensity

endurance training and high-intensity training led to a

temporary increase in circulating irisin levels, which peaked at

1 h and then gradually decreased to the baseline level (43). These

findings strongly indicate that exercise can promote irisin

secretion from muscle into the blood circulation, from where

irisin moves to target organs to play its physiological role in

regulating body homeostasis. Research regarding receptors of

irisin on the surface of cells or tissues is still controversial.
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Kim et al. demonstrated that aV integrin receptors may act as

the receptors of irisin to mediate signal transfer into cells;

treatment of cells with the integrin inhibitor RGD peptide

could partially inhibit the effect of irisin (44). Peng et al.

showed that irisin could also reduce renal tubular cell injury

by inhibiting the TGF-b type 1 receptor (45). However, the

receptor repertoire of irisin needs to be further elucidated in the

future to clarify the mechanisms underlying irisin effects.

The role of irisin in DN has been partially revealed. Wang

et al. showed that, compared with T2DM patients with normal

albuminuria, the level of serum irisin was significantly reduced

in patients with microalbuminuria and macroalbuminuria (46).

In addition, with the increase in proteinuria and decrease in the

of glomerular filtration rate, the serum irisin level further

decreased (46). Moreover, Mageswari et al. showed that the

circulating irisin level was notably increased in patients with DN

compared with diabetic patients without nephropathy and was

strongly associated with eGFR (47). These findings suggest that

serum irisin may be an indicator of DN progression; Some

studies have focused on the researching the mechanism

underlying the role of irisin in DN progression. In addition,

aerobic physical exercise reduced albuminuria, glomerular

hypertrophy and inflammation in the kidney of rats compared

to sedentary diabetic rats, while these beneficial effects of exercise

were blocked by treatment of CycloRGDyK, an irisin receptor

blocker (48). In mice with ischemia reperfusion (I/R)-induced

acute kidney injury (AKI), irisin could protect renal

mitochondrial function and reduce oxidative stress and

inflammation by up-regulating the expression of GPX4 (49).

What’s more, Wu et al. showed that aerobic exercise could

activate the irisin-AMPK-SIRT1-PGC-1a signaling pathway,

inhibiting the expression of ALCAT1 and ultimately

improving the oxidative stress level and apoptosis caused by

kidney injury following myocardial infarction (50). Moreover,

muscle-specific overexpression of PGC-1a promoted the

secretion of irisin, inhibiting the activation of the TGF-b type

1 receptor in renal tubular cells and ultimately improving renal

energy metabolism and inhibiting renal fibrosis (45). In addition

to renoprotective effects, irisin could alleviate vascular

calcification in chronic kidney disease by maintaining

mitochondrial function or inhibiting pyroptosis (51). These

studies suggest that irisin could be considered to be used as a

potential target for kidney therapy in the future.
Myonectin

Myonectin is a myokine recently reported in 2012 by Seldin

et al. (52) and Lim et al. (53). It’s a Member of the C1q/TNF-

related protein (CTRP) family. Myonectin is mainly expressed

and secreted by muscle tissue and mediates the exchange of

signals between muscles and other metabolic organs, such as

adipose tissue and liver, to coordinate metabolic levels
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throughout the body (54, 55). The expression of myonectin is

regulated by exercise and nutritional status. Otaka et al.

demonstrated that mice treated with treadmill exercise had a

significantly up-regulated myonectin level in their serum

compared to control mice. In addition, myonectin was notably

increased upon treatment of myotubes cultured in serum-free

medium with glucose or free fatty acid; Similarly, myonectin was

significantly increased in mice fed a diet with high glucose and

fat after a night of fasting (52). Myonectin could stimulate the

lipid uptake capacity of adipose tissue and liver by up-regulating

proteins involved in lipid uptake (CD36, FATP1, Fabp1 and

Fabp4) and, thereby, reduce circulating free fatty acids levels

without significantly affecting the lipolysis and glucose

homeostasis of adipose cells (52, 54). Therefore, myonectin

may act as a nutrition-sensing factor that can timely transmit

information about the nutritional status of the body to

various tissues.

There are few studies focusing on the role of myonectin in

DN, a disorder of nutrient metabolism. A clinical study revealed

that the serum myonectin levels in patients with DN were lower

than those in control patients; moreover, the serum myonectin

levels were further reduced in the macroalbuminuria group

compared to those in the normoalbuminuria and

microalbuminuria groups. Logistic regression analysis showed

an association between myonectin level and a lower risk of

T2DM and DN (56). Few studies have explored the potential

mechanism through which myonectin acts in renal disease.

Renal lipid metabolism disorder and renal ectopic lipid

deposition are important clinical manifestations of DN as well

as key factors involved in the aggravation of DN progression.

Considering the central role of myonectin in regulating lipid

metabolism, these processes may form the link between

myonectin and DN.
Chitinase-3-like protein 1
(CHI3L1/YKL-40)

Glycoside hydrolase family 18 consists of chitinases and

non-enzymatic chitinase-like proteins (CLPs), both of which can

bind chitin (57). Chitinase-3-like protein-1 (CHI3L1) is a CLP

and is called YKL-40 in humans (58–60). Görgens et al.

demonstrated that CHI3L1 is a myokine, the levels of which

are significantly upregulated in muscles and serum by exercise

[59]. Electrical stimulation of cultured myotubes can also

significantly increase CHI3L1 mRNA expression and CHI3L1

secretion (61). A similar finding was that the expression of

CHI3L1 was notably increased after 1 h of exercise and increased

further after 3 h of exercise (62). After secretion into the blood

circulation, CHI3L1 can move to target organs to promote cell

proliferation, differentiation and anti-apoptosis (63).

Røndbjerg et al. revealed the relationship between CHI3L1

and DN. They divided 105 patients with T2D into normal
Frontiers in Endocrinology 04
albuminuria, persistent microalbuminuria, and persistent

macroalbuminuria groups according to their amount of

urinary protein; 20 healthy people were placed in the control

group. Serum YKL-40 levels were significantly increased in the

group with persistent proteinuria compared with those in the

other groups and correlated with the urinary albumin/creatinine

ratio (64). Similarly, the level of YKL-40 was found to be

increased in the early stage of DN and was correlated DN

progression (65, 66). These findings suggest that YKL-40 may

be used as a diagnostic indicator for early-stage of DN. However,

whether the level of YKL-40 in DN is increased secondary to its

decreased excretion through the kidney, and its role in renal

injury in DN remain to be further studied.
Fatty acid-binding protein 3

Fatty acid-binding proteins (FABPs) are an intracellular group

of proteins, with a molecular weight of 14-15 kDa and 126-134

amino acids, that participate in the regulation of intracellular lipid

metabolism (67). At present, there are nine known FABPs. The

amino acid sequences of different FABPs have 20-70% homology

as well as some similarities in spatial structure. Among the FABPs,

FABP3 is the most widely distributed, mainly in muscle, kidney,

lung, brain, and ovary tissues (68). The level of FABP3 is regulated

by many factors, and exercise is one of the more critical factors

affecting it. Hutchinson et al. demonstrated that non-pregnant

women who performed moderate-intensity treadmill walks (40-

60% of heart rate reserve) had significantly increased FABP3 levels

than resting women (69). Similarly, the secretion of FABP-3 from

rat gastrocnemius also increased during exercise (70). Studies have

revealed that FABP3 is also involved in the progression of many

diseases. The knockout of FABP3 aggravated transverse aortic

constriction-induced cardiac hypertrophy and cardiac

insufficiency. A multi-omics analysis revealed that FABP3

knockdown induced cardiac dysfunction with increased

glycolysis, lipid accumulation, impaired fatty acid oxidation, and

decreased ATP synthesis under hypertrophy (71). Mechanically,

FABP3 mediates cardiometabolic reprogramming by directly

interacting with PPARa (71). Moreover, the downregulation of

FABP3 expression can lead to changes in mitochondrial

morphology, decrease intracellular ATP synthesis, increase

mitochondrial ROS production, and ultimately induce

apoptosis (72).

Unfortunately, few studies have explored the involvement of

FABP3 in DN. Ozawa et al. showed, through a microarray assay

with isolated glomeruli, that the mRNA expression of FABP3 in

glomeruli was significantly increased in the kidneys of diabetic

eNOS knockout mice compared to that in the kidneys of control

group mice, and that this high expression of FABP3 was

associated with MCP-1 expression and renal infiltration of

CD68 cells (73). Furthermore, FABP3 levels were found to be
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significantly increased in the urine of patients with diabetes prior

to the occurrence of microalbuminuria (73, 74). Similarly, Yu

et al. demonstrated that the FABP3 level was up-regulated in

parallel with the eGFR level in patients with diabetes, and this

increase in the FABP3 level was independently and significantly

correlated with eGFR stages G2-G4 (75). In one study, urine and

serum samples were collected from 120 patients with AKI to

assess the need for timely initiation of renal replacement therapy

(RRT). Urinary proteomics showed that increased urinary

FABP3 levels can serve as a diagnostic/prognostic indicator of

RRT initiation in AKI patients (76). These findings suggest that

FABP3 levels in the blood and urine are significantly increased in

DN or AKI and may play an adverse role in the progression of

kidney disease. This suggestion again goes against our belief that

exercise is good for health. However, further studies will we need

to rule out whether the above mentioned are compensatory

increases in FABP3 levels in response to kidney injury or

whether they are of non-muscular origin. Although the

specific mechanism needs to be further studied, current studies

suggest that FABP3 may be an important predictor of DN.
FGF21

The fibroblast growth factor (FGF) superfamily is composed

of 23 polypeptides, which play their roles mainly in autocrine or

paracrine form (77). However, FGF15/19, FGF21, and FGF23

are released into the blood circulation and act on target organs in

an endocrine manner. Paracrine and endocrine FGF signaling is

mediated primarily by the activation of FGF receptors (FGFRs),

including FGFRs 1b, 1c, 2b, 2c, 3b, 3c and 4. When FGF binds to

its receptors, it mediates intracellular signaling through four

pathways: RAS/RAF/mitogen-activation protein kinase (MAPK)

signaling pathway, phosphatidylinositol 3-kinase (PI3K)/serine-

threonine protein kinase AKT signaling pathway, signal

transducer and activator of transcription (STAT) signaling

pathway, and phosphoinositide phospholipase C (PLC) g
signaling pathway (78, 79). FGF21 contains 209 and 210

amino acid residues in humans and rodents, respectively; it

consists 13 N-terminal residues and 40 C-terminal residues and

the gene encoding FGF21 is located on chromosome 19 (80).

The activation of the FGFR1 receptor by FGF21 requires the

involvement of the cofactor b-klotho (81). As a regulatory

metabolic molecule, FGF21 plays an important role in

maintaining metabolic homeostasis. One study showed that

FGF21 inhibited glucolipid-induced islet cell apoptosis,

promoted beta cell survival and function, and increased the

number of insulin-positive islets in dB/dB mice, thereby

contributing to the maintenance of glucose homeostasis and

prevention of hyperglycemia (82). Conversely, the absence of

FGF21 resulted in insulin resistance and islet dysfunction (83,

84). The expression of FGF21 is mainly regulated by metabolic

factors, including fasting (85), a high carbohydrate diet (86), and
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low protein diet (87). FGF21 is mainly expressed in the liver and

pancreas (84, 88, 89), but recent studies have confirmed that it is

also a myokine and can, therefore, also be secreted into the blood

by muscles. Hojman et al. demonstrated that the expression of

FGF21 in the muscles of normal young men was low but

significantly increased 3 or 4 h after insulin injection along

with an increased in plasma FGF21 levels (90). There has also

been increasing evidence indicating that muscle tissue is an

important source of circulating FGF21 (91).

Several studies have confirmed that FGF21 plays an

important role in the progression of DN. El-Saeed et al.

observed that the serum FGF21 levels in diabetic patients with

normoalbuminuria were significantly increased compared to

those in the control group patients, and were positively

correlated with cholesterol, triglyceride, LDL cholesterol,

creatinine, HA1C, UAE, and other biochemical indexes while

being negatively correlated with glomerular filtration rate (92).

Similarly, with the increase in the proteinuria level, the serum

FGF21 level in patients with DN also increased significantly

compared to that in the control group patients (93–96). Lin et al.

demonstrated that treatment with FGF21 could significantly

relieve renal tubulointerstitial lesions and fibrosis by activating

the AKT/MDM2/p53 signaling pathway and inhibiting TGF-b/
Smad2/3-mediated epithelial-to-mesenchymal transition in the

kidneys of mice with DN (97). Moreover, fenofibrate, a

commonly used lipid-lowering drug, is used to treat

hyperlipidemia in patients with DN. However, recent studies

have shown that, in addition to its role in improving DN through

lipid-lowering, fenofibrate can also play a renal protective role

directly through FGF21. Cheng et al. showed that fenofibrate

plays a renal protective role in DN by promoting the expression

of FGF21 and thereby activating the Akt2/GSK-3b/Fyn/Nrf2
antioxidant and AMPK pathway (98). The benefits of FGF21 in

combination with other drugs in the treatment of DN have also

been revealed. Meng et al. showed that, compared with insulin or

FGF21 alone, FGF21 combined with insulin can further improve

blood glucose levels and renal pathological changes, oxidative

stress, and AGEs caused by high glucose in mice with DN (99).

Mechanically, these effects may occur through the promotion of

AMPK phosphory la t ion and inhib i t ion of mTOR

phosphorylation (99). In addition, treatment with low-dose

radiation (LDR) in combination with FGF21 significantly

reduced diabetes-induced renal fibrosis, inflammation, and

oxidative damage in mice with STZ-induced DN compared

with LDR and/or FGF21 alone (100). These findings strongly

suggest that FGF21 is closely related to the progression of DN

and can be used as a therapeutic target of DN.
Growth differentiation factor 15 (GDF15)

GDF15 is a member of the cell stress–responsive

transforming growth factor-b (TGFb) family, also known as
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macrophage inhibitory cytokine-1 (MIC-1) and NSAID

activated gene 1 (NAG-1) (101, 102). GDF15 is a monomeric

precursor protein with a molecular weight of about 40 kDa. After

dimerization, GDF15 is cleaved to form a mature dimer with a

molecular weight of 30 kDa (103). GDF15 is a stress-inducing

hormone and is released by cells, such as vascular smooth

muscle cells, heart and endothelial cells, macrophages, and fat

cells in response to external stimuli resulting from various stress

states, such as obesity, insulin resistance, heart failure, and

cancer (104–108). Compared with those of other cytokines,

the basal level of GDF15 in serum is higher in the resting

state, 0.2-1.2 ng/mL (103, 109), and gradually increases with

age. Moreover, exercise is a key factor causing increased GDF15

levels in the blood circulation. Klein et al. showed that prolonged

endurance exercise induced a 4-5-fold increase in circulating

GDF15 in mice and humans compared to respective controls.

Interestingly, the pharmacological inhibition of GDF15

suppressed voluntary running in mice (110). Similarly, in

marathon runners, GDF15 levels in the blood circulation

increased significantly immediately after the race and returned

to basal levels within 48 h (111). After exercise, the GDF15

mRNA level in the soleus muscle of mice was increased (110).

Moreover, electrical stimulation induced the contraction of

primary human muscle cells for 3 h and also induced the

release of GDF15 into the culture medium (112). These

findings suggest that exercise can induce muscle to release

GDF15; however, the underlying mechanism and events

downstream of GDF15 secretion into blood remain to be

further investigated.

As a nutrient-sensing and regulatory factor, GDF15 plays a

key role in metabolic diseases, such as obesity and diabetes.

However, the relationship between GDF15 and DN is rarely

studied. Lajer et al. revealed that the level of GDF15 was elevated

in type 1 DN and higher GDF-15 levels were associated with

faster deterioration of renal function (113). Moreover, GDF-15

was found to be a predictor of all-cause and cardiovascular
Frontiers in Endocrinology 06
mortality and morbidity in patients with DN (113). Similarly,

Ho et al. found that higher plasma GDF-15 levels are associated

with microalbuminuria and predict the incidence of CKD (114).

Moreover, the T2D patients with a lower-than-normal

glomerular filtration rate had up-regulated urine GDF15 levels

compared to the control patients (115). These findings indicate

that GDF15 plays a detrimental role in the progression of DN.

However, the increased level of GDF15 in DN may be caused by

a variety of factors. One such factor is the increased level of

GDF15 production in the body. In addition, due to the impaired

renal function in DN, reduced excretion of GDF15 leads to its

increased retention. In the future, more experiments are needed

to reveal the role of GDF15 in the progression of DN and its

underlying molecular mechanism.

In addition to what we have summarized above, with the

development of biotechnology, more and more myokines have

been discovered, such as Apelin (116), Chitinase-3-like protein

(117), Follistatin-like 1 (118), Dipeptidyl Peptidase IV (119),

MG53 (120) and METRNL (121), which they also play a key role

in maintaining the human homeostasis of the body. Further

studies are needed to determine whether they are related to DN

and, if so, how Table 1.
Conclusion and future prospects

The role of abnormal signaling between organs of the human

body in the occurrence and development of diseases has

gradually attracted the attention of researchers. It is widely

believed that effective exercise is good for health; however,

exact molecular mechanisms underlying the effects of exercise

on human health are still unclear. Here, we have summarized

reports indicating that muscle, as an endocrine organ, regulates

systemic metabolism and participates in the progression of

diseases by secreting different kinds of myokines. We have also

discussed the roles of these myokines in DN. Some myokines are
TABLE 1 Some myokines as currently defined.

Myokines Biological effects References

Irisin Anti-oxidative stress, anti-apoptosis and anti-fibrosis (48, 122)

Myonectin Regulating lipid metabolism (123)

CHI3L1 Anti-apoptosis (57)

FABP3 Regulating lipid metabolism (71)

FGF21 Anti-oxidative stress, anti-apoptosis and anti-inflammation (124, 125)

GDF15 Regulating metabolic homeostasis (126, 127)

Apelin Increased Insulin sensitivity (128)

FSTL-1 Anti-oxidative stress, anti-apoptosis and anti-inflammation (63, 129)

DPP-IV Regulating metabolic homeostasis (119)

MG53 Regulating insulin sensitivity (130, 131)

METRNL Anti-inflammation and regulating insulin resistance (132)
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secreted by non-injured muscles after exercise, while others are

leaked into the circulation after muscle injury. These myokines

play different roles as therapeutic targets and predictors of DN.

Unfortunately, the functional decline of kidneys, an important

excretory organ of the human body, in DN leads to the failure of

muscle factor discharge through urine in time. This impact the

way we study the effect of myokines on kidneys in DN.

Therefore, we can expect the “muscle-renal axis” may serve as

a target for the prevention and treatment of DN in the

near future.
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