
sensors

Article

Deep Learning-Based Human Activity Real-Time
Recognition for Pedestrian Navigation

Junhua Ye 1 , Xin Li 1,* , Xiangdong Zhang 1, Qin Zhang 1 and Wu Chen 2

1 College of Geology Engineering and Geomantic, Chang’an University, Xi’an 710054, China;
junhua2009@chd.edu.cn (J.Y.); xiangdong2018@chd.edu.cn (X.Z.); dczhangq@chd.edu.cn (Q.Z.)

2 Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University,
Hong Kong 999077, China; wu.chen@polyu.edu.hk

* Correspondence: lixin2017@chd.edu.cn; Tel.: +86-158-0713-9150

Received: 2 April 2020; Accepted: 27 April 2020; Published: 30 April 2020
����������
�������

Abstract: Several pedestrian navigation solutions have been proposed to date, and most of them
are based on smartphones. Real-time recognition of pedestrian mode and smartphone posture is a
key issue in navigation. Traditional ML (Machine Learning) classification methods have drawbacks,
such as insufficient recognition accuracy and poor timing. This paper presents a real-time recognition
scheme for comprehensive human activities, and this scheme combines deep learning algorithms and
MEMS (Micro-Electro-Mechanical System) sensors’ measurements. In this study, we performed four
main experiments, namely pedestrian motion mode recognition, smartphone posture recognition,
real-time comprehensive pedestrian activity recognition, and pedestrian navigation. In the procedure
of recognition, we designed and trained deep learning models using LSTM (Long Short-Term
Memory) and CNN (Convolutional Neural Network) networks based on Tensorflow framework.
The accuracy of traditional ML classification methods was also used for comparison. Test results
show that the accuracy of motion mode recognition was improved from 89.9%, which was the highest
accuracy and obtained by SVM (Support Vector Machine), to 90.74% (LSTM) and 91.92% (CNN);
the accuracy of smartphone posture recognition was improved from 81.60% , which is the highest
accuracy and obtained by NN (Neural Network), to 93.69% (LSTM) and 95.55% (CNN). We give a
model transformation procedure based on the trained CNN network model, and then obtain the
converted .t f lite model, which can be run in Android devices for real-time recognition. Real-time
recognition experiments were performed in multiple scenes, a recognition model trained by the CNN
network was deployed in a Huawei Mate20 smartphone, and the five most used pedestrian activities
were designed and verified. The overall accuracy was up to 89.39%. Overall, the improvement of
recognition capability based on deep learning algorithms was significant. Therefore, the solution
was helpful to recognize comprehensive pedestrian activities during navigation. On the basis of
the trained model, a navigation test was performed; mean bias was reduced by more than 1.1 m.
Accordingly, the positioning accuracy was improved obviously, which is meaningful to apply DL in
the area of pedestrian navigation to make improvements.

Keywords: LSTM; CNN; tensorflow; deep learning; pedestrian navigation

1. Introduction

Smartphones are widely used at present, some products of IOT (Internet of Things) have
been developed, and many mobile phone applications have been provided in Google Play or
Apple Store [1]. Navigation applications and location-based services are now becoming standard
features in smartphones [2]. Positioning is a key issue to resolve the business requirements of these
products. GNSS (Global Navigation Satellite System) can usually provide good positioning accuracy

Sensors 2020, 20, 2574; doi:10.3390/s20092574 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5796-3612
https://orcid.org/0000-0002-1255-9173
http://dx.doi.org/10.3390/s20092574
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/9/2574?type=check_update&version=2

Sensors 2020, 20, 2574 2 of 30

in an open-sky environment using professional devices; however, the capability of GNSS positioning
is degraded in indoor or harsh environments due to signal blockage and multipath. In recent
years, pedestrian navigation based on smartphones has developed rapidly. Smartphones are not
professional positioning devices; they contain low-accuracy positioning sensors, chips, and antenna.
Thus, their positioning capability worsens, especially in a harsh environment. Accordingly, standard
GNSS-INS integration algorithms are not applicable and should develop more accurate navigation
algorithms in different scenes and stages. Pedestrian activity recognition is vital in the procedure of
pedestrian navigation [3–5]. With the explosive growth of the capabilities in smartphones, various
sensors, such as accelerometers, gyroscope, magnetometers, and barometers, are embedded in
smartphones [5]. Pedestrian activity recognition, which utilizes these powerful sensors to recognize
different activities, has been gaining considerable attention in recent years [6]. Pedestrian activity
recognition is a classification problem; several related methods have been developed in previous studies,
such as RF (Random Forest), DT (Decision Tree), and kNN (k-Nearest Neighbor). Pedestrian activity
recognition is significant in several fields, such as elderly monitoring and transportation modes recognition,
because it can help reduce workload and understand people’s behaviors [3]. In the process of pedestrian
navigation, error accumulation is inevitable; diminishing the cumulative error effectively is a challenge
for localization systems but is important, because decreased cumulative error improves the localization
accuracy [7,8]. In recent years, motion mode recognition can also be used in pedestrian localization system
to adjust positioning algorithm to reduce accumulative error. The feasibility of activity recognition for
pedestrian localization has been demonstrated by multiple authors [9–11]. Therefore, studying of activity
recognition is important to improve the effect of pedestrian localization [6].

State-of-the-art solutions for pedestrian activity recognition can be divided into two categories:
traditional methods and deep learning-based approaches [12,13]. Traditional methods usually consist
of two parts: feature extraction and classification. They rely on extracting complex hand-crafted
features, which are laborious and inefficient; thus, they might lead to incapability of real-time
identification of pedestrian activities [14,15]. Deep learning methods overcome this shortcoming by
fusing the two steps with an NN to automatically learn proper features [6]. Deep learning techniques
have revolutionized ML algorithms and their applications [16]. They are used in pattern recognition,
natural language processing, and speech recognition. Several deep learning network models have
been designed, such as CNN and LSTM, and more and more advanced, complicated deep learning
networks will be raised.

Pedestrian motion mode recognition is based on motion sensors that are embedded in mobile
devices [17]. In traditional methods, data are processed by various steps, such as preprocessing,
data segmentation, extraction of salient and discriminative features, and finally classification
of activity [18]. For example, Fan, L. et al. used DT to conduct human activity recognition by
these steps [19]. Akhavian, R. et al. combined mobile sensors and machine learning classifiers to
construct equipment activity recognition [20]. In deep learning, CNN is widely used for sequential data
analysis, and the key to its success lies in the use of convolutional filter hierarchies that consecutively
extract feature representations of increasing complexity from raw sensor measurements [21]. However,
CNN can only be used for this kind of data by using a sliding-window that carves out consecutive
sample data; in this way, the time-series are assumed static and are thus analyzable using CNN [16].
Researchers now use sequential deep learning models. LSTM models are particularly attractive because
their specialized internal structure implements a memory that includes a forget function to effectively
and selectively focus on those sensory data that are relevant to the recognition process [16].

The rapid development of deep learning has facilitated the use of deep learning algorithms
in recognition. Previous researchers have conducted studies on pedestrian activity recognition,
for example Bayat, A. et al. used smartphone accelerometer measurement to recognize pedestrian
activities [22]. Altun, K. et al. performed localization simultaneously with activity recognition and
switched to different contexts according to the detected activities [23]. Guo, J. et al. used a self-learning
scheme to monitor patients’ activities by smartphones [24]. Kwon, Y. et al. gave a human activity

Sensors 2020, 20, 2574 3 of 30

recognition solution using unsupervised learning with smartphone sensors [25]. Ignatov, A. et al. used
CNN and accelerometer data to recognize human activities in real-time [26]. Wang, K. et al. used
re-configurable convolutional neural networks for 3D human activity recognition [27]. M. Zeng et al.
designed an LSTM network to recognize pedestrian activities [28]. Hassan, M. M. et al. combined
CNN and LSTM networks to recognize pedestrian activities [29]. F.J.O. Morales et al.utilized a
deep belief network model for successful human activity recognition [30]. Hassan, M. M. et al.
presented a solution to recognize pedestrian activity using deep learning methods and compared it
with SVM and ANN (Artificial Neural Network); the proposed solution outperforms the two other
methods [31]. Jiang and Yin proposed a method of constructing a novel activity image for DCNN
(Deep Convolutional Neural Network) using the gyroscope, total acceleration, and linear acceleration
signals [32]. Alskeikn et al. tested the activity recognition performance of DBN (Deep Belief Network)
using different parameter settings [33]. Based on pedestrian activity recognition, researchers have
attempted to optimize navigation algorithms; e.g., Niitsoo. A. et al. used LSTM network to train
sensors’ measurements to estimate step length [34]. Arne Niitsoo et. al presented a solution to estimate
the position of mobile objects directly from the raw channel impulse response using deep learning [14].
Wang, Q., proposed a solution to estimate the pedestrian walking distance based on smartphone mode
recognition [34].

Although previous studies have presented several pedestrian activity recognition strategies,
most of these approaches are immature, especially in a harsh environment combined with complicated
movement. Thus, this paper presents a strategy using deep learning algorithms to conduct real-time
recognition and adjust and optimize pedestrian navigation algorithms to improve positioning accuracy.
The contributions of this study are summarized as follows.

(1) This paper summarizes MEMS measurement preprocessing strategies, including de-noising
filtering algorithms, FFT, posture transformation, body acceleration extraction from total
acceleration, and feature extraction from measurements. Traditional ML classification methods
and commonly used deep learning methods are reviewed, and recognition evaluation methods
and navigation update algorithms are presented.

(2) Four main experiments were performed, namely pedestrian motion mode recognition,
smartphone posture recognition, real-time comprehensive pedestrian activity recognition,
and pedestrian navigation experiment. Seven traditional ML classification methods and two deep
learning methods were used in the procedure of recognition. Several test results are presented for
comparison and analysis in this paper.

(3) We designed deep learning models using LSTM network and CNN network . On the basis of
the trained models, we converted the trained model to a lightweight model, which can be run in
Android smartphones. This way provides the possibility to recognize pedestrian activity in real-time.

(4) Real-time recognition was performed in a Huawei Mate20 smartphone. Five comprehensive
pedestrian postures, frequently used in pedestrian navigation, were designed. Test results show
that the right recognition rate was up to 89.39%, which was useful to enhance the optimization of
pedestrian navigation algorithms.

The paper is organized as follows. Section 1 reviews recent studies and development in
these aspects of pedestrian activity recognition, traditional ML classification methods, and deep
learning algorithms. Section 2 presents the methodology, including measurement de-noising
algorithms, horizontal transformation, FFT, body acceleration extraction, ML classification methods,
deep learning algorithms, trained model transformation procedure, recognition evaluation algorithms,
and pedestrian positioning update algorithms. Four main experiments are summarized in Section 3,
namely motion mode recognition using the UCI (University of California Irvine) open dataset,
smartphone postures classification using seven traditional ML classification methods and two deep
learning modes constructed by LSTM network and CNN. Besides, a real-time test of comprehensive
pedestrian activities was done, on the basis of the trained model; the pedestrian navigation experiment

Sensors 2020, 20, 2574 4 of 30

was performed at Hong Kong Polytechnic University. Section 4 provides the discussions and analysis
of these experiments. Section 5 elaborates the conclusions.

2. Methodology

2.1. General Procedure of Recognition

Recognition involves several steps. In this study, raw measurements of smartphone sensors
(accelerometer, gyroscope, magnetometer, etc.) were collected first. Then, these measurements were
processed to obtain a useful recognition model. Figure 1 presents the whole workflow of motion mode
or smartphone posture recognition for pedestrian navigation.

Figure 1. Procedure of recognition.

(1) Collect measurements from smartphone MEMS sensors.
(2) Preprocess sensor measurements and divide the data to training and validation dataset.
(3) Train and optimize the model, and conduct precision test.
(4) Perform prediction.

2.2. Preprocessing of Measurements

2.2.1. De-Noising

De-noising can be realized using different methods, including low pass filtering, which removes
high-frequency noise. However, low-pass filtering removes high-frequency dynamics that may describe
the motion [35]. The methods of de-noising or noise reduction used in the study is discussed as follows:

(1) Digital low-pass filter: Use a conventional low-pass filter with a pre-defined cut-off frequency.
A low-pass filter is a circuit that can be designed to modify, reshape, or reject all unwanted high
frequencies of an electrical signal and accept or pass only those signals wanted by the circuits
designer. In this study, we used Butterworth low-pass filter. The related formula is given as follows:

Y(n) = a× X(n) + (1− a)×Y(n− 1), (1)

where X(n) is the input signal, Y(n− 1) is the filtered signal in last epoch, and a is the low-pass
filter coefficient.

(2) Mean filtering: Use a moving average window replacing each data element with the mean of the
group of data elements before and after it.

(3) Median filtering: Use a moving average window but return the median rather than the mean.
The median filter provides a nonlinear approach to filter that can be extremely effective in combating
impulse noise with ease of implementation. It does not require multiplication or addition but needs
only a fairly quick sorting after each sample. It creates some artifacts, particularly clipping. However,
these artifacts are tolerable for most applications [35]. The formula is expressed as follows:

y(i) = Med{x(i− N), · · · , x(i), · · · , x(i + N)}, (2)

where x(i) is the input signal and y(i) is the filtered signal.

Sensors 2020, 20, 2574 5 of 30

2.2.2. Fast Fourier Transform

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT)
of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original domain (often
time or space) to a representation in the frequency domain and vice versa [36]. The DFT is obtained
by decomposing a sequence of values into components of different frequencies [2]. This operation is
useful in many fields, but computing it directly from the definition is often too slow to be practical.
An FFT rapidly computes such transformations by factorizing the DFT matrix into a product of sparse
(mostly zero) factors [37].

2.2.3. Transforming Measurements to Horizontal

An advanced step to calculate the norm of acceleration or rotation measurements is to level them to
a frame of reference, which usually is the local-level frame (i.e., a frame where the vertical axis is parallel
to gravitational force and the horizontal plane is parallel to the Earth’s ellipsoid) [38]. Mizell deduced that,
in pedestrian activities, or for low-acceleration activities, the low-frequency component of acceleration
measurements can be an estimate of the gravity vector. Therefore, the low-frequency component can be
calculated as the average of the acceleration vector:

~aave = mean(~a) ≈ ~g, (3)

where a is the total acceleration. aavex

aavey

aavez

 =

 mean (ax)

mean
(
ay
)

mean (az)

 ≈
 gx

gy

gz

 (4)

gx, gy, gz are components of the gravity vector. According to Mizell, the acceleration along the vertical
axis can be estimated as:

~aup ≈
~a ·~aave

~aave ·~aave
~aave, (5)

Therefore, the acceleration along the horizontal plane can be estimated as:

~ah =~a−~aup, (6)

which is mainly applied to pedestrian activities and low-acceleration activities. For more general cases,
leveled vertical and horizontal accelerations can be deduced from calculated pitch and roll during the
strap down mechanization process. Analyzing along the forward and perpendicular axes is difficult
because it requires the estimation of the heading, which is also difficult to calculate correctly. However,
the magnitude of the leveled horizontal acceleration can be used as a variable to extract features [39].
In some previous studies, researchers used rotation matrix to transform magnetometer measurements
to horizontal. In this study, we also transformed magnetometer measurements to horizontal first and
then used magnetic field intensity proportion of each axis as the features. The following formulas
present the detailed computation procedure:

MagPercentx/y/z =
|Mag|x/y/z

|Mag|x + |Mag|y + |Mag|z
(7)

where Magx, Magy, Magz are processed magnetometer x−, y−, z−measurements.

Sensors 2020, 20, 2574 6 of 30

2.2.4. Body Acceleration Extraction

Accelerometer measurement is the sum of body acceleration and local gravity accelerations.
We can use low-pass filter to obtain body acceleration from total acceleration. The procedure is
presented in Algorithm 1.

Algorithm 1 Body Acceleration Vector Extraction.

Input:

1. Low-pass filter coefficient α

2. Total acceleration measurement vector (TotalAccx,TotalAccy,TotalAccz)

3. Gravity vector (Gravityx,Gravityy,Gravityz)

Output: Body acceleration (BodyAccx,BodyAccy,BodyAccz)

If Total acceleration measurement vector update

Gravityx =α * Gravityx + (1–α)*TotalAccx

Gravityy =α * Gravityy + (1–α)*TotalAccy

Gravityz =α * Gravityz + (1–α)*TotalAccz

BodyAccx =TotalAccx – Gravityx

BodyAccy =TotalAccx – Gravityx

BodyAccz =TotalAccx – Gravityx

2.3. Feature Extraction

In this study, we obtained measurements from MEMS sensors, such as accelerometer, gyroscope,
magnetometer, and light. However, raw measurement series were insufficient to construct features.
We calculated some characteristics to construct an efficient feature vector for improving recognition
capability. Table 1 summarizes the definitions of these commonly used features.

Table 1. Features extracted from measurements.

Category Type Definition

Statistical Mean mean(u) = u[n] = 1
N ∑N−1

n=0 u[n]

Median median(u) =

 u′
[

N+1
2 − 1

]
if N is odd

1
2

(
[u′ N

2 − 1
]
+ u′

[
N
2

])
if N is even

Root Mean Square rms(u) =
√

u2[n]

75th percentile percentile (u, 75),p =
count (u[n]< percentile (u,p))

N × 100
Variance var(u) = σ2

u = (u− u)2

Standard Deviation std(u) = σu

Skewness skew(u) =
1
N ∑N−1

n=0 (u[n]−u)3

(
√

1
N ∑N−1

n=0 (u[n]−u)2)3

Binned Distribution bindstbn (u, bin) = count(min(bin) ≤ u[n] < max(bin))
Mean Absolute Deviation MAD(u) = |u− u|

Frequency Domain Fourier Transform U (fk) = ∑∀n u[n]e−j 2πkn
N

Short-Time Fourier Transform U (fk) = ∑∀n u[n]e−j 2πkn
N

Discrete Cosine Transform STFT(u)[k] = ∑∀n u[n]w[n]e−j 2πkn
N

Continuous Wavelet Transform DCT(u)[k] = ∑N−1
n=0 u[n] cos

(
π
N

(
n + 1

2

)
k
)

Discrete Wavelet Transform DWTψ(u)[m] = 1√
2m ∑vn u[n]ψ

(
2−mk− n

)
Wigner Distribution WD(u)[ω] = 1√

2π

∫ ∞
−∞ u

(
t + τ

2
)

u∗
(
t− τ

2
)

e−jωτdτ

Frequency Domain Entropy H f (u[n]) = ∑N
i=0 Pi (U (fi)) log

(
1

Pi(U(fi))

)
Energy, Power, Magnitude Energy energy (u) = ∑N−1

n=0 (u[n])
2

Sub-band Energies energyl(u) = ∑N−1
n=0 H2

BPFl
(u)

Sub-band Energy Ratios subband energy ratioi,j(u) =
subband energy i(u)

subband energy j
Signal Magnitude Area SMA(u) = 1

N ∑N−1
n=0 |u[n]|

Time Domain Zero-Crossing Rate mean(u) = 1
N−1 ∑N−1

n=0 I{u[n]u[n− 1] < 0}

Sensors 2020, 20, 2574 7 of 30

2.4. Traditional ML Classification Methods

2.4.1. k-Nearest Neighbor

kNN algorithm is a supervised ML algorithm that can be used for both classification and regression
predictive problems. However, it is mainly used for classification predictive problems in industry.
kNN is a non-parametric and lazy learning algorithm. Non-parametric means no assumption is
imposed for underlying data distribution. In other words, the model structure is determined from the
dataset. This is helpful in practice as most real-world datasets do not follow mathematical theoretical
assumptions. Lazy algorithm means it does not need any training data points for model generation.
All training data are used in the testing phase. Thus, the training phase is fast and the testing phase
is slow and costly. Costly testing phase consumes time and memory. In the worst case, kNN needs
much time to scan all data points, and scanning all data points will require much memory for storing
training data [40].

2.4.2. Random Forrest

RF and random decision forests are ensemble learning methods for classification, regression,
and other tasks that operate by constructing a multitude of DT at training time and outputting the
class that is the mode of the classes (classification) or mean prediction (regression) of the individual
trees. Random decision forests correct for the DT habit of over-fitting to their training set [41].

2.4.3. Support Vector Machine

In ML, SVM are supervised learning models with associated learning algorithms that analyze
data used for classification and regression analysis. Given a set of training examples, each marked
as belonging to one or the other of two categories, an SVM training algorithm builds a model that
assigns new examples to one category or the other. Thus, this method a non-probabilistic binary
linear classifier. An SVM model is a representation of the examples as points in space and is mapped
to ensure that the examples of the separate categories are divided by a clear gap that is as wide as
possible. New examples are then mapped into that same space and predicted to belong to a category
based on the side of the gap on which they fall.

2.4.4. Decision Tree

DT is a non-parametric supervised learning method used for classification and regression. The goal
is to create a model that predicts the value of a target variable by learning simple decision rules inferred
from the data features. DT is commonly used in operations research, specifically in decision analysis,
to help identify a strategy that likely reaches the goal. They are also a popular tool in ML.

2.4.5. Naive Bayes

Naive Bayes is a simple technique for constructing classifiers. These models that assign class
labels to problem instances, which are represented as vectors of feature values. The class labels are
drawn from some finite set. No single algorithm can be used to train such classifiers, but a family
of algorithms based on a common principle can be utilized. All naive Bayes classifiers assume that
the value of a particular feature is independent of the value of any other features, given the class
variable. Naive Bayes only requires a small number of training data to estimate the parameters
necessary for classification. A naive Bayes classifier is a probabilistic ML model that is used for
classification tasks [40].

2.4.6. Neural Network

An ANN is an interconnected group of nodes and is inspired by a simplification of neurons in a
brain. Here, each circular node represents an artificial neuron and an arrow represents a connection

Sensors 2020, 20, 2574 8 of 30

from the output of one artificial neuron to the input of another. Neural networks are multi-layer
networks of neurons that we use to classify things and make predictions. Figure 2 is the diagram of a
simple NN with three inputs, two outputs, and one hidden layer of neurons.

Figure 2. Structure of ANN.

2.4.7. Stochastic Gradient Descent

SGD (Stochastic Gradient Descent) is an iterative method for optimizing an objective function
with suitable smoothness properties. It is called stochastic because the method uses randomly selected
samples to evaluate the gradients. Thus, SGD can be regarded as a stochastic approximation of
gradient descent optimization. SGD has been successfully applied to large-scale and sparse machine
learning problems often encountered in text classification and natural language processing. SGD is
efficient and can be easily implemented. However, SGD requires several hyperparameters, such as the
regularization parameter and the number of iterations. SGD is also sensitive to feature scaling.

2.5. Deep Learning Methods of Classification

In this study, we constructed deep learning models by LSTM network and CNN. Training was
performed on a Win64 personal computer (Intel-R Core-TM i5-8250U CPU @1.6GHz). Tensorflow was
the deep learning framework we used. LSTM network and CNN are introduced in detail below.

2.5.1. LSTM Network

LSTM is an improved RNN (Recurrent Neural Network) deep learning model. Notably, RNN has
problems with gradient vanishing or explosion. LSTM is a complicated function that learns to control the
flow of information, to prevent the vanishing gradient and to allow the recurrent layer to easily capture
long-term dependencies. LSTM is also explicitly designed to avoid the long-term dependency problem.
LSTM was introduced by Hochreiter and Schmidhuber (1997) and was refined and popularized in several
further studies. LSTM works tremendously well on the various problem and is now widely used [42].

LSTM is used in the field of deep learning. Unlike standard feed-forward neural networks,
LSTM has feedback connections. It processes not only single data points (e.g., images) but also entire
sequences of data (e.g., speech or video). A common LSTM unit is composed of a cell, an input gate,
an output gate, and a forget gate. The cell remembers values over arbitrary time intervals, and the
three gates regulate the flow of information into and out of the cell. LSTM networks are suitable for
classifying, processing, and making predictions based on time series data because lags of unknown
duration may exist between important events in a time series. The theoretical architecture of all
hyper-parameters of the LSTM network is presented in Figure 3.

Sensors 2020, 20, 2574 9 of 30

Figure 3. Training and test situation by raw dataset.

2.5.2. CNN Network

In deep learning, CNN is a class of deep neural networks. Its name indicates that the network
uses a mathematical operation called convolution. Convolution is a specialized kind of linear
operation. Convolutional networks are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers. A CNN consists of an input and an output
layer, and multiple hidden layers [43]. The hidden layers of a CNN typically consist of a series of
convolutional layers that convolve with multiplication or other dot product. The activation function is
commonly a RELU layer and is subsequently followed by additional convolutions, such as pooling
layers, fully connected layers, and normalization layers. They are referred to as hidden layers because
their inputs and outputs are masked by the activation function and final convolution. The final
convolution, in turn, often involves back-propagation to accurately weight the end product.

2.6. Real-Time Recognition Using Trained Model

2.6.1. Transformation of Trained Model

Figure 4 shows the workflow of how we used a trained model file in a mobile device. In this study,
we used Windows version Tensorflow to train measurements for obtaining a .pb model. The model
precision of the model was validated using the test data. Then, a .pb file was converted to .t f lite file,
which is a lightweight model file that can be run on mobile devices. Green blocks show the mechanism
of Android and iOS using a .t f lite model file. Yellow blocks show how our Android application uses
sensor data and .t f lite model file to recognize pedestrian motion mode or posture in real-time.

Figure 4. Filtered MEMS measurements.

Sensors 2020, 20, 2574 10 of 30

2.7. Analysis and Evaluation of Recognition Results

When a model is trained, its accuracy must be validated using test data; a confusion matrix is
often used to evaluate prediction precision. Table 2 presents a four-class classifier example.

Table 2. Template of a confusion matrix for a four-class classifier.

Actual Mode Predicted Mode

Class 1 Class 2 Class 3 Class 4

Class 1 n11 n12 n13 n14
Class 2 n21 n22 n23 n24
Class 3 n31 n32 n33 n34
Class 4 n41 n42 n43 n44

nij indicates the prediction is j− class, but the true label is i− class. If i = j, then the prediction is right.
On basis of the above-mentioned confusion matrix, several statistics are proposed to evaluate prediction
model precision. Table 3 lists the detailed information of these statistics for prediction evaluation.

Table 3. Statistic information of prediction evaluation.

Measure Description Definition

True Positive The number of samples of a class that are correctly classified TPi = nii
True Negative The number of samples of other classes that are correctly classified TNi = ∑j 6=i ∑k 6=i njk

False Positive
The number of samples not belonging to a class that are incorrectly
classified as belonging to it FPi = ∑k 6=i nki

False Negative
The number of samples belonging to a class that are incorrectly
classified as belonging to other class FNi = ∑k 6=i nik

Recall Proportion of cases of a class that are correctly classified TPRi =
TPi
Pi

= TPi
TPi+FNi

Accuracy Proportion of all cases that are correctly classified ACC = ∑∀i nii
n

Precision Proportion of cases predicted to belong to a class that are correct PPVi =
TPi

TPi+FPi

F-Score The weighted average of precision and sensitivity F1 = 2
1/ Sensi +1/ Preci

Sensitivity The proportion of samples that are correctly classified Sens i =
TPi

TPi+FPi

AUC
The area under the curve (AUC) combines sensitivity and specificity,
reflecting the overall performance of the classification model refer to [44]

Specificity
The proportion of negative samples that are correctly
classified to be negative Speci =

TNi
FPi+TNi

Four commonly used statistics to evaluate recognition situation and training model, namely
‘accuracy’, ‘recall’, ‘f-measure’, and ‘precision’, were used in this study. Classification accuracy is the
proportion of correctly classified examples. F-1 is a weighted harmonic mean of precision. Precision is
the proportion of true positives amongst instances classified as positive. Recall is the proportion of
true positives amongst all positive instances in the data.

2.8. Navigation Location Update

The core target of motion mode or posture recognition is to optimize navigation algorithm and
improve navigation location precision. Table 4 presents the pedestrian navigation update strategies of
different motion modes [45].

Table 4 shows that different navigation strategies should be used for different motion modes.
For example, horizontal location should not be updated in elevator. Thus, we need to know if the
pedestrian is in the stage of elevator.

Sensors 2020, 20, 2574 11 of 30

Table 4. Pedestrian navigation update strategies.

Motion Mode Navigation Update

Stationary Fix 3D Position
Apply ZUPT

Standing on Moving Walkway Updated 2D Position
Walking Apply PDR (Pedestrian Dead Reckon)
Walking on Moving Walkway Increase 2D Displacement in Direction of Motion

Apply PDR
Elevator Fix 2D Position

Update Altitude
Escalator Standing Update 2D Position

Update Altitude
Stairs Project Displacement to Horizontal Plane

Apply PDR
Update Altitude

Escalator Walking Increase 2D Displacement
Project Displacement to Horizontal Plane
Apply PDR
Update Altitude

3. Validation and Experiment

3.1. Pedestrian Motion Mode Recognition

3.1.1. Test Description and Preprocessing

We used the public dataset that can be found on UCI website [46]. The experiments were
performed with a group of 30 volunteers within the age range of 19–48 years. Each person performed
six activities (i.e., Walking, Upstairs, Downstairs, Sitting, Standing, and Laying) while wearing a
smartphone (Samsung Galaxy S II) on the waist, like the posture in Figure 5.

Figure 5. Pedestrian taking the test with smartphone on waist.

By using the smartphone’s embedded accelerometer and gyroscope, the testers captured three
axial linear accelerations and three axial angular velocities at a constant rate of 50 Hz. The obtained
dataset was randomly partitioned into two sets, where 70% of the volunteers were selected for
generating the training data and 30% were for the test data. The sensor signals (accelerometer and
gyroscope) were preprocessed by applying noise filters and then sampled in fixed-width sliding
windows of 2.56 s and 50% overlap (128 readings/window). The sensor acceleration signal, which had
gravitational and body motion components, was separated using a Butterworth low-pass filter into
body acceleration and gravity. The gravitational force was assumed to have only low-frequency
components. Therefore, a filter with a 0.3 Hz cutoff frequency was used. From each window, a vector
of features was obtained by calculating variables from the time and frequency domain. The detailed
information is listed in Figure 6 and Table 5.

Sensors 2020, 20, 2574 12 of 30

Figure 6. Human activity recognition dataset of UCI. Left: activity distributions of training data and
related subjects; Middle: dataset distribution of validation data; Right: six activities’ distribution of
30 subjects.

The left graph in Figure 6 presents the activity distributions of training data and related subjects;
the middle graph shows the dataset distribution of validation data; and the right graph shows six
activities’ distribution of 30 subjects.

Table 5. Activity proportion of human activity recognition dataset of UCI.

STANDING SITTING LAYING WALKING DOWNSTAIRS UPSTAIRS

1722 1544 1406 1777 1906 1944
16.72% 14.99% 13.65% 17.25% 18.51% 18.88%

The total number of all labels is 10,299, and they belong to six activities.

3.1.2. Classification Using Traditional ML Methods

In past years, several ML algorithms had been developed to solve classification. In this study,
traditional methods, namely SGD, Naive Bayes, DT, kNN, RF, NN, and SVM, were used to classify the
test data. Table 6 shows the classification results.

Table 6. Classification results of seven traditional ML classification methods.

Model AUC Accuracy F1-Score Precision Recall

SGD 0.664 0.446 0.427 0.419 0.446
Naive Bayes 0.734 0.736 0.747 0.734 0.880
DT 0.850 0.748 0.746 0.745 0.748
kNN 0.895 0.707 0.706 0.806 0.707
RF 0.966 0.818 0.818 0.819 0.818
NN 0.974 0.856 0.857 0.860 0.856
SVM 0.988 0.878 0.872 0.899 0.878

3.1.3. Classification Using Deep Learning

Apart from the seven ML classification methods, we also developed two deep learning models:
one was based on LSTM network, and the other one was designed using CNN.

1. Training Recognition Model Using LSTM Network

Table 7 presents the structure of the designed LSTM network model. Notably, three LSTM layers
are configured. In the table, ‘None’ denotes the batch size. We set the batch size to 200 and adopted
the ‘adam’ optimizer in this test. These parameters in the table were only used for motion model
recognition. The network structure in the next section is the same, but the parameters are updated.

Sensors 2020, 20, 2574 13 of 30

Table 7. Structure of the designed LSTM network model.

Layer (Type) Output Shape Parameter

LSTM [(None, 128, 32)] 5376
LSTM [(None, 128, 32)] 8320
LSTM (None,32) 8320
Dropout (None, 32) 0
Dense (None, 6) 198

Figure 7 presents the accuracy and loss information after training the data using the LSTM model:
training accuracy exceeds 0.95, the validation precision exceeds 0.9, and the loss is close to 0.6.

Figure 7. Accuracy (left) and loss (right) information of training and validation procedure.

Figure 8 presents the confusion matrix graph. The true labels were obtained from the test data, and the
predictions were the recognition results obtained from above trained model using the test data.

Figure 8. Left graph is the confusion matrix of classification test using the model trained by LSTM
network; right is the normalised confusion matrix.

2. Training Recognition Model Using CNN

Our CNN architecture involves four consecutive blocks, each including a convolutional
and RELU activation layer. Each convolutional kernel performs a 2D convolution over the time
dimension, for each sensor channel independently. Preliminary experiments show that models
with convolutions performed across all sensor channels degrade performances on the opportunity

Sensors 2020, 20, 2574 14 of 30

dataset. Similar to MLP (Multi-Layer Perceptron), adding a batch normalization layer right after
the input layer yields significant performance improvements.

Table 8 presents the structure of the designed CNN model that contains four 2D CNN layers. In the
table, ‘None’ denotes the batch size. We set the batch size to 200 and adopted the ‘adam’ optimizer
in this test. These parameters list in the table were only used for motion model recognition.
The network structure in the next section is the same, but the parameters are updated.

Table 8. Structure of designed CNN network model.

Layer (Type) Output Shape Param

Input Layer [(None, 128, 9, 1)] 0
Conv2D (None, 126, 7, 16) 160
Batch Normalisation (None, 126, 7, 16) 64
Activation (None, 126, 7, 16) 0
Conv2D (None, 126, 7, 16) 2320
Batch Normalisation (None, 126, 7, 16) 64
Activation (None, 126, 7, 16) 0
MaxPooling2 (None, 63, 3, 16) 0
Conv2D (None, 61, 1, 32) 4640
Batch Normalisation (None, 61, 1, 32) 128
Activation (None, 61, 1, 32) 0
Conv2D (None, 61, 1, 32) 9248
Batch Normalisation (None, 61, 1, 32) 128
Activation (None, 61, 1, 32) 0
Flatten (None, 1952) 0
Dense (None, 128) 249,984
Batch Normalisation (None, 128) 512
Activation (None, 128) 0
Dropout (None, 128) 0
Dense (None, 6) 774

Figure 9 presents the training accuracy and loss graphs. The blue curve represents the training
accuracy and loss, and the red curve denotes the validation precision and loss. The training and
validation accuracies exceed 0.95, and the losses converged below 0.1.

Figure 9. Accuracy (left) and loss (right) information of training and validation procedure.

Figure 10 presents the confusion matrix graph. The true labels were obtained from the test data,
and the predictions were recognized from the trained model using the test data.

Sensors 2020, 20, 2574 15 of 30

Figure 10. Left graph is the confusion matrix of classification test using the model trained by CNN
network; right is the normalised confusion matrix.

3.2. Smartphone Posture Recognition

3.2.1. Test Description and Preprocessing

In this experiment, we designed nine test postures. Figure 11a shows a pedestrian holding a
smartphone horizontally. Figure 11b presents a pedestrian with a smartphone in the chest pocket
while keeping the smartphone screen forward; the backward posture is also designed. Figure 11c,d
shows a pedestrian with a smartphone in the right or left trouser pocket while keeping the smartphone
screen inward or outward. Figure 11e presents a pedestrian with the test phone in the buttock pocket
while keeping the smartphone screen forward or backward. In the following sections, we use ‘H’ to
denote the horizontal posture for the case in Figure 11a. We use ‘CB’ and ‘CF’ to denote backward
and forward postures for the case in Figure 11b. ‘RLB’ and ‘RLF’ are used to denote backward and
forward postures for the case in Figure 11c. ‘LLB’ and ‘LLF’ denote backward and forward postures
for the case in Figure 11d. ‘ARB’ and ‘ARF’ express backward and forward postures for the case in
Figure 11e. We executed nine separate experiments; each test collected 26,000 records. On the basis
of these data, we selected 20,000 items for training and 6000 records for evaluation. In total, 180,000
groups of records were used for training, and 54,000 records were used for evaluation.

Figure 11. Smartphone posture recognition experiment. (a) is holding smartphone; (b) is in the chest
pocket; (c) is in the right trouser pocket; (d) is in the left trouser pocket; (e) is in the buttock pocket

We collected accelerometer, gyroscope, magnetometer, and light measurements from MEMS
sensors. We used the above-mentioned preprocessing methods to process these data and filtered the
noise of raw measurements.

The blue curve in Figure 12 represents the raw measurements obtained from MEMS sensors.
The green curve is the low-pass filter result, and the red curve is the end filter result based on the
aforementioned preprocessing methods. Figure 12a–c shows the filtering results of accelerometer x-,
y-, z-axis measurements, respectively. Figure 12d–f shows the filtering results of gyroscope x-, y-, z-axis

Sensors 2020, 20, 2574 16 of 30

measurements, respectively. Figure 12g–i shows the filtering results of magnetometer x-, y-, z-axis
measurements, respectively.

Figure 12. MEMS measurement processing strategies; (a)–(c) are filtered accelerometer x-, y-,
z-axis measurements; (d)–(f) are filtered gyroscope x-, y-, z-axis measurements; (g)–(i) are filtered
magnetometer x-, y-, z-axis measurements.

3.2.2. Classification Using Traditional ML Methods

We designed multiple feature strategies based on accelerometer, gyroscope, magnetometer,
and light measurements. On the basis of these strategies, we used different ML classification methods
to train and test these data. The following section presents five validation results.

Raw feature vector is [AccX, AccY, AccZ, GyroX, GyroY, GyroZ, MagX, MagY, MagZ]. [AccX,
AccY, AccZ] arethe accelerometer x-, y-, z-axis measurements. [GyroX, GyroY, GyroZ] are the gyroscope
x-, y-, z-axis measurements. [MagX, MagY, MagZ] are the magnetometer x-, y-, z-axis measurements.
The same meanings are applied in the following sections.

Table 9 shows that SGD has the lowest classification precision with only 0.080. NN obtains the
highest classification precision, but the value is still only 0.478, which is lower than 0.5. Thus, we add
Light measurement as one feature. The feature vector is [AccX, AccY, AccZ, GyroX, GyroY, GyroZ,
MagX, MagY, MagZ, Light],where Light is the light sensor output measurement.

Table 9. Classification results using raw accelerometer, gyroscope, and magnetometer measurements.

Model AUC Accuracy F1-Score Precision Recall

SGD 3.882 0.108 0.075 0.080 0.108
kNN 4.259 0.190 0.186 0.183 0.190
SVM 4.867 0.185 0.181 0.208 0.185
Naive Bayes 4.993 0.260 0.252 0.253 0.260
DT 4.660 0.310 0.307 0.308 0.310
RF 5.708 0.375 0.372 0.376 0.375
NN 6.454 0.481 0.478 0.478 0.481

As shown in Table 10, the highest classification precision is only 0.465, which is still less than 0.5.
Thus, we processed the raw measurements based on the aforementioned strategies to obtain efficient
features. The feature vector is [FilterBodyAccX, FilterBodyAccY, FilterBodyAccZ, FilterGyroX,
FilterGyroY, FilterGyroZ, MagPercentX, MagPercentY, MagPercentZ, Light]. Total acceleration
was replaced by body acceleration. FilterBodyAccX, FilterBodyAccY, and FilterBodyAccZ are the
filtered body accelerations, and body acceleration was computed using Algorithm 1. FilterGyroX,

Sensors 2020, 20, 2574 17 of 30

FilterGyroY, and FilterGyroZ are the filtered gyroscope measurements. MagPercentX, MagPercentY,
and MagPercentZ were derived from magnetometer measurements based on Equation (7).

Table 10. Classification results using raw accelerometer, gyroscope, magnetometer, and light measurements.

Model AUC Accuracy F1-Score Precision Recall

SGD 4.263 0.195 0.141 0.149 0.195
kNN 4.565 0.251 0.225 0.236 0.251
SVM 4.920 0.222 0.226 0.273 0.222
Naive Bayes 5.959 0.304 0.291 0.290 0.304
DT 5.118 0.309 0.299 0.294 0.309
RF 5.928 0.370 0.363 0.359 0.370
NN 6.171 0.473 0.449 0.465 0.473

Table 11 show the validation results. Evidently, precision is improved, and the highest is up
to 0.747. Therefore, processed features improves recognition precision. We also removed light
measurement from features to verify if light was useful for the classification. The updated feature
vector is [FilterBodyAccX, FilterBodyAccY, FilterBodyAccZ, FilterGyroX, FilterGyroY, FilterGyroZ,
MagPercentX, MagPercentY, MagPercentZ].

Table 11. Classification results using processed accelerometer, gyroscope, magnetometer, and
light measurements.

Model AUC Accuracy F1-Score Precision Recall

SGD 4.383 0.222 0.177 0.230 0.222
SVM 5.087 0.239 0.251 0.330 0.239
Naive Bayes 6.691 0.422 0.408 0.410 0.422
DT 6.160 0.601 0.599 0.603 0.601
kNN 6.499 0.647 0.639 0.671 0.647
RF 7.390 0.723 0.724 0.726 0.723
NN 7.046 0.722 0.714 0.747 0.722

Table 12 presents the classification results. Notably, kNN has the highest precision but has only
little improvement compared with the above-mentioned experiment. We designed the feature vector as
[FilterBodyAccX, FilterBodyAccY, FilterBodyAccZ, FilterGyroX, FilterGyroY, FilterGyroZ]. Table 13
presents the results.

Table 12. Classification results using processed accelerometer, gyroscope, and magnetometer measurements.

Model AUC Accuracy F1-Score Precision Recall

SGD 4.034 0.143 0.114 0.197 0.143
SVM 5.548 0.253 0.249 0.324 0.253
Naive Bayes 6.027 0.344 0.338 0.337 0.344
DT 6.245 0.640 0.638 0.640 0.640
RF 7.233 0.703 0.701 0.703 0.703
NN 7.463 0.741 0.739 0.741 0.741
kNN 7.179 0.755 0.755 0.757 0.755

As shown in Table 13, NN has the highest precision. The precision values of RF and NN exceed
0.8. Thus, we think these features are more efficient for classification than the others.

Sensors 2020, 20, 2574 18 of 30

Table 13. Classification results using processed accelerometer, and gyroscope measurements.

Model AUC Accuracy F1-Score Precision Recall

SGD 4.182 0.176 0.156 0.154 0.176
SVM 5.240 0.193 0.180 0.251 0.193
Naive Bayes 6.311 0.392 0.381 0.378 0.392
DT 6.672 0.729 0.729 0.730 0.729
kNN 7.227 0.770 0.770 0.773 0.770
RF 7.530 0.809 0.809 0.810 0.809
NN 7.608 0.814 0.814 0.816 0.814

3.2.3. Classification Using Deep Learning

1. Training Recognition Model Using LSTM Network

We used the designed LSTM model to train the raw data. Figure 13 presents the accuracy
and loss information in the process of training and validation.

Figure 13. Accuracy (left) and loss (right) information of training and validation procedure.

Figure 14 presents two confusion matrix graphs; the right one is the normalized confusion matrix.
The confusion matrix shows large prediction errors. Large proportions of ‘CB’ were recognized as ‘CF’.
The same situation occurs for ‘H’. Moreover, most predictions were recognized as ‘ARF’ and ‘CB’.

Figure 14 presents the confusion matrix graph. The true labels were obtained from the test data,
and the predictions were recognized from the trained model using the test data. From the results in
Figure 14, we still find some bright spots; they are in the off diagonals, meaning the wrong classification
numbers or proportion. In the above graph, for example, several “CB” were recognized as “CF”,
and many “H” were classified as “ARF” and “CB”. Thus, we know the training model still has some
drawbacks and needs improvement. We also used the above designed LSTM model to train the
filtered data. Figure 15 presents accuracy and loss information of training and validation data.

Sensors 2020, 20, 2574 19 of 30

Figure 14. Left graph is the confusion matrix of classification test using the model trained by LSTM
network; right is the normalised confusion matrix.

Figure 15. Accuracy (left) and loss (right) of training and validation procedure using filtered measurements.

Figure 16 presents the confusion matrix graph. The true labels were derived from the test data,
and predictions were recognized from the trained model using the test data. The confusion matrix
graph below shows that correct prediction takes up the highest proportion. Most predictions of
the nine postures are correct.

Figure 16. Left graph is the confusion matrix of classification test using the model trained by LSTM
network with filtered measurements; right is the normalised confusion matrix.

Sensors 2020, 20, 2574 20 of 30

2. Training Recognition Model Using CNN

Apart from the aforementioned LSTM methods, we also trained the preprocessed data using
CNN. The CNN structure is same, but the parameters are updated here. Figure 17 presents the
accuracy and loss of the training and validation results.

Figure 17. Accuracy (left) and loss (right) information of training and validation procedure.

Figure 18 shows the confusion matrix of prediction. The model was trained by CNN with
the preprocessed measurements. The confusion matrix graph below indicates that the correct
prediction takes up the highest proportion. Most predictions of the nine postures are correct.
Overall, no large difference from the LSTM network trained results is observed.

Figure 18. Left graph is the confusion matrix of classification test using the model trained by CNN
network; right is the normalised confusion matrix.

Figure 18 presents the confusion matrix graph. The true labels were obtained from the test data,
and the predictions were recognized from the trained model using the test data.

3.3. Real-time Activity Recognition Test Combining Pedestrian Motion and Smartphone Posture

3.3.1. Test Description and Preprocessing

In the above two experiments, motion modes were verified with a fixed posture smartphone
placed in the waist pocket. In the smartphone posture recognition experiment, the pedestrian walked
on the same level ground and switched the smartphone to different postures. In actual situation,
the pedestrian navigation procedure combines motion mode and smartphone posture together and

Sensors 2020, 20, 2574 21 of 30

cannot separate them. Thus, in the real-time recognition experiment, we designed five commonly
encountered comprehensive activities based on real pedestrian navigation situations. Figure 19a presents a
tester who is walking downstairs with a smartphone placed in the right leg trousers pocket. The smartphone
screen is kept inward. In Figure 19b, a tester is walking upstairs with a smartphone placed in the pocket.
The posture is similar to that in Figure 19a, Figure 19c presents a pedestrian who is standing on the ground
with a smartphone in hand while keeping the smartphone horizontally. Figure 19d shows a pedestrian with
a smartphone in hand and who is walking forward. The smartphone screen is kept upward. Figure 19e
presents our jogging situation, in which a pedestrian holds a smartphone in the right hand while swinging
the arm and the smartphone. Our real-time recognition tests were performed on 1 October 2019, in the
4# building of Chang’an University. In our tests, the update frequency of MEMS sensors was 100 Hz.
Thus, we set the window size to 200 to collect 2 s measurements.

Each experiment exceeded 10 min and recorded accelerometer, gyroscope, magnetometer, and
light measurements from MEMS sensors based on Android API. We collected 77,400 records of
‘Downstairs’, 75,000 records of ‘Upstairs’, 103,600 records of ‘Standing’, 73,000 records of ‘Walking’,
and 72,600 records of ‘Jogging’ for training.

Figure 19. Real-time recognition test of comprehensive pedestrian activities.(a) is downstairs; (b) is
upstairs; (c) is standing; (d) is walking; (e) is jogging.

3.3.2. Real-time Recognition of Comprehensive Pedestrian Activities

On the basis of the collected measurements of comprehensive pedestrian activity experiment,
we decided to train a recognition model using CNN. Several operators of LSTM network still cannot
be run in mobile side to date. Thus, we used CNN to train the model. Different processing strategies
are summarized as follows.

1. Training Recognition Model using Gyroscope + Accelerometer + Magnetometer Measurements

We trained the data and used the feature vector [FilterBodyAccX, FilterBodyAccY,
FilterBodyAccZ,FilterAccX, FilterAccY, FilterAccZ, FilterGyroX, FilterGyroY, FilterGyroZ,
MagPercentX, MagPercentY, MagPercentZ] with 12 features under the window size of 200.
Figure 20 presents the accuracy and loss graphs of training procedure.

Figure 20. Accuracy (left) and loss (right) information of training and validation procedure.

Sensors 2020, 20, 2574 22 of 30

Validation tests were performed in the same test fields, and five separate tests were done.
Figure 21 shows the confusion matrix of real-time test.

Figure 21 presents the confusion matrix graph. The true labels were derived from the test data;
predictions were recognized from the above-trained model using the test data. The confusion
matrix indicates that ‘Downstairs’ and ‘Upstairs’ have large prediction errors. Among the 296
instances of ‘Downstairs’, the number of correct predictions was only 89; 42 were recognized as
‘Upstairs’ and 162 were detected as ‘Jogging’. Therefore, the accuracy is only 30.07%. With regard
to ‘Upstairs’, the number of correct predictions is 136; 76 of these instances ertr recognized
as ‘Jogging’ and 59 were detected as ‘Downstairs’. Therefore, the accuracy was only 49.64%.
‘Standing’, ‘Walking’, and ‘Jogging’ had high correct prediction proportions. The total prediction
accuracy is 79.87%.

Figure 21. Confusion matrix of classification test using the model trained by CNN network.

2. Training Recognition Model Using Gyroscope + Accelerometer + Magnetometer + Light Measurements

In the above section , we found that ‘Downstairs’ and ‘Upstairs’ had high incorrect
recognition rate. Thus, we added ‘Light’ as one of the features. The feature vector
was [FilterBodyAccX, FilterBodyAccY, FilterBodyAccZ,FilterAccX, FilterAccY, FilterAccZ,
FilterGyroX, FilterGyroY, FilterGyroZ, MagPercentX, MagPercentY, MagPercentZ, Light] with
13 features under the window size of 200. Figure 22 presents the accuracy and loss graphs of
training and validation procedure.

Figure 22. Accuracy (left) and loss (right) information of training and validation procedure with
light measurements.

Sensors 2020, 20, 2574 23 of 30

Test was performed in the same test fields, and five separate experiments were done. Figure 23
presents the confusion matrix graph.

Figure 23 presents the confusion matrix graph; true labels were obtained from the test data and
the predictions were recognized from the above trained model using the test data. Among the
270 instances of ‘Downstairs’, the correct prediction rate was 75.19%; 65 of these instances were
recognized as ‘Upstairs’. Among the 274 instances of ‘Upstairs’, 177 were predicted correctly; 87 of
these instances were detected as ‘Downstairs’. Therefore, the correct prediction rate was only 64.60%.

Figure 23. Confusion matrix of classification test using the model trained by CNN network with
light measurements.

3.4. Pedestrian Navigation Test

3.4.1. Test Description

A pedestrian navigation experiment was performed in Block Z of Hong Kong Polytechnic
University; the test field was located on the sixth floor of the building. Figure 24 presents the test
site environment.

Figure 24. The plan of test field.

On the south side, there are tall buildings, and on the north, near the buildings, there is an
open-sky platform. Our experiment was mainly performed on the platform, where the pedestrian
walked from indoors to outside. In the test procedure, the pedestrian held a smartphone in hand,
and mixed ‘Walking’, ‘Standing’, and ‘Jogging’ activities together. The experiment was executed using

Sensors 2020, 20, 2574 24 of 30

a Huawei Mate20 Android phone, on which our navigation application was deployed; the details
of navigation scheme were introduced in our previous study [1]. The recognition model trained in
Section 3.3 was applied in this experiment.

3.4.2. Navigation Test Result

In the experiment, three navigation strategies were employed: ‘PDR’, ‘PDR + GNSS + Beacon’
fusion positioning, and ‘PDR + GNSS + Beacon + Activity Recognition’. Figure 25 presents these
strategies’ positioning results.

Figure 25. Graph (A) is the navigation test result without AR(Activity Recognition); (B) uses AR.

In Figure 25, the red line and the cyan line are pure PDR results and the pedestrian walking route
separately. The blue line, in Figure 25A, denotes ‘PDR + GNSS + Beacon’ fusion result; in Figure 25B,
it denotes ‘PDR + GNSS + Beacon + Activity Recognition’ location results. ‘a’, ‘b’ and ‘c’ are corner
points; the tester walked along ‘c-a-b’, mixing ‘walking’, ‘standing’ and ‘jogging’ activities together.

4. Discussion

We designed four main experiments to verify recognition performance using smartphone MEMS
sensors’ measurements. We used traditional mainstream ML classification methods to recognize
pedestrian motion modes and smartphone postures. We also trained recognition models based on
the designed deep learning models constructed by LSTM network and CNN. Based on the actual
requirements of pedestrian navigation, we designed five comprehensive postures and developed an
Android application to recognize these postures in real-time. The following subsections discuss these
experimental results in detail.

4.1. Motion Mode Recognition

In the motion mode classification experiment, motion modes were verified using seven ML
classification methods and two deep learning methods, designed by LSTM network and CNN.

From the test results of seven traditional ML classification methods mentioned in Table 6, we find
SVM has the highest precision with a value of 0.899 (89.90%). Tables 14 and 15 list the test results that
are evaluated by the proposed LSTM and CNN.

Table 14. Evaluation results of the model trained by LSTM network.

Accuracy Precision Recall F1-Score Score

Test Results 90.74% 90.97% 90.74% 90.71%

The accuracies are up to 90.74% and 90.74% in Tables 14 and 15, respectively. Both are higher than
the SVM classification accuracy of 89.90%.

Sensors 2020, 20, 2574 25 of 30

Table 15. Evaluation results of the model trained by CNN network.

Accuracy Precision Recall F1-Score Score

Test Results 91.92% 92.79% 91.85% 91.77%

From the results above, we can conclude that the two deep learning methods are useful in
recognizing the motion modes. The classification accuracy of our designed LSTM and CNN models
are also efficient. LSTM and CNN models have higher accuracy and precision than traditional ML
classification methods.

4.2. Smartphone Posture Recognition

The second experiment was designed to recognize smartphone postures. We designed nine
postures in this experiment. In smartphone posture classification experiment, smartphone postures
were verified using seven ML classification methods and two deep learning methods, designed by
LSTM network and CNN.

The test results of seven traditional ML classification methods mentioned in Tables 9–13 show
that, when raw accelerometer, gyroscope, and magnetometer measurements were used, NN obtained
the highest accuracy with a value of 0.478 (47.8%). If light measurements were added, then neural
network also obtained the highest accuracy with a value of 0.465 (46.5%). If processed accelerometer,
gyroscope, magnetometer and light measurements were used, then NN still obtained the highest
accuracy with a value of 0.747 (74.7%). If only processed accelerometer, gyroscope, and magnetometer
measurements were utilized, then kNN obtained the highest accuracy with a value of 0.757 (75.7%).
We also tried to use processed accelerometer and gyroscope measurements without magnetometer
and light. The results showed that NN had the highest precision with a value of 0.816 (81.60%).

Table 16 lists the evaluation results for the recognition model that was trained on the basis of the
deep learning model constructed by LSTM networks and used raw measurements to create features.
The classification accuracy was up to 85.77%. We also processed raw measurements and then trained
the data using LSTM network model.

Table 16. Evaluation results of the model trained by LSTM network using raw measurements.

Accuracy Precision Recall F1-Score Score

Test Results 85.77% 85.67% 85.68% 85.66%

Table 17 lists the evaluation results for the model that was trained on the basis of LSTM network
model and used filtered measurements as features. In Tables 16 and 17, we can find that the accuracy
is improved evidently. Therefore, our preprocessing algorithm is useful, and the designed LSTM
network model is efficient.

Table 17. Evaluation results of the model trained by LSTM network using filtered measurements.

Accuracy Precision Recall F1-Score Score

Test Results 93.69% 93.90% 93.69% 93.71%

Table 18 lists the evaluation results for the model that was trained on the basis of CNN model and
used filtered measurements as features. Table 17 shows that the accuracy trained by CNN model is
better than that by LSTM network model. The accuracy of the two deep learning methods is improved
significantly compared with those of the seven machine learning methods. Therefore, the designed
LSTM and CNN are useful.

Sensors 2020, 20, 2574 26 of 30

Table 18. Evaluation results of the model trained by CNN network.

Accuracy Precision Recall F1-Score Score

Test Results 95.55% 96.04% 95.54% 95.63%

4.3. Real-time Recognition of Comprehensive Pedestrian Activities

In this study, we aimed to train MEMS measurements to obtain a useful model to recognize
pedestrian postures in real time. On the basis of previous experiments, we designed five comprehensive
postures that combined frequently used motion modes and smartphone postures. In the real-time
experiment, we collected accelerometer, gyroscope, magnetometer, and light measurements. In the
first test, we trained the recognition model by using only accelerometer, gyroscope, and magnetometer
measurements. Table 19 presents the statistical results.

Table 19. Evaluation results of the model trained by CNN using measurements without light.

Accuracy Precision Recall F1-Score Score

Test Results 79.82% 79.82% 75.62% 78.35%

The confusion matrix in Figure 21 shows that ‘Walking’, ‘Sitting’, and ‘Standing’ have high
recognition rates. However, the model cannot classify ‘Upstairs’ and ‘Downstairs’. Most instances
of the two activities were recognized to belong to others, and the two activities had high incorrect
recognition rates. On the basis of previous studies, we added light measurement as a feature and
trained a new recognition model using CNN model. Table 20 shows the evaluation results.

Table 20. Evaluation results of the model trained by CNN network using measurements with light.

Accuracy Precision Recall F1-Score Score

Test Results 89.39% 89.39% 87.15% 89.27%

Tables 19 and 20 show that the recognition accuracy is improved from 79.82% to 89.39%, and the
improvement is significant. Therefore, light measurement is efficient to differentiate ‘Upstairs’ and
‘Downstairs’ from other activities and improves recognition accuracy. Overall, real-time recognition
accuracy is up to 89.39%. Therefore, the solution is useful to recognize pedestrian activities and vital to
update related algorithms during navigation.

4.4. Navigation Test Result Analysis

In pedestrian navigation experiment, ‘walking’, ‘standing’ and ‘jogging’ activities were mixed
together. We processed the measurements using the three strategies, ‘PDR’, ‘PDR + GNSS + Beacon’,
and ‘PDR + GNSS + Beacon + Activity Recognition’. Figure 25 presents the three schemes’ processing
results. We find pure PDR (red line) has the largest bias compared with the true route (cyan line);
obviously, the fusion result has big improvement and the navigation locations are close to the pedestrian
moving route. In this experiment, we aimed to verify if activity recognition is useful to improve
positioning precision, thus we processed the same data with the two schemes ‘PDR + GNSS + Beacon’
and ‘PDR + GNSS + Beacon + Activity Recognition’. In the procedure of fusion, once activities were
recognized, the program would switch to different processing strategies; for example, when the
pedestrian was ‘standing’, the location could not be updated; and, when ‘jogging’ was found,
the program would update GNSS weight automatically in the process of fusion, to reduce the impact
of swinging. Overall, the blue line in Figure 25B is much closer to the pedestrian moving route;
from our statistic, in the route ‘c-a-b’ the mean bias reduces more than 1.1 m compared with the result
in Figure 25A, which means it has higher precision.

Sensors 2020, 20, 2574 27 of 30

5. Conclusions

Pedestrian activity recognition is a key issue in pedestrian navigation. Most previous studies
have presented several solutions based on traditional methods, such as SVM, DT, and RF. In recent
years, deep learning has developed rapidly. In this paper, we review previous studies on pedestrian
activity recognition. Then, we provide the methodology of this study and present measurement
preprocessing algorithms, including body acceleration extraction, de-noising, posture transformation,
and FFT. We also present the whole transformation procedure of model training. Researchers can use
Tensorflow to train deep learning models in their computers or servers. With the procedure, the model
can be converted to .t f lite mode, which can run in Android.

In this study, we designed deep learning models using the LSTM network and CNN. Four main
experiments were performed. The first one was motion mode recognition, in which we used the
UCI dataset and trained the experimental data with seven traditional ML classification methods and
two designed deep learning models. The test results show LSTM and CNN had high accuracy with
values of 90.74% and 91.92%, respectively. In the second experiment, we collected nine smartphone
postures data using HUAWEI Mate20. We trained these data using the seven ML classification methods
and the two deep learning methods. The test results show that LSTM and CNN both high accuracy.
The constructed deep learning models had higher accuracy than the seven traditional ML classification
methods; the values were 93.69% (LSTM) and 95.55% (CNN). In the third experiment, we designed five
comprehensive activities that combined motion models and smartphone postures. The real-time test
showed that the accuracy was up to 89.39%. Therefore, postures were recognized in a smartphone in
real-time. In this study, although real-time pedestrian activity recognition was realized in an Android
smartphone, the accuracy still needs to be improved, especially ‘Upstairs’ and ‘Downstairs’ are often
recognized as other activities. In the future, we still need to research which features are useful to
improve classification accuracy. Besides, deep learning models based on the LSTM network or CNN
need to be improved, and the network structure of the training model needs to be optimized. In the last
experiment, we verified the end navigation capability with activity recognition. The test results show
that the scheme ‘PDR + GNSS + Beacon + Activity Recognition’ was improved. In the actual situation,
the fusion process is complicated; we also need to research accurate navigation update algorithms for
recognizing different pedestrian activities to improve positioning precision.

Author Contributions: J.Y. wrote the manuscript and performed experiments; X.L. helped develop the application;
X.Z. participated in designing the LSTM and CNN; Q.Z. supervised the writing and review of the manuscript; and
W.C. proposed the fusion methodology. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Chang’an University (Xi’an, China) through the project of Natural Science
Foundation of China (No. 41731066) and the project of National Key Research and Development Program of
China (2018YFC1505100).

Acknowledgments: The authors would like to thank UCI for providing the human activity recognition data from
the website http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this paper:

PDR Pedestrian Dead Reckon
MEMS Micro-electromechanical System Sensor
RNN Recurrent Neural Network
CNN Convolutional Neural Network
kNN k-Nearest Neighbor
SGD Stochastic Gradient Descent
SVM Support Vector Machine
RF Random Forest
NN Neural Network

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

Sensors 2020, 20, 2574 28 of 30

ANN Artificial Neural Network
DCNN Deep Convolutional Neural Network
DBN Deep Belief Network
MLP Multi-Layer Perceptron
ML Machine Learning
GNSS Global Navigation Satellite System
DT Decision Tree
LSTM Long Short-Term Memory
IOT Internet of Things

References

1. Ye, J.; Li, Y.; Luo, H.; Wang, J.; Chen, W.; Zhang, Q. Hybrid Urban Canyon Pedestrian Navigation Scheme
Combined PDR, GNSS and Beacon Based on Smartphone. Remote Sens. 2019, 11, 2174. [CrossRef]

2. Kakiuchi, N.; Kamijo, S. Pedestrian dead reckoning for mobile phones through walking and running mode
recognition. In Proceedings of the International IEEE Conference on Intelligent Transportation Systems,
The Hague, The Netherlands, 6–9 October 2013.

3. Micucci, D.; Mobilio, M.; Napoletano, P. UniMiB SHAR: A Dataset for Human Activity Recognition Using
Acceleration Data from Smartphones. Appl. Sci. 2017, 7, 1101. [CrossRef]

4. Khan, A.M.; Tufail, A.; Khattak, A.M.; Laine, T.H. Activity Recognition on Smartphones via Sensor-Fusion
and KDA-Based SVMs. Int. J. Distrib. Sens. Netw. 2014, 10, 503291. [CrossRef]

5. Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity Recognition using Cell Phone Accelerometers.
In Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10),
Washington, DC, USA, 25–28 July 2010.

6. Yang, J.; Cheng, K.; Chen, J.; Zhou, B.; Li, Q. Smartphones based Online Activity Recognition for Indoor
Localization using Deep Convolutional Neural Network. In Proceedings of the 2018 Ubiquitous Positioning,
Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, 22–23 March 2018.

7. Klein, I.; Solaz, Y.; Ohayon, G. Smartphone Motion Mode Recognition. Proceedings 2017, 2, 145. [CrossRef]
8. Li, F.; Shirahama, K.; Nisar, M.A.; Köping, L.; Grzegorzek, M. Comparison of Feature Learning Methods for

Human Activity Recognition Using Wearable Sensors. Sensors 2018, 18, 679. [CrossRef]
9. Wang, B.; Liu, X.; Yu, B.; Jia, R.; Gan, X. Pedestrian Dead Reckoning Based on Motion Mode Recognition

Using a Smartphone. Sensors 2018, 18, 1811. [CrossRef]
10. Zhou, B.; Yang, J.; Li, Q. Smartphone-Based Activity Recognition for Indoor Localization Using a

Convolutional Neural Network. Sensors 2019, 19, 621. [CrossRef]
11. Ceron, J.D.; López, D.M. Human Activity Recognition Supported on Indoor Localization: A Systematic

Review. Stud. Health Technol. Inform. 2018, 249, 93–101.
12. Wu, J.; Feng, Y.; Sun, P. Sensor Fusion for Recognition of Activities of Daily Living. Sensors 2018, 18, 4029.

[CrossRef]
13. Zhu, Y.; Luo, H.; Wang, Q.; Zhao, F.; Ning, B.; Ke, Q.; Zhang, C. A Fast Indoor/Outdoor Transition Detection

Algorithm Based on Machine Learning. Sensors 2019, 19, 786. [CrossRef]
14. Niitsoo, A.; Edelhäußer, T.; Eberlein, E.; Hadaschik, N.; Mutschler, C. A Deep Learning Approach to Position

Estimation from Channel Impulse Responses. Sensors 2019, 19, 1064. [CrossRef] [PubMed]
15. Manos, A.; Klein, I.; Hazan, T. Gravity-Based Methods for Heading Computation in Pedestrian Dead

Reckoning. Sensors 2019, 19, 1170. [CrossRef] [PubMed]
16. Plötz, T.; Guan, Y. Deep Learning for Human Activity Recognition in Mobile Computing. Computer 2018, 51, 50–59.

[CrossRef]
17. Chen, R.; Chu, T.; Liu, K.; Liu, J.; Chen, Y. Inferring Human Activity in Mobile Devices by Computing

Multiple Contexts. Sensors 2015, 15, 21219–21238. [CrossRef]
18. Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition

using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018,
105, 233–261. [CrossRef]

http://dx.doi.org/10.3390/rs11182174
http://dx.doi.org/10.3390/app7101101
http://dx.doi.org/10.1155/2014/503291
http://dx.doi.org/10.3390/ecsa-4-04929
http://dx.doi.org/10.3390/s18020679
http://dx.doi.org/10.3390/s18061811
http://dx.doi.org/10.3390/s19030621
http://dx.doi.org/10.3390/s18114029
http://dx.doi.org/10.3390/s19040786
http://dx.doi.org/10.3390/s19051064
http://www.ncbi.nlm.nih.gov/pubmed/30832327
http://dx.doi.org/10.3390/s19051170
http://www.ncbi.nlm.nih.gov/pubmed/30866554
http://dx.doi.org/10.1109/MC.2018.2381112
http://dx.doi.org/10.3390/s150921219
http://dx.doi.org/10.1016/j.eswa.2018.03.056

Sensors 2020, 20, 2574 29 of 30

19. Fan, L.; Wang, Z.; Wang, H. Human Activity Recognition Model Based on Decision Tree. In Proceedings of
the 2013 International Conference on Advanced Cloud and Big Data, Nanjing, China, 13–15 December 2013;
pp. 64–68.

20. Akhavian, R.; Behzadan, A.H. Construction equipment activity recognition for simulation input modeling
using mobile sensors and machine learning classifiers. Adv. Eng. Inform. 2015, 29, 867–877. [CrossRef]

21. Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional Neural Networks
for human activity recognition using mobile sensors. In Proceedings of the 6th International Conference on
Mobile Computing, Applications and Services, Austin, TX, USA, 6–7 November 2014; pp. 197–205.

22. Bayat, A.; Pomplun, M.; Tran, D.A. A Study on Human Activity Recognition Using Accelerometer Data from
Smartphones. Procedia Comput. Sci. 2014, 34, 450–457. [CrossRef]

23. Altun, K.; Barshan, B. Pedestrian dead reckoning employing simultaneous activity recognition cues.
Meas. Sci. Technol. 2012, 23, 025103. [CrossRef]

24. Guo, J.; Zhou, X.; Sun, Y.; Ping, G.; Zhao, G.; Li, Z. Smartphone-Based Patients’ Activity Recognition by
Using a Self-Learning Scheme for Medical Monitoring. J. Med. Syst. 2016, 40, 140. [CrossRef]

25. Kwon, Y.; Kang, K.; Bae, C. Unsupervised learning for human activity recognition using smartphone sensors.
Expert Syst. Appl. 2014, 41, 6067–6074. [CrossRef]

26. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural
Networks. Appl. Soft Comput. 2018, 62, 915–922. [CrossRef]

27. Wang, K.; Wang, X.; Lin, L.; Wang, M.; Zuo, W. 3D Human Activity Recognition with Reconfigurable
Convolutional Neural Networks. In Proceedings of the 22nd ACM International Conference on Multimedia,
Mountain View, CA, USA, 18–19 June 2014; pp. 97–106.

28. Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, Convolutional, and Recurrent Models for Human Activity
Recognition using Wearables. arXiv 2016, arXiv:1604.08880.

29. Morales, F.J.O.; Roggen, D. Deep convolutional feature transfer across mobile activity recognition domains,
sensor modalities and locations. In Proceedings of the 2016 ACM International Symposium on Wearable
Computers, Heidelberg, Germany, 12–16 September 2016.

30. Hassan, M.M.; Huda, S.; Uddin, M.Z.; Almogren, A.; Alrubaian, M. Human Activity Recognition from Body
Sensor Data using Deep Learning. J. Med. Syst. 2018, 42, 99. [CrossRef] [PubMed]

31. Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using
smartphone sensors and deep learning. Future Gener. Comput. Syst. 2018, 81, 307–313. [CrossRef]

32. Jiang, W.; Yin, Z. Human Activity Recognition Using Wearable Sensors by Deep Convolutional Neural
Networks. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia,
26–30 October 2015; pp. 1307–1310.

33. Alsheikh, M.A.; Seleim, A.A.; Niyato, D.; Doyle, L.; Lin, S.; Tan, H.P. Deep Activity Recognition Models with
Triaxial Accelerometers. In Proceedings of the Workshops at the Thirtieth AAAI Conference on Artificial
Intelligence, Phoenix, Arizona, 12–13 February 2016.

34. Wang, Q.; Ye, L.; Luo, H.; Men, A.; Zhao, F.; Huang, Y. Pedestrian Stride-Length Estimation Based on LSTM
and Denoising Autoencoders. Sensors 2019, 19, 840. [CrossRef] [PubMed]

35. Elhoushi, M.; Georgy, J.; Noureldin, A.; Korenberg, M.J. A Survey on Approaches of Motion Mode
Recognition Using Sensors. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1662–1686. [CrossRef]

36. Fast Fourier Transform. Available online: https://en.wikipedia.org/wiki/Fast_Fourier_transform (accessed
on 10 August 2019).

37. Huang, H.Y.; Hsieh, C.Y.; Liu, K. C.; Cheng, H.C.; Hsu, S.J.; Chan, C.T. Multi-Sensor Fusion Approach for
Improving Map-Based Indoor Pedestrian Localization. Sensors 2019, 19, 3786. [CrossRef]

38. Guo, S.; Xiong, H.; Zheng, X.; Zhou, Y. Activity Recognition and Semantic Description for Indoor Mobile
Localization. Sensors 2017, 17, 649. [CrossRef]

39. Deng, Z.; Fu, X.; Wang, H. An IMU-Aided Body-Shadowing Error Compensation Method for Indoor
Bluetooth Positioning. Sensors 2018, 18, 304. [CrossRef]

40. Niu, L.; Song, Y.Q. A Faster R-CNN Approach for Extracting Indoor Navigation Graph from Building
Designs. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;
Copernicus GmbH: Göttingen, Germany, 2019; pp. 865–872.

41. Wang, Q.; Ye, L.; Luo, H.; Men, A.; Zhao, F.; Ou, C. Pedestrian Walking Distance Estimation Based on
Smartphone Mode Recognition. Remote Sens. 2019, 11, 1140. [CrossRef]

http://dx.doi.org/10.1016/j.aei.2015.03.001
http://dx.doi.org/10.1016/j.procs.2014.07.009
http://dx.doi.org/10.1088/0957-0233/23/2/025103
http://dx.doi.org/10.1007/s10916-016-0497-2
http://dx.doi.org/10.1016/j.eswa.2014.04.037
http://dx.doi.org/10.1016/j.asoc.2017.09.027
http://dx.doi.org/10.1007/s10916-018-0948-z
http://www.ncbi.nlm.nih.gov/pubmed/29663090
http://dx.doi.org/10.1016/j.future.2017.11.029
http://dx.doi.org/10.3390/s19040840
http://www.ncbi.nlm.nih.gov/pubmed/30781668
http://dx.doi.org/10.1109/TITS.2016.2617200
https://en.wikipedia.org/wiki/Fast_Fourier_transform
http://dx.doi.org/10.3390/s19173786
http://dx.doi.org/10.3390/s17030649
http://dx.doi.org/10.3390/s18010304
http://dx.doi.org/10.3390/rs11091140

Sensors 2020, 20, 2574 30 of 30

42. Chetty, G.; White, M.; Akther, F. Smart Phone Based Data Mining for Human Activity Recognition.
Procedia Comput. Sci. 2015, 46, 1181–1187. [CrossRef]

43. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey.
Pattern Recognit. Lett. 2019, 119, 3–11. [CrossRef]

44. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
45. Elhoushi, M.; Georgy, J.; Noureldin, A.; Korenberg, M.J. Motion Mode Recognition for Indoor Pedestrian

Navigation Using Portable Devices. IEEE Trans. Instrum. Meas. 2016, 65, 208–221. [CrossRef]
46. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A Public Domain Dataset for Human Activity

Recognition Using Smartphones. In Proceedings of the 21th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium, 24–26 April 2013.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2015.01.031
http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1109/TIM.2015.2477159
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	General Procedure of Recognition
	Preprocessing of Measurements
	De-Noising
	Fast Fourier Transform
	Transforming Measurements to Horizontal
	Body Acceleration Extraction

	Feature Extraction
	Traditional ML Classification Methods
	k-Nearest Neighbor
	Random Forrest
	Support Vector Machine
	Decision Tree
	Naive Bayes
	Neural Network
	Stochastic Gradient Descent

	Deep Learning Methods of Classification
	LSTM Network
	CNN Network

	Real-Time Recognition Using Trained Model
	Transformation of Trained Model

	Analysis and Evaluation of Recognition Results
	Navigation Location Update

	Validation and Experiment
	Pedestrian Motion Mode Recognition
	Test Description and Preprocessing
	Classification Using Traditional ML Methods
	Classification Using Deep Learning

	Smartphone Posture Recognition
	Test Description and Preprocessing
	Classification Using Traditional ML Methods
	Classification Using Deep Learning

	Real-time Activity Recognition Test Combining Pedestrian Motion and Smartphone Posture
	Test Description and Preprocessing
	Real-time Recognition of Comprehensive Pedestrian Activities

	Pedestrian Navigation Test
	Test Description
	Navigation Test Result

	Discussion
	Motion Mode Recognition
	Smartphone Posture Recognition
	Real-time Recognition of Comprehensive Pedestrian Activities
	Navigation Test Result Analysis

	Conclusions
	References

