
QuickProbs—A Fast Multiple Sequence Alignment
Algorithm Designed for Graphics Processors
Adam Gudyś*, Sebastian Deorowicz

Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland

Abstract

Multiple sequence alignment is a crucial task in a number of biological analyses like secondary structure prediction, domain
searching, phylogeny, etc. MSAProbs is currently the most accurate alignment algorithm, but its effectiveness is obtained at
the expense of computational time. In the paper we present QuickProbs, the variant of MSAProbs customised for graphics
processors. We selected the two most time consuming stages of MSAProbs to be redesigned for GPU execution: the
posterior matrices calculation and the consistency transformation. Experiments on three popular benchmarks (BAliBASE,
PREFAB, OXBench-X) on quad-core PC equipped with high-end graphics card show QuickProbs to be 5.7 to 9.7 times faster
than original CPU-parallel MSAProbs. Additional tests performed on several protein families from Pfam database give overall
speed-up of 6.7. Compared to other algorithms like MAFFT, MUSCLE, or ClustalW, QuickProbs proved to be much more
accurate at similar speed. Additionally we introduce a tuned variant of QuickProbs which is significantly more accurate on
sets of distantly related sequences than MSAProbs without exceeding its computation time. The GPU part of QuickProbs
was implemented in OpenCL, thus the package is suitable for graphics processors produced by all major vendors.

Citation: Gudyś A, Deorowicz S (2014) QuickProbs—A Fast Multiple Sequence Alignment Algorithm Designed for Graphics Processors. PLoS ONE 9(2): e88901.
doi:10.1371/journal.pone.0088901

Editor: Jun-Tao Guo, The University of North Carolina at Charlotte, United States of America

Received August 12, 2013; Accepted January 15, 2014; Published February 25, 2014

Copyright: � 2014 Gudyś, Deorowicz. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by National Science Centre grant upon decision DEC-2012/05/N/ST6/03158 and European Social Fund project UDA-
POKL.04.01.01-00-106/09. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: adam.gudys@polsl.pl

Introduction

Multiple sequence alignment (MSA) is an essential task in

molecular biology. It is performed for both, nucleotide and protein

sequences. Its field of applications covers phylogenetic analyses,

gene finding, identification of functional domains, prediction of

secondary structures, and many others. Rapidly increasing size of

sequence databases allowed by the development of high through-

put sequencing technologies provides biologists with the opportu-

nity to analyse in silico enormous sets of data. Hence, the constant

pressure for developing more accurate and faster MSA algorithms.

As multiple sequence alignment problem is NP-hard [1,2], exact

methods are infeasible for practical applications due to excessive

computation time. Therefore, many heuristics have been devel-

oped including progressive [3], iterative [4], or hidden Markov

model-based [5] strategies. One of the most popular multiple

sequence alignment software is ClustalW [6]. It is a classic

representative of progressive algorithms, and works according to

the scheme:

1. Estimate evolutionary distances between all pairs of sequences.

2. Build a guide tree on the basis of the distances.

3. Align sequences in the order described by the tree.

Calculation of an evolutionary distance is done either by

performing pairwise sequence alignment between sequences

(default mode) or by employing k-tuple matching (fast mode).

Many researches aimed at refining ClustalW accuracy by

extending the idea of progressive alignment. An important

breakthrough was the introduction of T-Coffee algorithm [7]

which incorporated a consistency-based objective function. The

principle was employing knowledge of some symbols being aligned

from all pairwise alignments and was confirmed to improve

significantly quality of a final result. Other techniques acquired by

MSA algorithms include identification of homologous regions

using fast Fourier transform (MAFFT [8]) or iterative refinement

of a final alignment (MUSCLE [9]). There is a group of methods

that improved calculation of a pairwise alignment by using

suboptimal alignments. These are Probcons [10] and Probalign

[11] which compute posterior probability matrices for all pairs of

sequences using pair hidden Markov models (pair-HMMs) and

partition functions, respectively. Both of them are also equipped in

a consistency scheme which makes them very accurate. Recently

published MSAProbs algorithm combines pair-HMM and poste-

rior function approaches with a consistency transformation and an

iterative refinement leading to the highest quality amongst all

presented packages [12]. However, experiments show that even

most accurate methods fail to find a proper alignment when

analysed sequences are distantly related, particularly in so called

‘twilight zone’, when sequence similarity drops below 30%. Some

algorithms addressed this issue by introducing to the alignment

procedure additional knowledge. E.g., 3D-Coffee extends T-

Coffee by using mixture of pairwise sequence and structure

alignments [13]. MSACompro introduces to MSAProbs pipeline

secondary structures, residue-residue contact maps, and solvent

accessibility which elevates accuracy [14].

Our research, however, focuses on methods exploiting only

sequences themselves. An important issue related to accurate MSA

algorithms like T-Coffee, ProbCons, or MSAProbs is that superior

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e88901

http://creativecommons.org/licenses/by/4.0/

results are produced at the cost of significant increase in

complexity: all the above-mentioned methods are inferior to

ClustalW in fast mode in terms of time and memory requirements.

This is a serious disadvantage when processing large sequence sets,

which is often the case, as it has been proven that introducing

homologous sequences to MSA improves quality of a final result

[15]. Moreover, there are applications which require huge number

of multiple alignments to be computed. E.g., PhylomeDB database

[16] gathers currently almost 1.9 million of MSAs. As alignment

times varied from several seconds to several minutes, computation

of all alignments required tens of months of CPU time [17].

Taking into account increasing availability of genomic and

proteomic data, this number is expected to grow dramatically in

close future. Hence, it is desirable to have algorithms able to align

large sequence sets or perform large number of alignments in a

reasonable time.

For aforementioned reason, some algorithms aimed at improv-

ing alignment quality without sacrificing time and memory

efficiency of ClustalW. These are for example Kalign [8] and

Kalign2 [19] which instead of k-tuple matches employ respec-

tively, Wu-Manber [20] and Muth-Manber [21] approximate

string matching algorithms. Kalign2 turns out to be faster and

more memory efficient than ClustalW in fast mode and also

significantly more accurate (not as accurate as consistency-based

methods, though). Kalign-LCS [22] further improved alignment

accuracy and execution time by exploiting a bit-parallel longest

common subsequence measure for distance calculation. The new

version of MAFFT introduces PartTree algorithm [23] which

allows a guide tree to be constructed without calculating all

pairwise distances. A similar strategy was acquired by the recently

published algorithm ClustalV [24] that joins HMMs with mBed

[25], a method of dimensionality reduction called sequence

embedding. As a result, the number of pairwise alignments in

both these packages is decreased from H(k2) to H(k log k) with

respect to the number of sequences k. This makes MAFFT and

ClustalV the only methods which are able to align tens of

thousands of sequences in a reasonable time.

Nevertheless, experiments clearly show that if alignment quality

is of paramount importance, consistency-based methods are out of

competition. In order to overcome their greatest disadvantage, i.e.,

large execution times, many algorithms utilise multi-core archi-

tecture of modern CPUs. One of the best examples is MSAProbs

which assessed on quad-core CPU turned out to be faster than its

less accurate serial competitors like ProbCons or Probalign. Yet,

parallelisation on central processors has its limitations. Nowadays,

a typical desktop PC is equipped with four- or six-core CPU and to

further decrease execution times, expensive multi-processor

architectures have to be used. One of the ways of addressing this

issue is using a potential of graphics processors in general purpose

computing. Since computational power of current GPUs is more

than order of magnitude greater than power of central processors,

developing GPU-suited versions of algorithms has become popular

in many computational demanding tasks also in bioinformatics.

One must keep in mind, that differences in architectures of

graphics processors and CPUs are fundamental. GPUs have

thousands of cores, several types of memory and utilise massively

parallel execution model. This makes designing algorithms

customised for GPUs a challenging task that cannot be accom-

plished by adapting serial or parallel methods destined for CPU

execution.

Heretofore, GPU customisation of multiple sequence alignment

algorithms concerned mainly ClustalW [26,27] and different

variants of MSA problem like constrained MSA investigated by

authors of this paper [28] or regular expression MSA [29]. The

only attempt to parallelise on graphics processor an accurate,

consistency-based multiple sequence alignment method was G-

MSA [30], a variant of T-Coffee algorithm. The authors, however,

focused on decreasing execution times and introduced some

modifications that lowered quality of an output alignment. As a

result, G-MSA turned out to be very fast (even 193 times faster

than its predecessor), but inferior in terms of accuracy not only to

original T-Coffee, but also to some non-consistency algorithms like

MUSCLE. The aim of our research is different. We selected

MSAProbs, the most accurate from existing MSA methods as our

starting point and developed QuickProbs. It is a variant of

MSAProbs algorithm suited for graphics processors preserving

outstanding accuracy of its predecessor.

The algorithm executes on GPU the most time consuming parts

of MSAProbs pipeline, i.e., the posterior probability matrices

calculation and the consistency transformation. These stages are

parallelised in MSAProbs on CPU with a use of OpenMP [31].

The parallelisation is, however, based on inter-task execution

model which is unsuitable for graphics processors because of their

massively parallel architecture. Therefore, GPU-specific algo-

rithms for these stages had to be designed.

The posterior calculation stage executes dynamic programming

methods like forward-backward algorithm for pair-HMMs or

partition function calculation. The dynamic programming (DP)

was a subject of GPU customisation multiple times, also in

bioinformatics. It concerned pairwise sequence alignment [32–37],

short read alignment [38], RNA folding [39], phylogeny [40], etc.

Each application has some specific features that require suited

algorithms, though. In MSAProbs these features include presence

of several dependant DP layers, different storage patterns for

different layers, a complex form of recursive expression making

GPU code register-bound.

The consistency transformation stage incorporates a set of

sparse matrix multiplications. There are algorithms and libraries

for this task [41–43]. The multiplication procedure exploited by

MSAProbs has however some specific features. Firstly, many

multiplications of small matrices is performed, while previously

published solutions are optimised for large matrices. Secondly, the

consistency transformation does not allow new elements to be

introduced to output matrices. Due to these reasons existing

methods cannot be used directly for our aims.

QuickProbs uses new, graphics processor specific, intra-task

parallel algorithms for both, posterior matrix calculation and

consistency transformation. Additionally, we parallelised on CPU

the alignment construction and refinement stage, which in

MSAProbs is performed serially. As a result, our package is

several times faster than MSAProbs. This allows user to process

larger datasets in a reasonable time without sacrificing alignment

quality. Additionally we present a tuned variant of method called

QuickProbs-acc. It significantly outperforms MSAProbs in terms

of accuracy on sets of distantly related sequences without

exceeding its running times.

Materials and Methods

Problem formulation
Let U~ u1,u2, . . . ,uk

� �
be the set of input sequences. Multiple

sequence alignment problem consists in arranging sequences from

U by putting gaps between symbols in the way that homologous

residues are aligned together in columns. Homologous residues are

those which share three dimensional structural position and

diverge from common ancestral residue [44]. The problem of

MSA is that for majority of cases it is impossible to identify a single

correct alignment. This is because both structures and sequences

QuickProbs

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e88901

evolve and some residues cannot be superposed in any way. This

must be taken into account when assessing multiple sequence

alignment algorithms. Therefore, a subset of key residues and core

structural blocks that can be unambiguously aligned is identified

and used for evaluation. The most commonly used assessment

measures calculated on these regions are sum-of-pairs (SP) and

total-column (TC) scores [45]. They denote percentage of properly

aligned residue pairs and columns, respectively, and a reference

alignment is required to compute them. In the case of real

sequences it is usually constructed manually. If testing sets are

generated synthetically with a use of evolution modelling software

like ROSE [46], the reference alignment is built during artificial

evolutionary process by the software itself.

General purpose computing on GPU
Computational power of current graphics processors is several

times greater than power of CPUs. Rapid development of

programming interfaces like CUDA [47] or OpenCL [48] allows

this power to be employed in general purpose computing. Due to

this fact, designing algorithms customised for graphics processors

has recently become an important method of speeding up analyses

of large datasets as an alternative to using expensive multi-

processor architectures based on CPUs. In QuickProbs, GPU

computing is performed with a use of OpenCL library since,

unlike CUDA, it is suitable for graphics processors produced by

both major vendors, NVidia and AMD. Hence, in the following

description we hold to the OpenCL nomenclature providing

CUDA terms in parentheses.

The reason why designing algorithms suited for GPU execution

is a challenging task is a great difference between architectures of

central and graphics processors. Unlike CPUs that contain few

cores, modern GPUs are composed of thousands of processing

elements (cores) gathered in several compute units (multiprocessors).

Processing elements within compute units operate according to a

single instruction-multiple data or single program-multiple data

paradigm. From logical point of view a GPU program (known as a

kernel in both OpenCL and CUDA) consists of many work-items

(threads) gathered in workgroups (blocks). An important fact is that

synchronisation between work-items can be done only within a

workgroup. Thus, matching the number and the size of work-

groups for a particular task is a crucial issue when developing

GPU-suited algorithms. After execution of a kernel, a hardware

scheduler maps work-items in the way that a workgroup is executed

on a single compute unit, while one unit can handle multiple

workgroups. OpenCL does not specify how workgroups are run by

hardware but in order to efficiently utilise computational power of

GPU, knowledge of workgroup execution at the device level is

necessary. The smallest amount of work that is physically

performed on AMD GPUs consists of 64 work-items and is called

a wavefront; on NVidia devices it has 32 items and is known as a

warp. Therefore, it is important to make the group size multiplicity

of these portions. There is no guarantee in which order wavefronts

(warps) are executed—this is decided by the scheduler dynami-

cally. An important consideration is that all work-items within that

portion must share exactly the same execution path. A divergence

in a wavefront (warp) caused, e.g., by the presence of conditional

statements is realised by executing instructions from all paths with

some work-items being masked when necessary. Hence, data

dependant branching inside wavefronts (warps) increases kernel

execution time and should be avoided. Another important issue

when developing algorithms on GPU is providing sufficient

occupancy of a device. In order to hide delays of arithmetic

instructions and, most importantly, memory accesses it is

recommended to invoke a few times more work-items than the

number of processing elements. On modern devices this results in

as much as 104 work-items per kernel.

An important difference between CPU and GPU concerns

memory architecture. GPU is equipped with few gigabytes of global

memory which is an equivalent of main memory at CPU. Maximal

throughput of global memory is several times greater than main

memory bandwidth. However, it can be achieved only in the case

of coalesced accesses when consecutive work-items utilise data

from contiguous 128-byte area. In such situation whole portion of

data can be read in one transaction. Since latency of global

memory is large, non-coalesced accesses often result in lower

bandwidth than at CPU. This issue has been partially solved in

recent graphics processors by caching. Nevertheless, compared to

CPUs which have several megabytes of cache per core, amount of

cache on GPU is much smaller—hundreds of bytes per processing

element. Another limitation concerning global addressing space is

lack of virtual memory on GPU: programmer is responsible for

fitting all necessary data in a limited storage area. Each compute

unit contains additional amount (tens of kilobytes) of fast, directly

addressable local memory (shared memory) which can be used for

buffering frequently accessed data. Graphics processors contain

much more registers than CPUs (tens of thousands per compute

unit). The size of local memory and the number of registers

allocated by work-items are important for execution time as they

affect the maximum size of workgroup as well as GPU occupancy.

Concluding, graphics processor execution model differs signif-

icantly from CPU. Presence of thousands of cores at GPU device

requires fine-grained algorithm parallelisation. Programmer needs

to take care of coalesced accesses to global memory to maximise

throughput. Careful use of local memory and registers is necessary

to keep GPU occupancy at desired level. Finally, calculations

should be organised in the way, that eliminates branching within

the same wavefront (warp). As a result, algorithms destined for

graphics processors often use different data structures and

computation schemes than methods suited for central processors,

even those exploiting multi-core architectures. Due to this fact

algorithms for GPUs must be designed and implemented from the

scratch rather than be adopted from CPU.

MSAProbs algorithm principals
MSAProbs is currently the most accurate multiple sequence

alignment software. It is a progressive strategy based on the

following stages:

I. Calculation of posterior probability matrices and distances for

all pairs of sequences.

II. Construction of a guide tree upon distances and calculation

of sequence weights.

III. Performing weighted consistency transformation on all

posterior matrices.

IV. Building final alignment using the guide tree and posterior

matrices followed by the iterative refinement.

The algorithm scheme can be found on Figure 1. Stages I and

IV were divided in the diagram into two sub-stages in order to

present data dependencies. At the beginning, the algorithm

computes posterior probability matrices (stage I.a) which contain

detailed information of residue alignments for all sequence pairs

and are used for distances calculation (stage I.b). Many progressive

algorithms estimate distance between two sequences on the basis

of a maximum probability alignment computed with Viterbi

algorithm [49]. The main disadvantage of this approach is that it

takes into account only one possible alignment of the sequences,

thus it is error-prone. In contrast, MSAProbs computes for each

pair of sequences a posterior probability matrix which is further

used for calculation of a maximum expected accuracy alignment

QuickProbs

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e88901

[44]. As it takes advantage of suboptimal alignments, it improves

quality of results. As in all progressive methods, distances are

required for guide tree construction (stage II). This is done with a

variant of UPGMA algorithm [50]. Before MSAProbs constructs a

final alignment it performs so called consistency transformation

(stage III). Single posterior matrix computed in stage I contains

information only from pairwise alignments of two sequences,

which may cause errors in the result if some residues are aligned

improperly. The consistency transformation relaxes posterior

matrices over other sequences. Thanks to this, matrices contain

information of residue alignment from pairwise alignments of all

sequences. This reduces the probability of misaligning some

symbols during construction of the final result. Number of

consistency iterations is one of the algorithm parameters.

Afterwards, sequences are aligned greedily in the order described

by the tree (stage IV.a). At each tree node, a profile-profile

alignment is performed with a use of relaxed posterior matrices

calculated previously. When the alignment is constructed, the

refinement stage begins (stage IV.b). It randomly splits the

alignment horizontally and realigns resulting profiles. Thanks to

this, the algorithm is able to remove some errors introduced in

previous stages. The number of refinement iterations is also a

parameter. Summing up, MSAProbs has three features crucial for

its accuracy:

N exploiting maximum accuracy criterion during pairwise

alignments,

N relaxing posterior matrices over other sequences,

N performing the iterative refinement.

First two methods decrease probability of misaligning given pair

of residues by utilising information from suboptimal pairwise

alignments and alignments of other sequences. If misalignment

occurs, third feature gives the opportunity to correct it.

Predominance of MSAProbs over previously published methods

is obtained at the cost of computation time. The most time

consuming stages are those performed for all pairs of sequences,

that is the posterior matrix calculation (I) and the consistency

transformation (III). The worst-case time complexities of these

stages are H(k2n2) and H(k3n3), respectively, for sequences of

length H(n). In order to decrease computation time, those

operations were chosen in MSAProbs to be parallelised using

OpenMP. Following subsections describe all MSAProbs stages

with a special stress put on stages I, III, and IV which were

redesigned in QuickProbs.

Posterior matrix calculation. This stage of MSAProbs

consists of calculating set of posterior probability matrices for all

pairs of sequences x,y[U ,xvy, where ‘,’ indicates an ordering

relation of sequences within U . Let xi and yj denote i’th and j’th

symbols of x and y sequences, respectively. Elements of posterior

probability matrix Pxy express xi*yj , that is a probability of

symbols xi and yj being aligned in the true alignment of x and y.

In MSAProbs, Pxy elements are root mean squares (RMS) of

posterior probabilities calculated using pair hidden Markov

models (Pa
xy) and partition function (Pb

xy):

Pxy(xi*yj)~

ffi
Pa

xy(xi*yj)
2zPb

xy(xi*yj)
2

2

s
: ð1Þ

After posterior matrix computation, the Needleman-Wunsch

algorithm [51] with no gap penalties is applied on Pxy in order to

determine distance dxy between sequences. As majority of Pxy

elements are close to 0, in order to save space and accelerate the

Figure 1. MSAProbs algorithm computation scheme. Stages denoted with (*) are run in parallel with a use of OpenMP.
doi:10.1371/journal.pone.0088901.g001

QuickProbs

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e88901

consistency transformation, posterior matrices are translated to a

sparse form by filtering out all elements less than cutoff ~0:01.

For convenience, sparse representation of Pxy matrix will be

referred to as Sxy. Let us denote the calculation of particular Pxy

and Sxy as a posterior task, resulting in k(k{1)=2 tasks to be

processed. Parallelism of posterior stage in MSAProbs is provided

by distributing tasks among several OpenMP threads. As each

thread calculates one or more tasks, this parallelisation model can

be referred to as inter-task.

Tree construction and sequence weighting. The guide

tree construction in MSAProbs is performed with a use of

UPGMA algorithm. After that sequences are weighted in the

order described by the tree using ClustalW weighting scheme. The

weight of sequence x[U will be denoted as wx.

Consistency transformation. The consistency transforma-

tion stage in MSAProbs relies in relaxing all posterior matrices

calculated in stage I over sequences from U . The transformation is

repeated c times (2 by default). The procedure of updating Sxy

matrix will be referred to as a relaxation task and requires a set of

k{2 sparse-sparse matrix multiplications. It is done according to

the formula:

S’xy~

wxzwy

� �
Sxyz

P
z[U ,z=x,y

wzSxzSzyP
z[U

wz

: ð2Þ

An important note is that MSAProbs does not allow any new

elements to be introduced to S’xy matrix. More precisely, it may

happen, that in a row of S’xy an element appears such that there is

no element with the same column number in a corresponding row

of Sxy. Such elements are filtered out from S’xy after multiplica-

tion. Moreover, the elements with values below cutoff are

dropped. As a result S’xy always has less or equal number of

elements than Sxy. MSAProbs performs consistency for Sxy

matrices such that xvy, i.e., the input and output of the

relaxation procedure is only an upper triangle of a matrix table. As

a consequence, the algorithm chooses one of the three versions of

multiplication procedure depending on the ordering of x, y, and z

sequences, i.e., xvzvy, zvxvy, and xvyvz. Matrices that are

being relaxed are temporarily stored in the dense form P0xy and

translated back to the sparse representation S’xy at the end of the

task. After all of the tasks finish, Sxy matrices are replaced by S’xy.

Parallelism in the consistency transformation is provided, similarly

to stage I, by inter-task execution: an OpenMP thread is

responsible for relaxation of one or more Sxy matrices. The

posterior matrices after performing c consistency transformations

will be referred to as Sxy (on Figure 1 we neglect the fact that

matrices are stored in the sparse form, thus Pxy symbol is used).

Final alignment construction and refinement. The last

stage of all progressive methods is the computation of final

alignment according to the guide tree constructed during stage II.

At each tree node a weighted profile-profile alignment (referred to

as a progressive step) is performed. When aligning two profiles X

and Y posterior probability matrix PXY is calculated using Sxy

matrices for all pairs of sequences (x,y) such that x[X and y[Y .

Then, the profile-profile alignment is constructed with a use of

posterior probabilities PXY (xi*yj) of aligning xi and yj profile

residues. This is done according to the following dynamic

programming recursion:

D(i,j)~ max

D(i{1,j{1)zPXY (xi*yj),

D(i{1,j),

D(i,j{1):

8><
>: ð3Þ

Calculation of the final alignment is followed by the refinement,

one of the classic techniques of progressive methods. In MSAProbs

it is called a post-processing stage. It was designed as a solution for

one of the greatest problems of progressive strategies—wrong

choice of sequences or profiles to be aligned in early steps of the

final result construction. Such misalignments cannot be corrected

in the following progressive steps and affect overall accuracy of the

method. The refinement tries to solve this problem by splitting

final alignment horizontally into two random profiles. Then, the

columns containing only gaps are removed and the profiles are

realigned in the same way as in the final alignment stage. The

aforementioned procedure is repeated r times (10 by default). The

more refinement iterations, the greatest the chance of removing

errors introduced during progressive construction.

In MSAProbs the final alignment and refinement procedures

are executed serially.

QuickProbs algorithm
The main goal of our study was to speed up the most time-

consuming stages of MSAProbs (posterior matrices calculation and

consistency transformation) by redesigning them for GPU

execution using OpenCL. Additionally, we decided to parallelise

on CPU the last stage of MSAProbs algorithm which previously

was implemented in a serial manner. This is because the

construction and refinement of final alignment, if executed

serially, would be the most time consuming part of QuickProbs.

In the following subsections we present how stages I, III, and IV

were modified in QuickProbs. The separate subsection is devoted

to QuickProbs-acc, a specialised variant of our package which

aims at improving MSAProbs quality.

Posterior matrix calculation. The posterior matrix calcu-

lation in QuickProbs is, similarly to MSAProbs, based on tasks.

However, massively parallel architecture of graphics processors

requires smaller portions of work to be done by a work-item.

Therefore, it was assumed that each task is processed by a single

workgroup. That computation scheme can be denoted as intra-task

parallelisation (one task—many work-items). As work-items within

workgroup can synchronise and exchange data through local

memory, they are able to properly handle data dependencies

present in a task. Another important difference is that modifica-

tions made in QuickProbs algorithm at the consistency stage result

in the necessity of calculating Sxy for all x=y, not only xvy. As

Pxy~PT
yx, it is sufficient to calculate in the dense form only one of

these two matrices (either Pxy or Pyx) and then transform it to both

Sxy and Syx. Therefore, QuickProbs posterior task takes as an

input two sequences x,y[U and consists of three steps:

1. calculate dense posterior matrix Pxy (or Pyx, depending on

sequence lengths) and pairwise distance dxy,

2. build sparse matrix Sxy on the basis of Pxy (Pyx),

3. build sparse transposed matrix Syx on the basis of Pxy (Pyx).

Let DuD indicate the length of sequence u increased by 1. Size of

Pxy posterior matrix is DxD|DyD (sequences x and y correspond to

vertical and horizontal dimensions, respectively). QuickProbs

parallelisation scheme assumes that each work-item in a work-

group calculates a single column of posterior matrix. Thus, the

QuickProbs

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e88901

width DyD of Pxy matrix that can be processed on GPU is limited by

the maximum number of work-items in a workgroup Imax for a

particular device. In current graphics processors like Radeon 7970

or GeForce 680 this limit is 1024 which is sufficient for majority of

multiple sequence alignment problems. If DyDwImax and DxDƒImax,

the algorithm calculates Pyx matrix instead of Pxy. However, if

DxDwImax and DyDwImax, the task cannot be calculated at GPU and

is scheduled for CPU execution.

At the beginning of posterior calculation stage, descriptions of

all posterior tasks are prepared. As each task consists in computing

two sparse matrices Sxy and Syx, there are k(k{1)=2 tasks in

total. The orientation of a dense posterior matrix to be calculated

by a task depends on lengths of sequences. Namely, the shorter

sequence corresponds to the horizontal dimension (task width) and

the longer to the vertical dimension (task height). Tasks of width

exceeding Imax are scheduled for CPU execution. The rest is

processed at GPU in batches. An important feature is that

workgroups from different batches are scheduled independently.

Therefore, workgroup resources, i.e., the number of work-items

and the amount of local memory to be reserved are determined by

the task with the largest horizontal dimension. Thus, the smaller

divergence of task widths in a batch, the less GPU resources are

wasted. Generally, the number of tasks in a batch is limited by the

size of global memory available for a particular device Gmax

(detailed description of task memory requirements is given later).

Nevertheless, in order to produce smaller and less divergent

batches, we lowered global memory limit to Gmax=4 which

produced best results in our preliminary experiments. Tasks are

sorted in a descending order according to the width. Then,

consecutive tasks are added to the current batch as long as its

global memory requirement does not exceed Gmax=4. If that

happens, a new batch is created and procedure repeats until no

task remains. Finally, to reduce width divergence in batches and

improve GPU utilisation, QuickProbs transposes all tasks in a

batch with heights smaller than the number of work-items in the

workgroup (it does not affect required number of work-items but

decreases columns length).

Step (1) of the posterior task consists in computation of matrix

Pxy as a root mean square of Pa
xy and Pb

xy matrices. Pair-HMM

calculates posterior probability matrix Pa
xy using forward-backward

algorithm [44]. The procedure consists of two dynamic program-

ming passes. They calculate matrices of forward and backward

probabilities which are afterwards combined to form Pa
xy. Pb

xy is

calculated using values of partition functions of forward and

reverse x and y alignments as in [11]. The procedure, analogously

to pair-HMM, requires two dynamic programming passes. At the

end of step (1) Pa
xy and Pb

xy are joined to form Pxy and an

additional DP pass calculates pairwise distance dxy from Pxy. In

general, dependencies in the DP matrices in the above-mentioned

procedures are

D(i,j)~a D(i{1,j),D(i,j{1),D(i{1,j{1)ð Þ ð4Þ

and

D(i,j)~a D(iz1,j),D(i,jz1),D(iz1,jz1)ð Þ ð5Þ

for forward and reverse passes, respectively, with different a
functions. The more detailed information about forms of a

dynamic programming recursions used in Pxy and dxy calculations

is presented in Table 1. According to QuickProbs parallelisation

scheme, each work-item within a workgroup calculates a single

column of posterior matrix. Therefore, dynamic programming

procedure must be executed according to an anti-diagonal pattern

as presented in Figure 2. The whole matrix is processed in

DxDzDyD{1 iterations in the way that j’th thread idles for j and

DxD{1{j first iterations in forward and reverse passes, respective-

ly. The idea of the dynamic programming computation scheme

exploited by QuickProbs is presented in Table 2.

Note, that all intermediate matrices needed for Pxy calculation

must be stored in device global memory. Due to fact that dynamic

programming requires accessing whole matrices with very limited

data reuse, it will not take advantage of caching. Therefore,

providing best possible global memory access pattern is a key issue

for algorithm execution time. Taking into account anti-diagonal

calculation scheme, simple row-major matrix representation

results in a non-coalesced access which drastically decreases

algorithm performance (each matrix cell is accessed in a separate

transaction). Hence, a jagged memory layout of matrices elements

was proposed (see Figure 3) in which consecutive work-items

access consecutive memory cells resulting in perfect coalescing. Let

J indicate the size of the jag. The number of elements necessary

for storing matrix for sequences x and y in the jagged form is

d(x,y)~(DxDzJ{1)Jq
DyD
J
r: ð6Þ

For convenience an element is used as a basic memory unit in the

paper. Sometimes it is referred to as a dense element to distinguish it

from sparse elements defined later. Pair-HMM used in MSAProbs

contains 5 states. MSAProbs stores whole DP matrices for all states

resulting in 5DxDDyD elements for both, forward and backward

procedures. However, as we are only interested in full matrix at

0’th state, it is sufficient to store only two consecutive rows of layers

1–4 (they are required for the dynamic programming recursion).

This reduces memory requirements for Pa
xy calculation to

2d(x,y)z8DyD, which is an important improvement, as it allows

rows from layers 1–4 to be stored in fast local memory.

Combination of forward and backward matrices can be done in

place. The similar situation occurs in the case of partition function

calculation. The difference here is that intermediate results are

stored in a double floating-point precision. Therefore, in order to

save space, reverse and combination passes are merged. The total

memory footprint of calculating Pb
xy is 3d(x,y)z8DyD elements.

The calculation of a root mean square of Pa
xy and Pb

xy is done in

place so it introduces no additional memory overhead. Eventually,

Figure 2. Scheme of traversing dynamic programming matrices
in forward (a) and reverse (b) passes. Cells contain numbers of
iterations in which they are processed.
doi:10.1371/journal.pone.0088901.g002

QuickProbs

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e88901

the computation of Pxy requires 3d(x,y)z8DyD elements in total.

Note that Pb
xy has to be computed first and stored so Pa

xy can be

calculated in the remaining space.

Steps (2) and (3) of the posterior task transform dense Pxy matrix

to sparse representations Sxy and Syx, respectively. The main

component of Sxy is an array of so-called sparse elements denoted as

data½Sxy�. Each sparse element is a pair containing a column

Table 1. Algorithm 1.

Input: x, y—sequences for which posterior matrix is to be calculated, j—work-item identifier (column number).

Output: dxy—distance between x and y sequences, Pxy—output posterior matrix in the dense form.

1: Initialise auxiliary matrices F and B of size DxD|DyD.

2: Posterior function forward pass: F (i,j)/a1 F (i{1,j),F (i,j{1),F (i{1,j{1)ð Þ
3: Posterior function reverse pass: B(i,j)/a2 B(iz1,j),B(i,jz1),B(iz1,jz1)ð Þ
4: Combine forward and reverse matrices: Pb

xy(i,j)/a3 F (i,j),B(i,j)ð Þ

5: Pair-HMM forward pass: F (i,j)/a4 F (i{1,j),F (i,j{1),F (i{1,j{1)ð Þ
6: Pair-HMM backward pass: B(i,j)/a5 B(iz1,j),B(i,jz1),B(iz1,jz1)ð Þ
7: Combine forward and backward matrices: Pa

xy(i,j)/a6 F (i,j),B(i,j)ð Þ

8: Calculate final posterior matrix: Pxy(i,j)/ROOT-MEAN-SQUARE(Pa
xy(i,j),Pb

xy(i,j))

9: Calculate final distance : dxy(i,j)/max dxy(i{1,j),dxy(i,j{1),dxy(i{1,j{1)zPxy(i,j)
� �

10: dxy/dxy(DxD,DyD)

Pseudo-code of the posterior matrix calculation procedure. Statements show only general form of data dependencies. Procedure requires execution of 6 anti-diagonal
passes (lines 2, 3z4, 5, 6, 7, and 8z9). Pb

xy is computed first due to greater memory requirements.
doi:10.1371/journal.pone.0088901.t001

Table 2. Algorithm 2.

Input: x, y—input sequences, j—work-item identifier (column number).

Output: D—matrix to be calculated.

1: function FORWARD

2: Initialise D(0,%) and D(%,0)

3: for iteration/0 to DxDzDyD{1 do

4: i/iteration{j

5: if iw0 and ivDxD and jvDyD then

6: D(i,j)/a D(i{1,j),D(i,j{1),D(i{1,j{1)ð Þ
7: end if

8: SYNCHRONISE

9: end for

10: return D

11: end function

12: function REVERSE

13: Initialise D(DxD{1,%) and D(%,DyD{1)

14: for iteration/1to DxDzDyD{1 do

15: i/DxDzDyD{j{iteration

16: if iw0 and ivDxD and jvDyD then

17: D(i,j)/a D(iz1,j),D(i,jz1),D(iz1,jz1)ð Þ
18: end if

19: SYNCHRONISE

20: end for

21: return D

22: end function

Pseudo-code of the generalised dynamic programming forward and reversed passes. D(i,%) and D(%,j) indicate i’th row and j’th column of D matrix.
doi:10.1371/journal.pone.0088901.t002

QuickProbs

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e88901

number and a floating-point value of posterior probability,

referred to as column and value, respectively. Additionally, there

are two vectors storing sizes of rows and starting indices of rows in

the sparse elements array. They are denoted as and indices½Sxy�.
The j’th sparse element in i’th row of Sxy matrix is denoted as

Sxy(i,j) and can be accessed by using the formula

data½Sxy�(indices½Sxy�(i)zj). Such representation has its impact

on a sparse generation procedure. Namely, in order to store

Pxy(i,j) element in array data½Sxy� the number of non-zeros are in

all previous rows and part of i’th row before j’th element have to

be known. The similar situation is during Syx generation but

instead of rows we are interested in Pxy columns. Therefore, the

transformation to the sparse form is done in two passes. In the first

pass the number of non-zero elements in Pxy rows (or columns) is

determined and stored in sizes½Sxy� (or sizes½Syx�). In the second

pass Pxy rows (columns) are transformed to the sparse form

concurrently producing final data½Sxy� (or data½Syx�) arrays. As

Pxy matrix is stored in the jagged form, Pxy is traversed anti-

diagonally during both passes of Sxy (or Syx) generation. The

procedure of transforming Pxy dense matrix to sparse Sxy form is

presented in Table 3.

If column numbers and indices are of the same size as matrix

elements, storing Sxy requires at most 2DxDDyD elements for

data½Sxy� (if none of Pxy elements is below cutoff) and 2DxD
elements for sizes½Sxy� and indices½Sxy�. Calculations of Sxy and

Syx matrices are serialised, i.e., the algorithm executes step (2),

reads the resulting sparse matrix from device memory, executes

step (3), and reads the result once again. Therefore, the same

memory space can be reused for both Sxy and Syx matrices.

Taking into account space needed for storing the input dense

matrix, total memory requirements for executing steps (2) and (3) is

d(x,y)z2DxDDyDz2 max (DxD,DyD).
Assuming that DxDDyDz max (DxD,DyD)vd(x,y), execution of a

single task requires in total

3d(x,y)z8DxD ð7Þ

elements in device memory. The space for storing posterior

layers and output sparse matrices, i.e., 3d(x,y) elements, is

allocated in device global memory. Auxiliary rows consisting of

8DxD elements are placed in local memory to reduce transfer

overheads. Let DxD~1024 which is the maximum size of a

workgroup that can be processed by modern GPUs. For such tasks

the local memory requirement is 8,192 elements which equals 32

KB assuming 32-bit floating-point values. The last few generations

of graphics processors are equipped in such amount of local

memory. Thus storing auxiliary rows in local memory does not

limit the size of datasets that can be processed by QuickProbs.

Consistency transformation. QuickProbs version of con-

sistency transformation differs from its predecessor. First of all, as

GPU computations are strongly memory limited, QuickProbs

operates directly on sparse representations. As a result, the

elements of S’xy that do not appear in Sxy are discarded during

multiplication procedure, not after, as in MSAProbs. Secondly, in

order to eliminate divergence in kernel executions only one version

of the sparse matrix multiplication procedure is implemented.

This, however, requires all Sxy,x=y matrices at the input of the

consistency transformation. These are provided by the modified

stage I of QuickProbs. Additionally, as the output of i’th

consistency iteration is also the input to (iz1)’th, all S’xy,x=y

must be computed in the consistency stage. Since computational

effort of matrix transposition is irrelevant with respect to the

relaxation, QuickProbs calculates on GPU S’xy matrices only for

xvy and then transposes them in parallel on CPU with a use of

OpenMP generating S’yx. The last difference concerns parallelisa-

tion scheme, which was changed to intra-task, i.e., each task is

analysed by entire workgroup. As previously, after each transfor-

mation Sxy matrices are replaced by S’xy. Posterior matrices after

Figure 3. Jagged pattern of storing dense matrices in graphics device global memory. The size of jag is denoted as J .
doi:10.1371/journal.pone.0088901.g003

QuickProbs

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e88901

performing all c consistency transformations will be referred to as

Sxy.

At the beginning of the consistency transformation QuickProbs

generates descriptions of all k(k{1)=2 relaxation tasks. In order to

reduce GPU global memory requirements the relaxation is

performed in batches, similarly to the posterior matrices calcula-

tion. Namely, set of sequences U is divided in equally-sized subsets

Vi. As a result, table of Sxy matrices can be divided in square

sectors denoted as Wij . Afterwards, the execution of two nested

loops begins. The outer loop iterates over sectors Wij to be

computed. As QuickProbs calculates on GPU S’xy matrices only

for xvy sequences, the outer loop concerns sectors for which iƒj.

The inner loop iterates over all sequence subsets Vk and performs

on GPU relaxations of all matrices from Wij over all sequences

from Vk. In order to perform the relaxation of particular Wij

sector over Vk, Wik and Wkj sectors are also required. As a result,

for each calculated sector, a buffer for three sectors must be

allocated at GPU. Sector sizes are adjusted in the way that buffer

size does not exceed size of global memory Gmax.

The relaxation procedure performed at GPU starts from

weighting input matrix by wxzwy (sequence weights are

computed during construction of the guide tree) and storing in

S’xy. After that S’xy is relaxed over all sequences z=x,y. The

relaxation over single sequence consists in performing a sparse-

sparse matrix multiplication and adding the result to S’xy. Let z be

the sequence over which S’xy is relaxed. For simplicity let

S’xy~C, Sxz~A, and Szy~B. The update is performed as

follows: C/CzwzAB. The multiplication is done by traversing

all elements of A, loading corresponding fragments of B for each

a[A, making computations and adding result to C. Processing of

Table 3. Algorithm 3.

Input: Pxy—dense matrix to be translated to sparse form, j—work-item identifier (column number)

Output: Sxy—output sparse matrix described by data½Sxy�, sizes½Sxy� and indices½Sxy� arrays.

1: Initialise in parallel sizes½Sxy� vector with 0.

2: SYNCHRONISE

3: for iteration/0 to DxDzDyD{1 do 4First pass: fill sizes vector.

4: i/iteration{j

5: if i§0 and ivDxD and jvDyD then

6: if Pxy(i,j)§cutoff then

7: sizes½Sxy�(i)/sizes½Sxy�(i)z1

8: end if

9: end if

10: SYNCHRONISE

11: end for

12: if j~0 then

13: indices½Sxy�(0)/0

14: for i/1 DxD do

15: indices½Sxy�(i)/indices½Sxy�(i{1)zsizes½Sxy�(i{1)

16: end for

17: end if

18: SYNCHRONISE

19: Copy in parallel indices½Sxy� to auxiliary vector offsets.

20: SYNCHRONISE

21: for iteration/1to DxDzDyD{1 do 4 Second pass: fill sparse elements array.

22: i/iteration{j

23: ifiw0 and ivDxDand jvDyD then

24: if Pxy(i,j)§cutoff then

25: data½Sxy�(offsets(i)):column/j

26: data½Sxy�(offsets(i)):value/Pxy(i,j)

27: offsets(i)/offsets(i)z1

28: end if

29: end if

30: SYNCHRONISE

31: end for

Pseudo-code of the sparse matrix generation procedure.
doi:10.1371/journal.pone.0088901.t003

QuickProbs

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e88901

A matrix is performed in horizontal blocks called stripes. There are

scount stripes executed concurrently, each having slength sparse

elements. Let subgroup indicate a set of work-items which processes

a stripe. As single sparse element is analysed by a single work-item,

there are slength work-items in a subgroup and work-items in a

workgroup. An important note is that consecutive subgroups are

assigned to consecutive rows of A matrix, thus at any given

moment only one stripe in a row is being processed. The scheme

of traversing A matrix is presented in Figure 4.

A detailed description of actions performed by a single subgroup

is presented below. For convenience, let us introduce an additional

notion: A(i,%)—i’th row of A, A(i,j)—j’th element of i’th row of

A, Astripe—some stripe of A, Astripe(j)—j’th element of Astripe. At

the beginning, each work-item computes an identifier of its

subgroup sid and an offset within it soffset. Then the subgroup sets

itself on i~sid row and copies the first stripe Astripe of A(i,%) to

local memory (each sparse element is copied by a single work-

item). After that it iterates over sparse elements a[Astripe. Note,

that for each element a there is a corresponding row B(j,%) in B
such that j~a:column. In the following steps, the subgroup

processes consecutive stripes of these rows. Each work-item reads

its sparse element b~Bstripe(soffset) of the current stripe, calculates

wz|a:value|b:value and adds it to the proper element of C. In

MSAProbs C was temporarily stored in the dense form, therefore

the algorithm updated directly C(i,b:column). This approach is

not used in QuickProbs as it renders inferior results. This is mainly

because of increase in global memory requirements for a task

which limits the size of a dataset that can be processed on a

graphics processor. Moreover, as input matrices are sparse,

accesses to C are non-coalesced which decreases performance.

An alternative solution is to use local memory for buffering in the

dense form only C(i,%) row. Nevertheless, as tests show, this

variant is also inappropriate for graphics processor execution.

Since maximum length of a dense row is 1024 and a single element

is a 32-bit floating-point value, 8 dense rows are sufficient to fill

whole 32 KB GPU local memory limiting GPU occupancy.

After considering all these factors, we decided to store C rows in

local memory directly in the sparse form. The problem that

emerges here concerns finding an element to be updated C(i,c),

where c is index of a sparse element with column number equal to

b:column. We examined two methods of overcoming this issue—

hashing C(i,%) values according to column indices and perform-

ing binary search. As the latter turned out to be more efficient, it is

employed in QuickProbs. If there is no index c such that

C(i,c):column~b:column, no update is performed (no new sparse

elements can be introduced to C). After subgroup finishes

processing B rows for all elements a[Astripe, it reads another

stripe of A(i,%). When processing of A(i,%) ends, i is

incremented by scount and the aforementioned scheme is repeated.

After relaxing Sxy matrix over all sequences z[U ,z=x,y, sparse

elements smaller than cutoff are filtered out. The pseudo-code of

a single relaxation is presented in Table 4.

The relaxation of Sxy requires scount| max (sizes½Sxy�) sparse

elements for buffering Sxy rows and scount|slength sparse elements

for Sxz stripes. Additionally DxD dense elements are needed for

storing new sizes of Sxy rows. Taking into account that a sparse

element takes twice as much memory as a dense one, total local

memory requirement for relaxation task equals

2scount max (sizes½Sxy�)zslength

� �
zDxD ð8Þ

elements. In our preliminary experiments performed on both

NVidia and AMD GPUs the best results were obtained for

scount~8 and slength~8. As we observed, for default value of

cutoff ~0:01, transforming matrix to sparse representation Sxy

retains on average 5–10% of Pxy elements. Assuming that

sequences are shorter than 1,000, which is often the case,

max (sizes½Sxy�) usually does not exceed 100. Local memory

requirements are less than 12 KB/task assuming 32-bit elements.

This results in better occupancy than in variant storing dense rows

locally.

The most important disadvantage of the described method is its

sensitivity for divergence of sparse matrices widths. This effect is

especially visible for large datasets and is caused by multiplication

algorithm containing several data-dependant nested loops. Branch

divergence within a wavefront (warp) in outer-loop caused by

Figure 4. Scheme of traversing sparse matrix in multiplication procedure.A There are scount subgroups, each assigned to a single row of A
matrix. Each row is divided into stripes having slength sparse elements. Subgroups process consecutive stripes of their rows. Stripes are represented by
rectangles with corresponding subgroup identifier (upper left number) and their own identifier (bottom right number). Colours indicate stripes being
calculated concurrently by a workgroup.
doi:10.1371/journal.pone.0088901.g004

QuickProbs

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e88901

different lengths of rows is very expensive, as alternative execution

paths are time consuming. This effect is partially reduced by using

stripes, but not entirely removed. To avoid waste of computational

power, the diversity of sparse row lengths have to be minimised.

The simplest way of obtaining it is gathering in sectors Wij

matrices of similar size. We plan to implement this feature in the

next release of QuickProbs.

Final alignment construction and refinement. In MSAProbs the

last stage of the algorithm is executed serially, which is appropriate

for small datasets when profiles contain few sequences. When the

number of sequences is larger, the computation time of stage IV

becomes comparable to the execution times of stages I and III.

Since QuickProbs uses significantly faster algorithms for stages I

and III, the last stage, if performed serially, would be the most time

consuming part of the entire algorithm. Thus, we decided to

parallelise this stage for multi-core central processors. There are

two main parallelisation approaches possible.

The first one follows inter-task concurrency scheme utilised by

original MSAProbs for stages I and III. The Eqn. (3) is computed

for all pairs of sequences (x,y) such that x[X ,y[y. Processing of

each pair can be treated as an independent task. In the assumed

parallelisation model each thread executes one or several tasks.

Second parallelisation scheme can be referred to as intra-task and

consists in parallel computation of Eqn. (3). In theory it would be

Table 4. Algorithm 4.

Input: U~fu1,u2, . . . ,ukg—set of sequences, Sxy—sparse matrix to be relaxed, Iid—work-item identifier, scount—number of stripes processed concurrently, slength—

stripe length.

Output: Matrix S’xy after relaxation.

1: sid/Iid=scount

2: soffset/Iid mod scount

3: Sw/wxwy(wxzwy)

4: S’xy/Sxy|Sw

5: for all z[U ,z=x,y do

6: Sw/Swzwz

7: RELAX (S’xy , Sxz , Szy , wz)

8: end for

9: S’xy/S’xy=Sw

10: funtion RELAX(C, A, B, w) 4Function modifies C matrix

11: for i~sid height(C) do

12: for all Cstripe5C(i,%) do

13: Copy Cstripe(soffset) to local memory.

14: end for

15: SYNCHRONISE

16: for all Astripe5A(i,%) do

17: Copy Astripe(soffset) to local memory.

18: SYNCHRONISE

19: for all a[Astripe do

20: j/a:column

21: for all Bstripe5B(j,%) do

22: b/Bstripe(soffset)

23: c/BIANRY{SEARCH(C(i,%),b:column)

24: if c§0 then

25: C(i,c):value/C(i,c):valuezw|a:value|b:value

26: end if

27: end for

28: end for

29: SYNCHRONISE

30: end for

31: i/izscount

32: end for

33: end function

Pseudo-code of the posterior matrix relaxation procedure.
doi:10.1371/journal.pone.0088901.t004

QuickProbs

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e88901

profitable even for small datasets. However, such computation

model requires tens or hundreds times more threads than inter-

task. Central processors, unlike GPUs, are not massively parallel

devices, hence the costs of invocation and synchronisation of

threads could be higher than the gains from parallel processing.

This is why QuickProbs utilises inter-task parallelisation based on

OpenMP as more appropriate for architecture of multi-core

CPUs. In the future release we plan to customise stage IV for

graphics processor execution. In this case, intra-task parallelisation

will be the choice.

Beside parallelisation, QuickProbs introduces a simple optimi-

sation to the final alignment calculation. When MSAProbs

computes Eqn. (3), the processing is row-wise or column-wise,

depending on the indexes of sequences x and y, i.e., whether Sxy

or Syx matrix is available. Since in stage III of QuickProbs both of

these matrices are computed, the recurrence is always solved in a

row-wise manner, which uses cache memory more effectively.

In QuickProbs the refinement stage is also done in parallel with

the use of the profile alignment inter-task algorithm described

above.

Accurate mode. QuickProbs, similarly to MSAProbs, has two

parameters influencing quality of a final alignment, the number of

consistency transformations c and the number of refinement

iterations r. By default they equal 2 and 10, respectively. As

QuickProbs in default settings turned out to be faster than its

predecessor, we investigated whether it is possible to increase

QuickProbs accuracy by tuning its parameters without exceeding

MSAProbs computation times. At first we independently altered

the number of refinement iterations to 20, 35, 50, 100, 150, 200

and the number of consistency transformations to 3, 4, 5. We

established that increasing r over default value 10 does not

influence alignment accuracy, while increasing c reduces results

quality. This is because information loss caused by removing

posterior elements below cutoff ~0:01 at the end of each

transformation exceeds gains from the consistency. This was

confirmed by the experiment in which cutoff was set to 0:001
resulting in much less posterior elements being discarded and

elevated accuracy. Increasing in this scenario number of consis-

tency transformations to c~3 worsened accuracy. Even though,

decrease is smaller than for cutoff ~0:01, it is still noticeable

suggesting that default c value produces best results.

The main disadvantage of approach based on global cutoff
value is that fraction of elements removed from posterior matrices

differs across sequence pairs. Thus, information loss for distant

sequences (those having small Sxy values) is much higher than for

closely related sequences. Therefore, we decided to test an

alternative variant in which cutoff value is computed indepen-

dently for each posterior matrix in order to retain assumed fraction

b of elements. Such variant turned out to be a better compromise

between computation time and result quality than static cutoff .

Thus, in the accurate mode of QuickProbs algorithm (referred to

as QuickProbs-acc) we decided to use the adaptive filtering with

b~0:3 as it gave the best results in our experiments.

Results

Experimental setting
Experiments were performed on several hardware configura-

tions built upon three CPUs (Intel Xeon W3550, Intel Xeon E5-

2630, and AMD Phenom II X6 1090) and four graphics cards

(NVidia GeForce GTX 480, 560, 680, and AMD Radeon HD

7970). All computers used for the tests were controlled by

Windows operating system. Detailed parameters of hardware used

in the experiments can be found in Table 5. As majority of

modern computers are equipped with quad-core processors, the

basic experimental platform contained Xeon W3550 CPU which

was coupled with GeForce 480, 680, and Radeon 7970 GPUs.

Another testing PC represented class of high-end desktop

computers and consisted of Xeon E5-2630 hexa-core CPU and

GeForce 680 which is one of the fastest single-chip graphic cards

on the market. The experiments on quad-core PC reported

Radeon 7970 to be faster than GeForce 680. However, AMD

GPU was not supported properly by our hexa-core platform

preventing us from testing it with Xeon E5-2630. Additional

experiments were carried out on a mid-range hexa-core Phenom

II X6 platform with GeForce 560. All examined processors are

equipped with a dynamic overclocking feature which increases

clocking frequency when CPU is not exceeding its thermal design

power (this is usually the case when some cores are not loaded).

Additionally, Intel processors utilise hyper-threading technology

which improves task parallelism on a single core by duplicating

some CPU logic. Operating system reports these processors to

have twice as many cores as they physically posses.

The main tests were performed on three popular benchmarks

containing amino acid sequences, i.e., BAliBASE 3 [52], PREFAB

4 [9], and extended variant of OXBench [54]. All datasets were

downloaded from Robert Edgar Web page in a standardised

FASTA format [54]. All benchmarks are constituted of hundreds

of sequence sets (see Table 6 for more details). As many algorithms

were tuned on BAliBASE, sequence sets from this benchmark

were shuffled randomly in order to remove potential bias.

Additional experiments were carried out on real protein families

downloaded from Pfam database [55]. The detailed characteristics

of these datasets are presented in Table 7.

For each dataset we calculated sum-of-pairs (SP) and column-

scores (TC) measures with a use of Qscore software [56]. Note that

PREFAB benchmark is constructed in the way that SP and TC are

equal. All experiments were divided into two phases. First one

consisted in comparing execution times of MSAProbs and

QuickProbs stages across different hardware platforms. The results

are presented in Tables 8, 9, 10, and 11. We report times for stage

I (posterior matrix calculation), III (consistency transformation), IV

(construction and refinement of final alignment). Stage II (building

a guide tree) is omitted on purpose—its execution times are

irrelevant with respect to the other stages and do not differ across

hardware platforms. The overall times of algorithm execution are

also given. Note, that for benchmark datasets tables present sum of

processing times of all sequence sets within benchmarks. SP and

TC scores were only used for checking the correctness of

QuickProbs and are not reported. In Tables 8, 9, and 10 CPU

results represent execution times of MSAProbs, while CPU+GPU

configurations correspond to QuickProbs.

The aim of the second experimental step was to compare base

QuickProbs version and its accurate variant QuickProbs-acc with

competing algorithms. SP and TC were used as quality measures

and are reported together with total execution times in Table 12.

Experiments were carried out on a machine equipped with Xeon

W3550 and Radeon 7970. Packages that were chosen for

experiments are MSAProbs 0.9.7, ClustalW v2.1, ClustalV
v1.2.0, Kalign2 v2.04, Kalign-LCS v1.0, MAFFT v7.053b, and

MUSCLE v3.8.31. ClustalW was executed in the default and fast

mode (distances calculated using full pairwise alignments and 2-

tuple matches, respectively). MAFFT was run in the default mode

without consistency and auto mode which selectively turns

consistency on. MSAProbs algorithm in both experimental parts

was compiled with a use of MinGW compiler due to support of

long double floating-point precision which is used in the

implementation. Additionally, we examined MSA-CUDA, a

QuickProbs

PLOS ONE | www.plosone.org 12 February 2014 | Volume 9 | Issue 2 | e88901

ClustalW variant suited for graphics processors. As CUDA is not

supported by AMD GPUs, MSA-CUDA was run on a platform

with Xeon W3550 and GeForce 680.

Benchmark datasets: central processor running times
The first observation when analysing results for benchmark

datasets from Tables 8, 9, and 10 is that relative execution times of

original MSAProbs agree with relative theoretical computational

power of CPUs used in the experiments. Xeon E5-2630 is the

fastest central processor and it outperforms Xeon W3550 and

Phenom II X6, respectively second and third CPU in the

comparison. Nevertheless, when analysing results of stage IV of

MSAProbs which is implemented in serial manner, it is apparent

that quad-core Xeon performs better than its hexa-core counter-

part. This can be explained by the fact, that single core of Xeon

W3550 has a higher clock rate and is faster than E5-2630 even

though the latter represents a newer CPU generation. When stage

IV is parallelised with a use of OpenMP, as it is done in

QuickProbs, E5-2630 takes the first place. An interesting

observation is, that Phenom performs in this situation better than

Xeon W3550. We believe, this may be caused by the memory

access pattern in this part of the algorithm that prefers AMD CPU

cache architecture over competitor. Another important conclusion

is that parallel variant of stage IV does not scale perfectly with the

number of cores—speed-ups with respect to the serial version are

always lower. This is probably because some parts of stage IV were

not subject to an OpenMP parallelisation and run for the same

time independently of the number of cores.

Benchmark datasets: graphics processor running times
The shortest absolute execution times of analyses as well as

highest speed-ups with respect to the original MSAProbs were

obtained by Xeon W3550 + Radeon 7970 platform (see Tables 8,

9, 10). This coincides with a fact that Radeon has the greatest

computational power from the examined GPUs. Since computa-

tions executed at graphic processor dominate in terms of execution

time over CPU-parallel steps, this configuration is superior to the

Table 5. Characteristics of hardware used in the experiments.

Cache Local

Hardware Frequency Cores L1 L2 L3 Memory Bandwidth memory GFLOPS

[GHz] [KB] [KB] [MB] [GB] [GB/s] [KB]

Xeon W3550 3.0–3.3 41 4632 46256 8 24.0 26 — 50

Xeon E5-2630 2.3–2.8 61 6632 66256 15 32.0 43 — 110

Phenom II X6 3.2–3.6 6 6664 66512 6 16.0 21 — 47

GeForce 480 1.4 15632 156162 768 — 1.5 177 156482 1345

GeForce 560 1.8 8648 86162 512 — 1.0 128 86482 1263

GeForce 680 1.0 86192 86162 768 — 4.0 192 86482 3090

Radeon 7970 0.9 32664 32616 768 — 3.0 264 32632 3789

Top three rows describe the CPUs. The bottom four rows describe the GPUs.
1CPUs are equipped with HT technology. Table gives the number of physical cores.
2On GeForce GPUs each compute unit posses 64 KB memory shared by L1 cache and local memory configured by default in ratio 16/48.
doi:10.1371/journal.pone.0088901.t005

Table 6. Characteristics of amino-acid benchmarks used in
experiments.

Dataset Sequence statistics No.

E(k) s(k) E(�nn) s(�nn) sets

BAliBASE RV11 6.9 3.1 294 143 38

RV12 9.0 5.8 389 256 44

RV20 45.6 20.0 391 204 41

RV30 63.2 34.1 359 155 30

RV40 27.1 14.9 479 255 49

RV50 27.9 13.8 488 138 16

BAliBASE all 28.5 26.2 396 219 218

PREFAB 45.2 10.8 289 126 1692

OXBench-X 122.5 100.7 147 82 395

A single set of sequences is described by the number of sequences k and the
average sequence length �nn.
Table presents means and standard deviations of these parameters for BAliBASE
3.0, PREFAB 4.0, and OXBench-X.
doi:10.1371/journal.pone.0088901.t006

Table 7. Detailed characteristics of the protein families taken
from Pfam database.

Dataset k �nn Description

PF02324 260 706 glycoside hydrolase

PF04762 404 667 IKI3 family

PF05110 483 611 AF4/FMR2-related
protein

PF07095 600 642 growth attenuator
protein

PF07520 283 878 virulence factor
SrfB

PF08689 144 741 mediator complex
subunit Med5

PF10136 317 626 site-specific
recombinase

PF11573 204 794 mediator complex
subunit 23

Each set is described by the number of sequences k and the average sequence
length �nn.
doi:10.1371/journal.pone.0088901.t007

QuickProbs

PLOS ONE | www.plosone.org 13 February 2014 | Volume 9 | Issue 2 | e88901

machine with faster CPU and slower GPU (E5-2630 + GeForce

680).

When detailed results for particular stages are analysed, the

highest speed-ups are obtained for stage I. For Xeon W3550 +
Radeon 7970 they vary from 13.3 (BAliBASE) to 19.2 (PREFAB).

GeForce 680 turned out to be slower with speed-ups varying from

9.9 to 12.7. On hexa-core Xeon machine speed-ups are lower, but

execution times are still superior to the original MSAProbs.

Interesting observation comes from analysis of times obtained by

GeForce 480 and 560, which are noticeably smaller than is

suggested by the difference in computational power. After deeper

investigation it became clear that the problem is caused by a

number of registers in these GPUs which limits maximum size of a

workgroup Imax from 1024 to 576. Task can be processed at

graphics processor if shorter of its sequence does not exceed

Imax{1. Therefore, smaller workgroups reduce performance as

many tasks have to be calculated at CPU instead of GPU.

Additionally, they limit occupancy for tasks executed at graphics

processor preventing GPU computational power from full

utilisation. In the case of stage III speed-ups of QuickProbs

algorithm with respect to MSAProbs are lower than in stage I. For

BAliBASE, PREFAB, and OXBench-X benchmarks run on quad-

core CPU and Radeon 7970 they equal 4.7, 3.4, and 3.2,

respectively. Significantly worse results were observed for GeForce

680 which indicates that parallelisation scheme of stage III prefers

architecture of AMD GPUs. Another interesting observation is

that differences between GeForce 480 cards and GeForce 680 are

smaller than in the case of stage I. The explanation is that

relaxation procedure is not limited by the register count. The

worst speed-ups were reported for OXBench-X that contains large

sets having hundreds of sequences. The consistency stage executed

at GPU is vulnerable for divergence in width of sparse rows of

input matrices. For large sets, the divergence is significant, thus lots

of computational power is wasted resulting in lower speed-ups.

Table 8. Execution times for BAliBASE 3 benchmark reported in minutes : seconds format.

Hardware Stage I Stage III Stage IV Total(I-IV)

time speed-up time speed-up time speed-up time speed-up

Xeon W3550 39:33 5:08 9:13 53:54

Xeon W3550 +
GeForce 480

10:28 (63.8) 2:43 (62.2) 4:28 (62.1) 17:21 (63.1)

Xeon W3550 +
GeForce 680

4:01 (69.9) 2:12 (62.3) 4:28 (62.1) 10:42 (65.0)

Xeon W3550 +
Radeon 7970

2:58 (613.3) 1:06 (64.7) 4:27 (62.1) 8:33 (66.3)

Xeon E5-2630 30:35 2:45 10:05 43:31

Xeon E5-2630 +
GeForce 680

3:43 (68.2) 2:10 (61.3) 2:56 (63.4) 8:51 (64.9)

Phenom II X6 51:38 5:35 11:27 68:41

Phenom II X6 +
GeForce 560

12:21 (62.9) 3:26 (61.6) 3:24 (63.3) 19:13 (63.1)

Speed-ups of QuickProbs (CPU+GPU) over MSAProbs (CPU) across different hardware configurations are also shown.
doi:10.1371/journal.pone.0088901.t008

Table 9. Execution times for PREFAB 4 benchmark reported in minutes : seconds format.

Hardware Stage I Stage III Stage IV Total(I-IV)

time speed-up time speed-up time speed-up time speed-up

Xeon W3550 169:19 16:11 23:15 208:50

Xeon W3550 +
GeForce 480

30:23 (65.6) 9:15 (61.8) 7:55 (62.9) 47:40 (64.4)

Xeon W3550 +
GeForce 680

13:41 (612.4) 8:46 (61.8) 8:00 (62.9) 30:34 (66.8)

Xeon W3550 +
Radeon 7970

8:47 (619.2) 4:47 (63.4) 7:55 (62.9) 21:35 (69.7)

Xeon E5-2630 130:50 9:39 23:59 164:36

Xeon E5-2630 +
GeForce 680

13:31 (69.7) 8:42 (61.1) 5:21 (64.4) 27:42 (65.9)

Phenom 231:41 18:34 31:53 282:16

Phenom +
GeForce 560

40:01 (65.8) 13:47 (61.4) 7:36 (64.2) 61:29 (64.6)

Speed-ups of QuickProbs (CPU+GPU) over MSAProbs (CPU) across different hardware configurations are also shown.
doi:10.1371/journal.pone.0088901.t009

QuickProbs

PLOS ONE | www.plosone.org 14 February 2014 | Volume 9 | Issue 2 | e88901

Pfam datasets running times
Experiments on real protein families were performed on our

fastest testing platform equipped with Xeon W3550 CPU and

Radeon 7970 GPU. Results are presented in Table 11. As in

benchmark datasets, the best speed-ups are observed for stage I—

in the majority of cases they exceed 20 with a maximum value of

24.7. The only exceptions are PF05110 and PF11573 with speed-

ups equal to 4.5 and 2.4, respectively. This is caused by the

presence of long sequences (nwImax) that are processed on the

CPU and dominate whole posterior calculation stage. Speed-ups

for stage III are smaller which also coincides with the benchmark

results. They vary from 3.6 to 8.0. In the case of stage IV which

was parallelised for multi-core CPUs, execution times are 3.5 to

6.1 times shorter than in MSAProbs. An interesting fact is that for

the majority of datasets speed-ups exceed 4, the number of

physical cores in our testing platform. This differs from benchmark

results where speed-ups were always lower than number of cores.

There are many reasons for this. Firstly, families from Pfam are

much larger than benchmark sequence sets, thus proportions

between parallel and serial operations are better. Thanks to this,

the modification that improved cache utilisation is also more

beneficial. Finally, Xeon W3550 CPU is equipped with a hyper-

threading technology which increases task parallelism of a single

core. The overall QuickProbs speed-up on all families equals 6.7.

One must keep in mind, that this result is strongly skewed by

PF05110 and PF11573 sets for which performance is limited by

the presence of long sequences (stage I is the most time consuming

part of the algorithm). If we exclude them from the comparison,

the speed-up increases to 9.7.

Comparison with other methods
Aligners from Table 12 were ranked on all datasets according to

the result quality (SP and TC can be used interchangeably for this

purpose as they generate identical ranks), and ordered by the

average rank. The first group of algorithms gathers most accurate,

consistency-based methods: QuickProbs in base and accurate

variant, MSAProbs, and MAFFT-auto. The best aligner in terms

of result quality is QuickProbs-acc which is superior to MSAProbs,

the most accurate method so far. In order to statistically analyse

observed differences in SP and TC, we performed Wilcoxon

Table 10. Execution times for OXBench-X benchmark reported in minutes : seconds format.

Hardware Stage I Stage III Stage IV Total(I-IV)

time speed-up time speed-up time speed-up time speed-up

Xeon W3550 133:49 89:12 17:36 240:58

Xeon W3550 +
GeForce 480

12:42 (610.6) 77:59 (61.1) 6:41 (62.7) 98:02 (62.5)

Xeon W3550 +
GeForce 680

10:36 (612.7) 71:28 (61.2) 6:44 (62.6) 89:26 (62.7)

Xeon W3550 +
Radeon 7970

7:19 (618.3) 27:29 (63.2) 6:36 (62.7) 42:03 (65.7)

Xeon E5-2630 101:03 62:55 18:09 182:41

Xeon E5-2630 +
GeForce 680

10:27 (69.7) 70:57 (60.9) 3:20 (65.4) 85:28 (62.1)

Phenom 184:03 123:25 24:35 332:23

Phenom +
GeForce 560

19:19 (69.5) 110:50 (61.1) 5:46 (64.3) 136:04 (62.4)

Speed-ups of QuickProbs (CPU+GPU) over MSAProbs (CPU) across different hardware configurations are also shown.
doi:10.1371/journal.pone.0088901.t010

Table 11. Detailed results for the real-life datasets from Pfam database.

Dataset MSAProbs QuickProbs

I III IV Total I III IV Total

PF02324 21:30 2:39 7:08 31:17 0:59(622.0) 0:25(66.3) 1:10(66.1) 2:34(612.2)

PF04762 46:54 13:37 16:45 77:18 1:54(6 24.7) 3:30(63.9) 4:47(63.5) 10:42(67.2)

PF05110 55:36 23:13 18:34 97:27 12:22(64.5) 6:27(63.6) 5:20(63.5) 25:32(63.8)

PF07095 91:17 16:03 19:58 126:22 3:57(623.0) 3:46(64.3) 4:26(64.3) 12:11(610.3)

PF07520 39:40 5:01 14:07 58:52 1:42(623.3) 0:39(67.7) 2:29(65.7) 4:53(612.1)

PF08689 7:16 1:20 2:33 1:09 0:23(618.7) 0:13(66.3) 0:35(64.4) 1:12(69.3)

PF10136 25:19 4:24 4:42 34:26 1:10(621.6) 1:05(64.1) 1:14(63.8) 3:37(69.5)

PF11573 16:50 2:33 6:02 5:25 6:53(62.4) 0:19(68.0) 1:07(65.4) 8:20(63.0)

All 304:22 68:54 88:49 462:16 29:20(610.4) 16:24(64.2) 21:08(64.2) 69:01(66.7)

Times are given in minutes : seconds format.
doi:10.1371/journal.pone.0088901.t011

QuickProbs

PLOS ONE | www.plosone.org 15 February 2014 | Volume 9 | Issue 2 | e88901

signed-rank tests [57] at the significance level a~0:05. If one

considers entire benchmarks, the significance was reported for

PREFAB only (p-value = 0.000491). However, we suspected that

adaptive filtering of sparse matrices used by QuickProbs-acc would

be beneficial mainly for distantly related sequences, where static

cutoff may result in the information loss. Therefore, we clustered

sets in benchmarks according to the average sequence identity and

analysed differences on groups. In the case of OXBench-X it

turned out that for 94 sets from twilight zone (average identity

below 30%), the predominance of QuickProbs-acc with respect to

MSAProbs was statistically significant (p-values equalled to

0.002074 and 0.024536 for SP and TC, respectively). Same

analysis performed for PREFAB also revealed strong evidence that

QuickProbs-acc is particularly suited for distantly related sequenc-

es: p-value for 535 twilight sets was two orders of magnitude lower

than in the case of whole benchmark and equalled 0.000004. In

the case of BAliBASE dataset, we compared different RV groups

but no significant differences were discovered. An important

observation is that all these results were obtained without

exceeding MSAProbs execution times (in the case of BAliBASE

and PREFAB QuickProbs-acc was much faster, for OXBench-X it

was only 6% slower). This is important, since MSAProbs is the

most time consuming from all tested algorithms.

In cases where MSAProbs accuracy is sufficient, default mode of

QuickProbs should be used as it produces almost identical results

as MSAProbs, at a fraction of the time. Small discrepancy in

accuracies is caused by using double floating-point precision in

partition function calculation at GPU instead of long double. This

was confirmed by the fact, that MSAProbs compiled without long

double support gives exactly the same results as QuickProbs.

Fourth aligner in terms of quality rank was MAFFT in automatic

mode. Additionally, it turned out to be slower than QuickProbs on

BAliBASE and PREFAB benchmarks.

Second group of packages consists of algorithms without

consistency: ClustalV, Kalign-LCS, MUSCLE, MAFTT-default,

Kalign2, and ClustalW. The first from aforementioned methods,

ClustalV produces the best results on BAliBASE and PREFAB

datasets, however, it failed to run properly on OXBench-X. The

best algorithm which executed successfully on all datasets is

MUSCLE. Its execution times may be an issue in some

applications, though. Kalign-LCS, the modification of Kalign2,

is inferior to MUSCLE only by a small margin. Moreover, it is the

fastest method in the comparison outperforming also CUDA-

based algorithms, which makes it the best choice when one is

interested in aligning large sets of sequences. An interesting

observation is that ClustalW performs significantly worse than

other aligners in comparison. Taking into account relatively long

execution times, it is clear that ClustalW, still the most popular

MSA software, should be replaced in biological analyses by other

packages. The ClustalW variant suited for GPU processing (MSA-

CUDA) is characterised by much shorter execution times.

Nevertheless, it is still inferior to fast and more accurate CPU

aligners like Kalign-LCS. Additionally, its default variant failed to

execute properly on BAliBASE benchmark.

Discussion

In the paper we present QuickProbs, a variant of MSAProbs

algorithm suited for graphics processors. We designed and

implemented GPU versions of two most time consuming stages

of the strategy, which originally were customised for multi-core

architecture with the use of OpenMP. These are the calculation of

posterior probability matrices and the consistency transformation.

Posterior matrices are calculated on the basis of pair hidden

Markov models and partition functions. From algorithmic point of

view the stage performs several dynamic programming passes.

Customising computation scheme to massively parallel GPU

architecture, optimising global memory accesses by using jagged

pattern and exploiting advanced method of work balancing

resulted in significant speed-ups at this stage. On the main testing

platform equipped with a quad-core Xeon W3550 and Radeon

7970, QuickProbs calculated posterior matrices as much as 24.7

times faster than original CPU-parallel method. The consistency

transformation stage relies on performing set of small sparse

Table 12. Qualitative results for BAliBASE, PREFAB, and OXBench-X run on Xeon W3550 + Radeon 7970 (GeForce 680 was used for
MSA-CUDA).

Algorithm BAliBASE PREFAB OXBench-X

time SP TC time SP/TC time SP TC

QuickProbs-acc 28:19 87.9 60.8 64:48 74.0 255:36 89.3 80.2

MSAProbs 53:54 87.8 60.8 208:50 73.7 240:58 89.1 80.0

QuickProbs 8:33 87.8 60.7 21:35 73.6 42:03 89.1 80.0

MAFFT-auto 21:49 86.7 58.3 77:49 72.3 22:01 87.7 78.4

ClustalV 7:33 83.6 54.8 23:07 70.0 — — —

MUSCLE 15:17 81.7 46.8 40:38 67.7 30:36 87.5 77.6

Kalign-LCS 0:27 82.9 50.4 1:47 65.9 0:36 86.8 76.4

MAFTT-default 3:47 81.3 46.2 24:54 67.7 6:02 86.1 75.6

Kalign2 0:39 81.4 47.5 1:58 64.9 0:56 85.7 75.1

ClustalW 27:22 75.8 38.3 124:30 61.9 89:36 85.3 74.2

ClustalW-quicktree 6:25 73.7 37.1 22:19 61.9 8:04 84.9 73.8

MSA-CUDA — — — 27:01 61.7 9:07 85.3 74.1

MSA-CUDA-quicktree 3:20 72.9 36.9 13:31 61.6 7:03 85.0 74.0

Aligners are sorted according to the average quality rank. Times are given in minutes : seconds format.
doi:10.1371/journal.pone.0088901.t012

QuickProbs

PLOS ONE | www.plosone.org 16 February 2014 | Volume 9 | Issue 2 | e88901

matrix multiplications. We designed an algorithm for this purpose

customised for graphics processors. As experiments on the basic

testing platform show, it outperforms its MSAProbs equivalent

with speed-ups reaching 8.0. In order to further improve execution

times, we additionally suited the last stage of QuickProbs for multi-

core CPU architectures with a use of OpenMP. Thanks to this, the

construction and refinement of final alignment is done even 6.1

times faster than previously.

Assessed on BAliBASE, PREFAB, and OXBench-X bench-

marks, QuickProbs turned out to be respectively, 6.3, 9.7, and 5.7

times faster than MSAProbs. In the experiments on protein

families from Pfam database, the overall speed-up was 6.7. This

makes QuickProbs competitive to faster aligners like MAFFT,

ClustalV, or MUSCLE. In the research we additionally intro-

duced QuickProbs-acc, a tuned version of QuickProbs which is

significantly more accurate than MSAProbs on sequence sets from

twilight zone (identity v 30%) without exceeding its running time.

Unlike previously published GPU-suited multiple sequence

alignment methods, computations in QuickProbs algorithm are

performed in OpenCL making it suitable for graphics processors

produced by both main vendors, NVidia and AMD.

Our future plans focuses three main tasks: (1) removing

limitation of sequence lengths that can be processed at GPU at

posterior stage, (2) redesigning consistency transformation to make

it less vulnerable for divergence in sparse rows lengths, (3)

customising final alignment construction and refinement proce-

dures for graphics processors.

QuickProbs algorithm together with all the datasets used in the

research are available at http://adaa.polsl.pl/agudys/quickprobs/

quickprobs.htm. The detailed analysis of the time complexity of

MSAProbs and QuickProbs can be found in the Supplement S1.

Supporting Information

Supplement S1 Detailed analysis of MSAProbs and
QuickProbs time complexities.

(PDF)

Acknowledgments

We wish to thank Adam Adamarek for proofreading the manuscript.

Author Contributions

Conceived and designed the experiments: AG SD. Performed the

experiments: AG. Analyzed the data: AG SD. Contributed reagents/

materials/analysis tools: AG. Wrote the paper: AG SD. Designed the

algorithm: AG SD. Implemented the algorithm: AG. Performed statistical

analysis of the results: AG.

References

1. Wang L, Jiang T (1994) On the complexity of multiple sequence alignment.

Journal of Computational Biology 1: 337-348.

2. Just W (1999) Computational complexity of multiple sequence alignment with

SP-Score. Journal of Computational Biology 8: 615-623.

3. Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite

to correct phylogenetic trees. Journal of Molecular Evolution 25: 351-360.

4. Barton GJ, Sternberg MJ (1987) A strategy for the rapid multiple alignment of

protein sequences. Confidence levels from tertiary structure comparisons.

Journal of Molecular Biology 198: 327-337.

5. Krogh A, Brown M, Mian IS, Sjölander K, Haussler D (1994) Hidden Markov

models in computational biology: applications to protein modeling. Journal of

Molecular Biology 235: 1501-1531.

6. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Research 22: 4673-4680.

7. Notredame C, Higgins D, Heringa J (2000) T-Coffee: A novel method for fast

and accurate multiple sequence alignment. Journal of Molecular Biology 302:

205-217.

8. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for

rapid multiple sequence alignment based on fast Fourier transform. Nucleic

Acids Research 30: 3059-3066.

9. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Research 32: 1792-1797.

10. Do C, Mahabhashyam M, Brudno M, Batzoglou S (2005) ProbCons:

Probabilistic consistencybased multiple sequence alignment. Genome Research

15: 330-340.

11. Roshan U, Livesay DR (2006) Probalign: multiple sequence alignment using

partition function posterior probabilities. Bioinformatics 22: 2715-2721.

12. Liu Y, Schmidt B, Maskell D (2010) MSAProbs: multiple sequence alignment

based on pair hidden Markov models and partition function posterior

probabilities. Bioinformatics 26: 1958-1964.

13. O9Sullivan O, Suhre K, Abergel C, Higgins D, Notredame C (2004) 3DCoffee:

Combining protein sequences and structures within multiple sequence

alignments. Journal of Molecular Biology 340: 385-395.

14. Deng X, Cheng J (2011) MSACompro: protein multiple sequence alignment

using predicted secondary structure, solvent accessibility, and residue-residue

contacts. BMC Bioinformatics 12: 472.

15. Katoh K, Kuma Ki, Toh H, Miyata T (2005) MAFFT version 5: improvement

in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511-

518.

16. Huerta-Cepas J, Capella-Gutierrez S, Pryszcz LP, Denisov I, Kormes D, et al.

(2011) PhylomeDB v3.0: an expanding repository of genome-wide collections of

trees, alignments and phylogeny-based orthology and paralogy predictions.

Nucleic Acids Research 39: 556-560.

17. Capella-Gutierrez S (2012) Analysis of multiple protein sequence alignments and

phylogenetic trees in the context of phylogenomics studies. Pompeu Fabra

UniversityPh.D. thesis

18. Lassmann T, Sonnhammer E (2005) Kalign|an accurate and fast multiple

sequence alignment algorithm. BMC Bioinformatics 6: 298.

19. Lassmann T, Frings O, Sonnhammer E (2009) Kalign2: high-performance

multiple alignment of protein and nucleotide sequences allowing external

features. Nucleic Acids Research 37: 858-865.

20. Wu S, Manber U (1992) Fast text searching: allowing errors. Communications of

the ACM 35: 83-91.

21. Muth R, Manber U (1996) Approximate multiple string search. In: Proceedings

of the 7th Annual Symposium on Combinatorial Pattern Matching. pp. 75-86.

22. Deorowicz S, Debudaj-Grabysz A, Gudyś A (2014) Kalign-LCS|more accurate

and faster variant of Kalign2 algorithm for the multiple sequence alignment

problem. In: Man-Machine Interactions 3, Springer Cham Heidelberg New

York Dordrecht London. pp. 495-502.

23. Katoh K, Toh H (2007) Parttree: an algorithm to build an approximate tree

from a large number of unaligned sequences. Bioinformatics 23: 372-374.

24. Sievers F, Wilm A, Dineen D, Gibson T, Karplus K, et al. (2011) Fast, scalable

generation of highquality protein multiple sequence alignments using Clustal

Omega. Molecular Systems Biology 7: 539.

25. Blackshields G, Sievers F, Shi W, Wilm A, Higgins D (2010) Sequence

embedding for fast construction of guide trees for multiple sequence alignment.

Algorithms for Molecular Biology 5: 21.

26. Liu W, Schmidt B, Voss G, Muller-Wittig W (2006) GPU-ClustalW: Using

graphics hardware to accelerate multiple sequence alignment. Lecture Notes in

Computer Science 4297: 363-374.

27. Liu Y, Schmidt B, Maskell D (2009) MSA-CUDA: Multiple sequence alignment

on graphics processing units with CUDA. In: Proceedings of the 20th IEEE

International Conference on Applicationspecific Systems, Architectures and

Processors. pp. 121-128.

28. Gudyś A, Deorowicz S (2012) A parallel algorithm for the constrained multiple

sequence alignment problem designed for GPUs. International Journal of

Foundations of Computer Science 23: 877-901.

29. Lin YS, Lin CY, Li ST, Lee JY, Tang CY (2010) GPU-REMuSiC: the

implementation of constrain multiple sequence alignment on graphics processing

units. In: Proceedings of the 2010 GPU Technology Conference. NVidia.

30. Blazewicz J, Frohmberg W, Kierzynka M,Wojciechowski P (2013) G-MSA|A

GPU-based, fast and accurate algorithm for multiple sequence alignment.

Journal of Parallel and Distributed Computing 73: 32-41.

31. OpenMP ARB (2013) OpenMP Application Program Interface version 4.0.

Available: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

32. Manavski S, Valle G (2008) CUDA compatible GPU cards as efficient hardware

accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics 9:

S10.

33. Ligowski L, Rudnicki W (2009) An efficient implementation of Smith Waterman

algorithm on GPU using CUDA, for massively parallel scanning of sequence

databases. In: Proceedings of the 2009 IEEE International Symposium on

Parallel&Distributed Processing. Washington,USA: IEEE Computer Society,

pp. 1-8.

QuickProbs

PLOS ONE | www.plosone.org 17 February 2014 | Volume 9 | Issue 2 | e88901

http://adaa.polsl.pl/agudys/quickprobs/quickprobs.htm
http://adaa.polsl.pl/agudys/quickprobs/quickprobs.htm
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

34. Liu Y, Schmidt B, Maskell D (2010) CUDASW++2.0: enhanced Smith-

Waterman protein database search on CUDA-enabled GPUs based on SIMT

and virtualized SIMD abstractions. BMC Research Notes 3: 93.

35. Khajeh-Saeed A, Poole S, Perot J (2010) Acceleration of the Smith-Waterman

algorithm using single and multiple graphics processors. Journal of Computa-

tional Physics 229: 4247-4258.

36. Blazewicz J, Frohmberg W, Kierzynka M, Pesch E, Wojciechowski P (2011)

Protein alignment algorithms with an efficient backtracking routine on multiple

GPUs. BMC Bioinformatics 12: 181.

37. Liu Y, Wirawan A, Schmidt B (2013) CUDASW++ 3.0: accelerating Smith-

Waterman protein database search by coupling CPU and GPU SIMD

instructions. BMC Bioinformatics 14: 117.

38. Liu CM, Wong T, Wu E, Luo R, Yiu SM, et al. (2012) SOAP3: ultra-fast GPU-

based parallel alignment tool for short reads. Bioinformatics 28: 878-879.

39. Chang DJ, Kimmer C, Ouyang M (2010) Accelerating the Nussinov RNA

folding algorithm with CUDA/GPU. In: Proceedings of the 10th IEEE

International Symposium on Signal Processing and Information. IEEE

Computer Society, pp. 120-125. 20

40. Suchard MA, Rambaut A (2009) Many-core algorithms for statistical

phylogenetics. Bioinformatics 25: 1370-1376.

41. Demouth J (2012) Sparse Matrix-Matrix Multiplication on the GPU. In:

Proceedings of the GPU Technology Conference 2012. NVidia.

42. NVidia (2013) CUSP library version 0.4.0. Available: https://developer.nvidia.

com/cusp.

43. NVidia (2013) cuSPARSE library version 5.5. Available: https://developer.

nvidia.com/cusparse.

44. Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological Sequence

Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge

University Press.

45. Thompson JD, Plewniak F, Poch O (1999) A comprehensive comparison of

multiple sequence alignment programs. Nucleic Acids Research 27: 2682-2690.
46. Stoye J, Evers D, Meyer F (1998) Rose: generating sequence families.

Bioinformatics 14: 157-163.

47. NVidia (2013) CUDA Parallel Computing Platform version 5.5. Available:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

48. Khronos Group (2013) The OpenCL Specification version 2.0. Available:
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf.

49. Viterbi A (1967) Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE Transactions on Information Theory 13:
260-269.

50. Sneath P, Sokal R (1973) Numerical Taxonomy. The Principles and Practice of
Numerical Classification. San Francisco, USA: W.H. Freeman Limited.

51. Needleman S, Wunsch C (1970) A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology 48: 443 - 453.

52. Thompson J, Koehl P, Ripp R, Poch O (2005) BAliBASE 3.0: latest
developments of the multiple sequence alignment benchmark. Proteins 61:

127-136.
53. Raghava GPS, Searle S, Audley P, Barber J, Barton G (2003) OXBench: A

benchmark for evaluation of protein multiple sequence alignment accuracy.

BMC Bioinformatics 4: 47.
54. Edgar RC (2009) Benchmark collection. Available: http://www.drive5.com/

bench.
55. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. (2008) The Pfam

protein families database. Nucleic Acids Research 36: D281-D288.
56. Edgar RC (2009) QSCORE multiple alignment scoring software. Available:

http://www.drive5.com/qscore.

57. Wilcoxon F (1945) Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1: 80-83.

QuickProbs

PLOS ONE | www.plosone.org 18 February 2014 | Volume 9 | Issue 2 | e88901

https://developer.nvidia.com/cusp
https://developer.nvidia.com/cusp
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.drive5.com/bench
http://www.drive5.com/bench
http://www.drive5.com/qscore

