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Abstract: The aim of this study was to determine the effects and underlying mechanism of
aripiprazole (APZ) augmentation for cilostazol (CLS)-treated post-ischemic stroke mice that were
exposed to chronic mild stress (CMS). Compared to treatment with either APZ or CLS alone,
the combined treatment resulted in a greater reduction in depressive behaviors, including anhedonia,
despair-like behaviors, and memory impairments. This treatment also significantly reduced atrophic
changes in the striatum, cortex, and midbrain of CMS-treated ischemic mice, and inhibited neuronal
cell apoptosis, particularly in the striatum and the dentate gyrus of the hippocampus. Greater
proliferation of neuronal progenitor cells was also observed in the ipsilateral striatum of the mice
receiving combined treatment compared to mice receiving either drug alone. Phosphorylation
of the cyclic adenosine monophosphate response element binding protein (CREB) was increased
in the striatum, hippocampus, and midbrain of mice receiving combined treatment compared to
treatment with either drug alone, particularly in the neurons of the striatum and hippocampus,
and dopaminergic neurons of the midbrain. Our results suggest that APZ may augment the
antidepressant effects of CLS via co-regulation of the CREB signaling pathway, resulting in the
synergistic enhancement of their neuroprotective effects.

Keywords: aripiprazole; cilostazol; depression; stroke; chronic mild stress

1. Introduction

Depression is a debilitating mental disorder characterized by negative mood and diminished
interest or pleasure in daily activities [1]. The hypothesis of vascular depression proposes an association
between cerebrovascular diseases such as stroke and an increased risk for depression due to injuries of
the brain [2–5]. Depression after a stroke is a subtype within the broad category of vascular depression,
and was found to share common underlying mechanisms with other nonvascular types of depression
in rats [6]. More than one-third of stroke survivors show mood symptoms, and post-stroke depression
is clinically important because it is associated with an increase in mortality and decrease in functional
recovery [1,7].
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The monoamine hypothesis of depression focuses on changes in the levels of serotonin,
norepinephrine, dopamine, and cortisol as being of central importance to the pathophysiology of
depression [8,9]. However, current biological theories of post-stroke depression posit that even small
focal vascular damage, such as that caused by ischemic brain injury, can contribute to the clinical
symptomatology of depression. Disruption of the fiber tracts connecting the prefrontal cortex, striatum,
nucleus accumbens, hippocampus, thalamus, and amygdala is involved in the regulation of mood and
cognition of post-stroke depression [1,10,11].

Aripiprazole (APZ) is a new atypical antipsychotic drug with a unique pharmacological profile,
acting as a partial serotonin and dopamine agonist [12,13]. APZ is employed usually as an adjunct
therapy in combination with a drug from the group of selective serotonin reuptake inhibitors
in the treatment of major depressive disorders [13,14]. Cilostazol (CLS) possesses a powerful
means to produce various pleiotropic effects through the elevation of intracellular cyclic adenosine
monophosphate (cAMP) levels, resulting in the increased phosphorylation of the cAMP response
element binding protein (CREB) [15–17]. CLS has been widely approved for the secondary prevention
of ischemic stroke [18].

Long-term stressful conditions after a stroke enhance tissue injury and contribute to the severe
clinical symptoms of depression [19–21]. Thus, prevention of secondary neurodegeneration may
be one of the clinical benefits of antidepressant therapy after a stroke in regards to both functional
recovery and survival [1,22]. CLS provides protective effects during ischemic injury through the
activation of anti-apoptotic signaling pathways [23,24]. Psychopharmacotherapy with antidepressants
provides an effective treatment for depression by control of the selective activation of monoamine
receptors, but mood stabilizers involving APZ may also exert antidepressant effects by promoting
brain neuroprotection and neurogenesis [25].

Thus, although APZ and CLS have completely different signaling pathways that underlie their
formal efficacy, both may exert antidepressant activities at least in part via effects on shared pathways
controlling neuronal survival or neurogenesis. Therefore, we hypothesized that APZ may show
synergistic antidepressant actions when combined with the neuroprotective agent CLS. To validate this
hypothesis, we focused on the effects of active doses of APZ administered in combined treatment with
a sub-active dose of CLS. To examine the effects of these drugs on stress-induced depression following
ischemic stroke, we have investigated the effects of this combined treatment on chronic mild stress
(CMS)-treated mice after middle cerebral artery occlusion (MCAO).

2. Results

2.1. Treatment Effects on the Depressive Behavioral Phenotypes

In the open field test, total distance decreased significantly in vehicle-treated mice, compared
to the control mice. However, locomotor activity was higher after combined treatment, compared to
treatment with vehicle or CLS alone (Figure 1a: 5 weeks, F(4,23) = 5.607, p = 0.003; 6 weeks, F(4,20) = 4.030,
p = 0.022). CMS-treated MCAO mice treated with APZ and CLS showed significantly higher center
entry numbers compared to mice treated with either vehicle or CLS alone (Figure 1b: 5 weeks,
F(4,25) = 3.177, p < 0.031). In vehicle-treated mice, sucrose consumption in the sucrose preference test
and latency to float in the forced swim test were also significantly decreased, compared to the control
group. Mice treated with APZ and CLS showed significantly higher sucrose intake and time floating
compared to mice treated with the vehicle, APZ alone, or CLS alone (Figure 1c: 4 weeks, F(4,20) = 15.399,
p < 0.001; 5 weeks, F(4,20) = 17.271, p < 0.001, Figure 1d: 5 weeks, F(4,20) = 6.408, p = 0.002). In the
Morris water maze test, vehicle-treated mice took a longer time and swam a greater distance on
average to find the platform compared to control mice, but mice treated with APZ and CLS attained
a significantly lower escape latency compared to vehicle and APZ- or CLS-treated mice (Figure 1e:
1 day, F(4,25) = 243.532, p < 0.001; 2 days, F(4,25) = 107.698, p < 0.001; 3 days, F(4,25) = 73.570, p < 0.001;
4 days, F(4,25) = 39.956, p < 0.001; Figure 1f: 1 day, F(4,25) = 33.154, p < 0.001; 2 days, F(4,25) = 24.379,
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p < 0.001; 3 days, F(4,25) = 10.071, p < 0.001; 4 days, F(4,25) = 23.088, p < 0.001). These results suggest
that compared to treatment with APZ or CLS alone, the augmentation of APZ with CLS showed a
marked reversal of depressive behavioral phenotypes, including anhedonia, despair-like behaviors,
and memory impairments, but not anxiety-like behaviors.
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Figure 1. Effect of aripiprazole (APZ) augmentation on depressive behaviors in cilostazol 
(CLS)-treated mice. Open field (a,b) (n = 6), sucrose preference (c) (n = 5), forced swim (d) (n = 5) and 
Morris water maze tests (e,f) (n = 6) were performed in CMS-treated mice after ischemic stroke. 
Combined treatment resulted in significant recovery from depressive behaviors such as anhedonia, 
despair and impairment of spatial memory. Data are presented as mean ± standard error (SEM).  
# p < 0.05, ## p < 0.01 and ### p < 0.001 versus control mice; * p < 0.05, ** p < 0.01 and *** p < 0.001 versus 
vehicle-treated mice; $ p < 0.05, $$ p < 0.01 and $$$ p < 0.001 versus CLS-treated mice; & p < 0.05,  
&& p < 0.01 and &&& p < 0.001 versus APZ-treated mice. 

2.2. Treatment Effects on the Atrophic Changes of the Brain 

In the histological analyses of the degree of atrophy, severe atrophic changes in vehicle-treated 
mouse brain were observed in the striatum, cortex, and midbrain compared to the control brains. 
The degree of atrophy was particularly high in the striatum, suggesting that this was the primary 
MCAO lesion site. However, these atrophic changes were countered by treating the mice with APZ 
and CLS (Figure 2: striatum, F(4,20) = 29.964, p < 0.001; cortex, F(4,20) = 5.103, p = 0.005; midbrain, F(4,20) = 
9.952, p < 0.001). In the apoptosis assays, no terminal deoxynucleotidyl transferase-mediated dUTP 

Figure 1. Effect of aripiprazole (APZ) augmentation on depressive behaviors in cilostazol (CLS)-treated
mice. Open field (a,b) (n = 6), sucrose preference (c) (n = 5), forced swim (d) (n = 5) and Morris water
maze tests (e,f) (n = 6) were performed in CMS-treated mice after ischemic stroke. Combined treatment
resulted in significant recovery from depressive behaviors such as anhedonia, despair and impairment
of spatial memory. Data are presented as mean ± standard error (SEM). # p < 0.05, ## p < 0.01 and
### p < 0.001 versus control mice; * p < 0.05, ** p < 0.01 and *** p < 0.001 versus vehicle-treated mice;
$ p < 0.05, $$ p < 0.01 and $$$ p < 0.001 versus CLS-treated mice; & p < 0.05, && p < 0.01 and &&& p < 0.001
versus APZ-treated mice.



Int. J. Mol. Sci. 2017, 18, 355 4 of 15

2.2. Treatment Effects on the Atrophic Changes of the Brain

In the histological analyses of the degree of atrophy, severe atrophic changes in vehicle-treated
mouse brain were observed in the striatum, cortex, and midbrain compared to the control brains.
The degree of atrophy was particularly high in the striatum, suggesting that this was the primary
MCAO lesion site. However, these atrophic changes were countered by treating the mice with APZ
and CLS (Figure 2: striatum, F(4,20) = 29.964, p < 0.001; cortex, F(4,20) = 5.103, p = 0.005; midbrain,
F(4,20) = 9.952, p < 0.001). In the apoptosis assays, no terminal deoxynucleotidyl transferase-mediated
dUTP nick end labeling (TUNEL)-positive cells were detected in the control mice. However,
TUNEL-positive cells were significantly increased in all regions examined in the vehicle-treated
mice, particularly in the striatum and cornu ammonis 3 (CA3) of the hippocampus. Lower numbers
of TUNEL-positive cells were detected in all regions examined in drug-treated mice compared to
vehicle-treated mice. However a significant decrease was observed only in the striatum and dentate
gyrus (DG) of the hippocampus in mice treated with APZ and CLS (striatum, F(4,20) = 165.454, p < 0.001;
hippocampus (DG), F(4,20)= 9.434, p < 0.001). In addition, mice treated with APZ and CLS showed a
significantly lower number of TUNEL-positive cells in the striatum compared to mice treated with
APZ or CLS alone (striatum, F(4,20) = 165.454, p < 0.001). In terms of neuronal cell death, significantly
lower numbers of TUNEL/neuronal nuclei (NeuN)-double positive cells were detected in the CA3 of
the hippocampus of mice receiving combined treatment compared with vehicle-treated mice (Figure 3).
These results suggest that the combined use of APZ and CLS reduced prominent atrophic changes,
particularly in the striatum and hippocampus via inhibition of neuronal cell death.
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Figure 2. Comparison of ipsilateral/contralateral atrophy volume in each brain region. Photomicrograph 
(a, cresyl violet stain) and its histogram (b) for histological analysis (n = 5). Schematic diagram (b) 
shows the regions of the striatum, corpus callosum, cortex, hippocampus, and midbrain of the brain. 
Each region was located at 1.32, −1.28, and −2.92 mm from the bregma. The combined use of APZ and 
CLS resulted in significantly ameliorated atrophy changes of the ipsilateral striatum, cortex and 
midbrain compared to vehicle-treated mice. CC, corpus callosum; hippo, hippocampus. # p < 0.05, ## p 
< 0.01 and ### p < 0.001 versus control mice; * p < 0.05 versus vehicle-treated mice; scale bars = 5 mm. 

Figure 2. Comparison of ipsilateral/contralateral atrophy volume in each brain region.
Photomicrograph (a, cresyl violet stain) and its histogram (b) for histological analysis (n = 5). Schematic
diagram (b) shows the regions of the striatum, corpus callosum, cortex, hippocampus, and midbrain
of the brain. Each region was located at 1.32, −1.28, and −2.92 mm from the bregma. The combined
use of APZ and CLS resulted in significantly ameliorated atrophy changes of the ipsilateral striatum,
cortex and midbrain compared to vehicle-treated mice. CC, corpus callosum; hippo, hippocampus.
# p < 0.05, ## p < 0.01 and ### p < 0.001 versus control mice; * p < 0.05 versus vehicle-treated mice;
scale bars = 5 mm.
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(a) and its histogram (b) for apoptosis marker TUNEL (terminal deoxynucleotidyl transferase dUTP 
nick end labeling) and TUNEL/neuronal cell marker NeuN or dopaminergic neuron marker TH in 
the striatum, hippocampus, and midbrain (n = 5). TUNEL positive cells were significantly decreased 
by the combined use of APZ and CLS in the striatum and DG of the hippocampus. The combined use 
of APZ and CLS also reduced the number of TUNEL/NeuN-double positive cells in the CA3 of the 
hippocampus. DG, dentate gyrus; CA3, cornu ammonis; hippo, hippocampus. # p < 0.05, ## p < 0.01 
and ### p < 0.001 versus control mice; * p < 0.05, ** p < 0.01 and *** p < 0.001 versus vehicle-treated mice; 
$ p < 0.05 versus CLS-treated mice; & p < 0.05 and &&& p < 0.001 versus APZ-treated mice. Scale bars = 
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hippocampus compared to the controls. There was no significant difference observed between the 
single-drug-treated mice. However, mice treated with APZ and CLS showed significantly higher 
numbers of BrdU-positive cells in the striatum compared to mice treated with vehicle, APZ, or CLS 
(F(4,20) = 141.227, p < 0.001). In the analysis of neuronal progenitor cell maturation, the numbers of 
BrdU/NeuN-double positive cells were slightly increased by drug treatment, but not significantly so 
(Figure 4). In the analysis of synaptic formation, more intense immunoreactivity for synapsin 1 
(Syn1) was detected in the drug-treated mice compared to controls. In the assessment of 
proliferating progenitor cells, the number of BrdU/Syn1-double positive cells was significantly 
increased by the combined use of APZ and CLS in the striatum (F(4,20) = 6.188, p = 0.002) and 
hippocampus (F(4,20) = 11.332, p < 0.001), compared to that in the controls. In addition, the combined 
use of APZ and CLS significantly increased BrdU/Syn1-double positive cells in the hippocampus, 
compared to that in the vehicle-treated mice (Figure 5: F(4,20) = 11.332, p < 0.001). These results suggest 
that the combined use of APZ and CLS enhances proliferation, maturation, and synaptic formation 
in neuronal progenitor cells. 

Figure 3. Effect of APZ augmentation on neuronal cell death in CLS-treated mice. Photomicrograph
(a) and its histogram (b) for apoptosis marker TUNEL (terminal deoxynucleotidyl transferase dUTP
nick end labeling) and TUNEL/neuronal cell marker NeuN or dopaminergic neuron marker TH in the
striatum, hippocampus, and midbrain (n = 5). TUNEL positive cells were significantly decreased by
the combined use of APZ and CLS in the striatum and DG of the hippocampus. The combined use
of APZ and CLS also reduced the number of TUNEL/NeuN-double positive cells in the CA3 of the
hippocampus. DG, dentate gyrus; CA3, cornu ammonis; hippo, hippocampus. # p < 0.05, ## p < 0.01
and ### p < 0.001 versus control mice; * p < 0.05, ** p < 0.01 and *** p < 0.001 versus vehicle-treated
mice; $ p < 0.05 versus CLS-treated mice; & p < 0.05 and &&& p < 0.001 versus APZ-treated mice.
Scale bars = 100 µm.

2.3. Treatment Effects on Proliferation, Differentiation, and Synaptic Formation in Neuronal Progenitor Cells

In the analysis of neuronal progenitor cell proliferation, vehicle-treated mice showed a significant
increase in 5-bromo-2′-deoxyuridine (BrdU)-positive cells in the ipsilateral striatum and hippocampus
compared to the controls. There was no significant difference observed between the single-drug-treated
mice. However, mice treated with APZ and CLS showed significantly higher numbers of BrdU-positive
cells in the striatum compared to mice treated with vehicle, APZ, or CLS (F(4,20) = 141.227, p < 0.001).
In the analysis of neuronal progenitor cell maturation, the numbers of BrdU/NeuN-double positive
cells were slightly increased by drug treatment, but not significantly so (Figure 4). In the analysis
of synaptic formation, more intense immunoreactivity for synapsin 1 (Syn1) was detected in the
drug-treated mice compared to controls. In the assessment of proliferating progenitor cells, the
number of BrdU/Syn1-double positive cells was significantly increased by the combined use of APZ
and CLS in the striatum (F(4,20) = 6.188, p = 0.002) and hippocampus (F(4,20) = 11.332, p < 0.001),
compared to that in the controls. In addition, the combined use of APZ and CLS significantly increased
BrdU/Syn1-double positive cells in the hippocampus, compared to that in the vehicle-treated mice
(Figure 5: F(4,20) = 11.332, p < 0.001). These results suggest that the combined use of APZ and CLS
enhances proliferation, maturation, and synaptic formation in neuronal progenitor cells.
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(BrdU) and BrdU/NeuN-double positive cells in the striatum and hippocampus (n = 5). The 
combined use of APZ and CLS significantly increased the number of BrdU-positive cells in the 
striatum compared to vehicle-, CLS-, and APZ-treated mice. Contra, contralateral; ipsi, ipsilateral. # p 
< 0.05, ## p < 0.01 and ### p < 0.001 versus control mice; *** p < 0.001 versus vehicle-treated mice; $$$ p < 
0.001 versus CLS-treated mice; &&& p < 0.001 versus APZ-treated mice. Scale bars = 100 μm. 

  
Figure 5. Effect of APZ augmentation on synaptic formation in proliferating progenitor cells in 
CLS-treated mice. Photomicrograph (a) and its histogram (b) for BrdU and BrdU/Syn1-double 
positive cells in the striatum and hippocampus (n = 5). The combined use of APZ and CLS 
significantly increased the number of BrdU/Syn1-double positive cells in the hippocampus 
compared to the vehicle treatment. Contra, contralateral; ipsi, ipsilateral. # p < 0.05, ## p < 0.01 and ### p 
< 0.001 versus control mice; ** p < 0.01 versus vehicle-treated mice; $ p < 0.05 versus CLS-treated mice. 
Scale bars = 50 μm. 

Figure 4. Effect of APZ augmentation on proliferation and differentiation from neuronal progenitor
cells in CLS-treated mice. Photomicrograph (a) and its histogram (b) for 5-bromo-2′-deoxyuridine
(BrdU) and BrdU/NeuN-double positive cells in the striatum and hippocampus (n = 5). The combined
use of APZ and CLS significantly increased the number of BrdU-positive cells in the striatum compared
to vehicle-, CLS-, and APZ-treated mice. Contra, contralateral; ipsi, ipsilateral. # p < 0.05, ## p < 0.01
and ### p < 0.001 versus control mice; *** p < 0.001 versus vehicle-treated mice; $$$ p < 0.001 versus
CLS-treated mice; &&& p < 0.001 versus APZ-treated mice. Scale bars = 100 µm.
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Figure 5. Effect of APZ augmentation on synaptic formation in proliferating progenitor cells in
CLS-treated mice. Photomicrograph (a) and its histogram (b) for BrdU and BrdU/Syn1-double positive
cells in the striatum and hippocampus (n = 5). The combined use of APZ and CLS significantly
increased the number of BrdU/Syn1-double positive cells in the hippocampus compared to the vehicle
treatment. Contra, contralateral; ipsi, ipsilateral. # p < 0.05, ## p < 0.01 and ### p < 0.001 versus control
mice; ** p < 0.01 versus vehicle-treated mice; $ p < 0.05 versus CLS-treated mice. Scale bars = 50 µm.
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2.4. Effect on Phosphorylation of CREB

In all the regions examined, phospho-CREB (pCREB)-positive cells in vehicle-treated mice were
significantly decreased compared to those in control mice (Figure 6). Mice treated with APZ and
CLS showed significantly higher numbers of pCREB-positive cells in the hippocampus and midbrain
compared to mice treated with vehicle, APZ alone, or CLS alone (hippocampus (DG), F(4,20) = 52.737,
p < 0.001; hippocampus (CA3), F(4,20) = 344.847, p < 0.001; midbrain, F(4,20) = 181.128, p < 0.001).
In the striatum, mice receiving combined treatment showed higher numbers of pCREB-positive
cells compared to mice treated with vehicle and APZ alone (striatum, F(4,20) = 80.294, p < 0.001).
pCREB/NeuN-double positive cells were decreased in all the regions examined in vehicle-treated mice,
but these changes were reversed by the combined use of APZ and CLS, particularly in the striatum
and hippocampus (striatum, F(4,20) = 52.737, p < 0.001; hippocampus (DG), F(4,20) = 103.661, p < 0.001;
hippocampus (CA3), F(4,20) = 113.703, p < 0.001). Similar to pCREB/NeuN-double positive cells,
the numbers of pCREB/tyrosine hydroxylase (TH)-double positive cells of vehicle-treated ischemic
mice were significantly recovered in the midbrain by the combined use of APZ and CLS (Figure 6:
F(4,20) = 44.931, p < 0.001). These results suggest that APZ and CLS have a synergistic effect on the
activation of CREB signaling.
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Figure 6. Effect of APZ augmentation on the phosphorylation of cyclic adenosine monophosphate
response element binding protein (CREB) and its localization in CLS-treated mice. Photomicrograph
(a) and its histogram (b) for pCREB in all regions examined, pCREB/NeuN in the striatum and
hippocampus (DG and CA3) and pCREB/TH in the midbrain. pCREB-positive cells were significantly
increased by the combined use of APZ and CLS in all regions examined (n = 5). Additionally,
pCREB/NeuN or TH-double positive cells were recovered in the striatum, hippocampus and midbrain
by the combined use of APZ and CLS. DG, dentate gyrus; CA3, cornu ammonis; hippo, hippocampus.
## p < 0.01 and ### p < 0.001 versus control mice; * p < 0.05, ** p < 0.01 and *** p < 0.001 versus
vehicle-treated mice; $$ p < 0.01 and $$$ p < 0.001 versus CLS-treated mice; & p < 0.05, && p < 0.01 and
&&& p < 0.001 versus APZ-treated mice. Scale bars = 100 µm.

3. Discussion

We have reported here that the combined use of APZ and sub-active doses of CLS resulted in
significant recovery from depressive behaviors concomitant with the inhibition of neuronal cell death
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and the enhancement of proliferation of neuronal progenitor cells following mild chronic stress after
an ischemic insult. This demonstrates the potentiation action of the neuroprotection and neurogenesis
of APZ. Our data also suggest that the antidepressant effects of APZ may involve a common CREB
signaling pathway, shared with CLS; this may be the means by which APZ augments the effects of CLS,
leading to the synergistic protection of neuronal cells and the promotion of neurogenesis after ischemia.

APZ, approved for treatment of schizophrenia, is sometimes referred to as a third-generation
antipsychotic because it has a unique pharmacological profile [13,26]. It is a partial agonist of serotonin
5-HT1A and 5-HT7 receptors, an antagonist of serotonin 5-HT2A and 5-HT6 receptors, and a partial
agonist of the D2 dopamine receptors. Thus, APZ is described as a dopamine-serotonin system
stabilizer [12,13]. Adjunctive therapy with low-dose APZ is effective for some complex post-stroke
emotional disorders [14]. APZ also improves cognitive function via enhancement of cell proliferation
and neuroblast differentiation from neuronal progenitor cells in the hippocampus [27,28]. These clinical
and pre-clinical studies demonstrate the usefulness of APZ in the treatment of major depressive
disorder through direct effects on neurotransmitter systems [13,29,30]. However, APZ also has
a beneficial effect on neuronal regeneration following neuronal loss in the brain after an ischemic
assault through indirectly promoting neuronal survival, proliferation, and differentiation from neural
progenitor cells [31,32].

CLS is a potent inhibitor of type 3 phosphodiesterase (PDE3) which mainly activates
PDE3/cAMP-dependent intracellular signaling by preventing the degradation of cAMP, resulting
in increased CREB phosphorylation [17]. Brain-derived neurotrophic factor (BDNF) coupled to
the phosphorylation of CREB is a key modulator of CLS action for cerebral ischemic injury and
neurogenesis, which contributes to neuronal survival, proliferation, and differentiation from progenitor
cells [33–35]. CLS inhibits apoptotic cell death in neurodegenerative disease models such as ischemic
stroke and chronic cerebral hypoperfusion [23,36], and helps in the secondary prevention of ischemic
stroke [18,24]. CLS also activates a CREB-mediated signaling pathway and enhances the proliferation
and differentiation of neuronal progenitor cells [16,37].

A potential novel target for post-stroke treatment with regard to functional recovery is the
prevention of primary and secondary neuronal injury by ischemic insults. Atypical antipsychotics
such as APZ may show better therapeutic efficacy for post-stroke depression if they are combined
with a prescription drug for stroke that has a similar or common pathway for neuroprotection
and neurogenesis. Because CLS is used clinically as a general prescription drug for the secondary
prevention of stroke, we selected this drug to determine whether augmentation with APZ increases
the degree of neuroprotection and neurogenesis. In assessments of two different kinds of behavioral
tests reflecting mood changes and memory impairments, these effects did not consistently appear,
and behavioral results such as anhedonia and despair-like behavior did not appear simultaneously.
Despite the limitations of these animal behavioral outcomes, the combined use of chronic APZ with
a sub-active dose of CLS resulted in a marked amelioration of depressive behaviors at certain points in
the experiments. The combined treatment also prevented atrophic changes, particularly in the striatum
and hippocampus, via inhibition of apoptotic cell death and enhancement of neurogenesis, with the
two drugs exerting clear and synergistic antidepressant and neuroprotective effects.

In oxidative stress or depression-induced oxidative stress, APZ is highly effective for the
prevention of cell death [38,39]. Some researchers have hypothesized that activation of serotonin
5-HT1A or dopamine D2 receptors does not underlie the neuroprotectant effects of APZ [31]. Chronic
administration of APZ increases protein phosphatase 1 (PP1) activity by inactivating the cAMP/protein
kinase A/inhibitor 1 pathway followed by de-phosphorylation of calcium/calmodulin-dependent
protein kinase II (CaMKII) by PP1 in the cytoplasm, resulting in nuclear translocation [25]. Nuclear
CaMKII functions in transcriptional regulation of the neurotrophin BDNF through the phosphorylation
of diverse nuclear proteins, including CREB [25,40,41]. As shown by the increase in pCREB levels by
the combined use of APZ and CLS, our data support our hypothesis that this therapy may enhance the
neuroprotective effects and neurogenesis via the co-activation of CREB signaling.
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Further, PDE3–cAMP intracellular signaling is important for the neuroprotective and neurogenesis
effects of CLS, which could promote BDNF expression and a subsequent anti-apoptotic cascade [34,42].
Our previous results suggested that the beneficial effects of CLS involve the activation of CREB/BDNF
signaling in post-stroke depression [43]. Therefore, the marked synergistic effect on depression-like
behaviors and neuronal survival by the combined use of APZ and CLS may be associated with
the convergent activation of CREB/BDNF signaling pathways by APZ and CLS [25,44] (Figure 7).
However, we cannot exclude the possibility that dopamine D2 receptors may also play a major role
in APZ’s mechanism of action, nor can we exclude more complex mechanisms such as agonistic
activity of 5HT1A receptors and antagonistic activity of 5-HT2A receptors. The exact mechanisms
underlying the action of neuroprotection and neurogenesis of APZ are still unclear. Therefore, whether
the anti-depressive effects in our study arose from the neuroprotective effects of APZ, or from the
cognitive improvement via neurogenesis after APZ treatment is unclear and needs to be elucidated
through further study.

Int. J. Mol. Sci. 2017, 18, 355 9 of 15 

[25,40,41]. As shown by the increase in pCREB levels by the combined use of APZ and CLS, our data 
support our hypothesis that this therapy may enhance the neuroprotective effects and neurogenesis 
via the co-activation of CREB signaling. 

Further, PDE3–cAMP intracellular signaling is important for the neuroprotective and 
neurogenesis effects of CLS, which could promote BDNF expression and a subsequent 
anti-apoptotic cascade [34,42]. Our previous results suggested that the beneficial effects of CLS 
involve the activation of CREB/BDNF signaling in post-stroke depression [43]. Therefore, the 
marked synergistic effect on depression-like behaviors and neuronal survival by the combined use 
of APZ and CLS may be associated with the convergent activation of CREB/BDNF signaling 
pathways by APZ and CLS [25,44] (Figure 7). However, we cannot exclude the possibility that 
dopamine D2 receptors may also play a major role in APZ’s mechanism of action, nor can we exclude 
more complex mechanisms such as agonistic activity of 5HT1A receptors and antagonistic activity of 
5-HT2A receptors. The exact mechanisms underlying the action of neuroprotection and neurogenesis 
of APZ are still unclear. Therefore, whether the anti-depressive effects in our study arose from the 
neuroprotective effects of APZ, or from the cognitive improvement via neurogenesis after APZ 
treatment is unclear and needs to be elucidated through further study. 

 
Figure 7. Schematic diagram of the proposed underlying mechanism of APZ augmentation of the 
antidepressant effects of CLS. PDE3, phosphodiesterase 3; CREB, cyclic adenosine monophosphate 
response element binding protein; mBDNF, mature brain-derived neurotrophic factor. 

4. Materials and Methods 

4.1. Animals 

C57BL/6 male mice (10 weeks of age) were purchased from Dooyeol Biotech (Seoul, Korea). The 
mice were housed at 22 °C under alternating 12 h cycles of dark and light and allowed tap water ad 
libitum with a commercial diet throughout the study. All experiments were approved by the Pusan 
National University Animal Care and Use Committee in accordance with the recommendations of 
the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (approval 
number PNU-2015-0850; 21 April 2015). The mice were randomly divided into five groups (control 
(non-treated normal mice), vehicle (non-drug-treated mice undergoing the CMS process), CLS, APZ, 
and CLS + APZ). Each group consisted of six mice. 

4.2. Focal Cerebral Ischemia 

To induce focal cerebral ischemia, occlusion of the middle cerebral artery (MCA) using the 
intraluminal filament technique was employed. A fiber-optic probe was affixed to the skull over the 

Figure 7. Schematic diagram of the proposed underlying mechanism of APZ augmentation of the
antidepressant effects of CLS. PDE3, phosphodiesterase 3; CREB, cyclic adenosine monophosphate
response element binding protein; mBDNF, mature brain-derived neurotrophic factor.

4. Materials and Methods

4.1. Animals

C57BL/6 male mice (10 weeks of age) were purchased from Dooyeol Biotech (Seoul, Korea).
The mice were housed at 22 ◦C under alternating 12 h cycles of dark and light and allowed tap water
ad libitum with a commercial diet throughout the study. All experiments were approved by the Pusan
National University Animal Care and Use Committee in accordance with the recommendations of
the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (approval
number PNU-2015-0850; 21 April 2015). The mice were randomly divided into five groups (control
(non-treated normal mice), vehicle (non-drug-treated mice undergoing the CMS process), CLS, APZ,
and CLS + APZ). Each group consisted of six mice.

4.2. Focal Cerebral Ischemia

To induce focal cerebral ischemia, occlusion of the middle cerebral artery (MCA) using the
intraluminal filament technique was employed. A fiber-optic probe was affixed to the skull over the
MCA to measure regional cerebral blood flow using a PeriFlux Laser Doppler System 5000 (Perimed,
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Stockholm, Sweden). A left MCAO model was produced using a silicon-coated 7-0 monofilament,
which was advanced through the internal carotid artery to occlude the MCA. The filament was
withdrawn 30 min after MCA occlusion, and reperfusion was confirmed using laser Doppler.
After surgery, we isolated these mice from the controls and monitored their condition daily for
signs of decreased activity and decline in food intake. We did not observe any signs of these conditions.
All operations were performed with the administration of 2.0% isoflurane (VSP Corporation, Hanami,
Korea) anesthesia to minimize mouse suffering, using a model VIP 3000 calibrated vaporizer (Midmark,
Orchard Park, OH, USA).

4.3. Chronic Mild Stress

The CMS procedure was applied as previously described, with slight modifications [45]. The CMS
regimen included seven different stressors as follows: food and water deprivation for 20 h, water
deprivation for 18 h, 45◦ cage tilt for 17 h, overnight illumination for 36 h, soiled cage for 21 h,
swimming in 4 ◦C water for 5 min, and paired caging for 2 h. CMS treatments were administered on
a schedule, day and night, for 16 consecutive days, starting from 2 days post-MCAO.

4.4. Drug Administration

APZ (7-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}-3,4-dihydroquinolin-2(1H)-one) and
CLS {6-[4-(1-cyclohexyl-1H-tetrazol-5-yl) butoxy]-3,4-dihydro-2-(1H)-quinolinone} were donated by
Otsuka Pharmaceutical (Tokushima, Japan). The APZ and CLS were administered orally from
2 days after MCAO for 16 successive days. Drugs were used at a concentration of 3 mg/kg body
weight. The APZ and CLS were dissolved in 10% dimethyl sulfoxide (DMSO) and in distilled
water, respectively.

4.5. Bromodeoxyuridine Labeling

For labeling of proliferating cells, a synthetic thymidine analog, BrdU (Sigma-Aldrich Corporation,
St. Louis, MO, USA) was employed, which becomes incorporated into a dividing cell’s DNA during
the S-phase of the cell cycle. All animals were injected with BrdU (50 mg/kg intraperitoneally) for
5 successive days after MCAO.

4.6. Behavioral Experiments

Behavioral experiments such as the open field, sucrose preference, and forced swim test were
performed once a week from the 4th week to the 6th week after MCAO. Morris water maze tests were
performed at the 6th week after MCAO daily for a successive 4-day period. All behavioral experiments
were performed at 22 ± 1 ◦C. The behavioral experiments were performed as previously described,
with slight modifications [46,47].

4.6.1. Open Field Test

The open field test was employed to measure anxiety-like behavior. Following adaptation for
10 min in a white box (30 × 30 × 40 cm3), the total distance and number of entries into the center area
were measured for 30 min by using the SMART 2.5.18 video tracking system (Panlab, S.L.U., Barcelona,
Spain) in a quiet room.

4.6.2. Sucrose Preference Test

A sucrose preference test was employed to measure anhedonia. Before MCAO, all mice were
habituated to 1% sucrose solution (AMRESCO Inc., Solon, OH, USA) for 24 h. For the experiment,
the mice were deprived of food and water for 20 h, after which both 1% sucrose solution and water
bottles were placed in the cage for 1 h. The consumption of sucrose solution and water was determined
by measuring the weight of these bottles.
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4.6.3. Forced Swim Test

A forced swim test was employed to measure despair-like behavior. Mice were exposed to 25 ◦C
water for 15 min in a glass cylinder (15 cm in height × 10 cm diameter) one day before the test.
Their behavior was recorded using a digital camera (E8400, Nikon Corporation, Tokyo, Japan) for
5 min. We also recorded the time from when the mouse entered the cylinder until it stopped struggling.

4.6.4. Morris Water Maze Test

The Morris water maze test was employed to measure spatial memory. A tank (100-cm diameter
and 50-cm height) was employed, and a platform was placed 0.5 cm beneath the surface of the water.
Before MCAO, the mice were trained for 4 successive days to go to the target. The experiment consisted
of 5 trials per day for 4 successive days, and each trial lasted for 90 s or until the mouse climbed onto
the platform. The time taken and distance travelled to reach the platform were recorded using the
SMART 2.5.18 video tracking system (Panlab, S.L.U.).

4.7. Histological Assessment

Intraperitoneal perfusion of the mice with saline followed by 4% paraformaldehyde in phosphate
buffered saline (PBS) was performed under anesthesia with 8% chloral hydrate. After removal
of the brains, tissues were fixed again in the same fixative for 24 h at 4 ◦C, and immersed in a
30% sucrose solution for 72 h at 4 ◦C. To evaluate brain damage or atrophy, frozen 30-µm-thick
sections were stained with 0.1% cresyl violet (Sigma-Aldrich Corporation, St. Louis, MO, USA).
The contralateral and ipsilateral subarea sizes of each section including the striatum, corpus callosum,
cortex, hippocampus, and midbrain were measured using i-solution (IMT i-Solution Inc., Burnaby, BC,
Canada). Atrophy volume was expressed as a percentage: atrophy volume = subarea volume of the
ipsilateral hemisphere/subarea volume of contralateral hemisphere × 100.

4.8. Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick End Labeling Assay

For characterization of apoptotic neuronal death, TUNEL was performed using a DeadEnd™
Fluorometric TUNEL System kit (Promega Corporation, Madison, WI, USA), according to the
manufacturer’s instructions. TUNEL-positive cells were counted using a fluorescence microscope
(Carl Zeiss, Inc., Gottingen, Germany), and quantitative analysis was performed blindly. Data are
presented as the total number of apoptotic cells.

4.9. Immunofluorescence

Frozen sections (30-µm thickness) were incubated with a blocking buffer (1× PBS/5% normal
goat serum/0.3% Triton X-100) for 1 h. Sections were incubated with primary antibodies overnight
in an antibody dilution buffer (1× PBS/1% BSA/0.3% Triton X-100) at 4 ◦C. The antibodies were as
follows: BrdU (Cat. OBT0030G, AbD Serotec, Oxford, UK), NeuN (Cat. MAB377; ABN78, Millipore
Corporation, Billerica, MA, USA), Syn1 (Cat. ab64581, Abcam, Cambridge, UK), TH (Cat. AB152,
Millipore Corporation), and pCREB (Cat. sc-7978-R, Santa Cruz Biotechnology, Santa Cruz, CA,
USA). The sections were incubated with a fluorescent secondary antibody (Vector Laboratories, Inc.,
Burlingame, CA, USA) for 2 h and 4′,6-diamidino-2-phenylindole (DAPI, Invitrogen Corporation,
Carlsbad, CA, USA) for 30 min in the dark, respectively. After slide mounting with a mounting medium
(Vector Laboratories, Inc.), images were captured using a fluorescence microscope (Carl Zeiss, Inc.).

4.10. Data Analyses

Data were analyzed using the Sigmaplot statistical program version 11.2 (Systat Software, San Jose,
CA, USA). All data are expressed as mean ± standard error of the mean (SEM). Statistical analysis of
the data was performed using one-way or one-way repeated measures analysis of variance (ANOVA)



Int. J. Mol. Sci. 2017, 18, 355 12 of 15

via Tukey’s post hoc comparison when comparing more than two groups. A p < 0.05 was considered
statistically significant.

5. Conclusions

In summary, our current results showed that a lower active dose of APZ with a sub-active
dose of CLS could synergistically enhance the antidepressant effects of either drug with particular
improvements in the atrophic changes of the primary neurodegenerative sites in the striatum and
hippocampus following ischemic assaults. Further attempts to establish a mechanism of action for
APZ might focus on our evidence showing an antidepressant effect through neuroprotection and
neurogenesis. Collectively, the beneficial effects of APZ in post-stroke depression may be due in part
to neuroprotective and neurogenesis properties via a common signaling pathway of CLS, such as
the cAMP/CREB signaling pathway, with the primary beneficial actions of the drugs derived from
improved monoamine function.
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