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Abstract

A widely used approach in transcriptome analysis is the alignment of short reads to a reference genome. However, owing to
the deficiencies of specially designed analytical systems, short reads unmapped to the genome sequence are usually
ignored, resulting in the loss of significant biological information and insights. To fill this gap, we present Comprehensive
Assembly and Functional annotation of Unmapped RNA-Seq data (CAFU), a Galaxy-based framework that can facilitate the
large-scale analysis of unmapped RNA sequencing (RNA-Seq) reads from single- and mixed-species samples. By taking
advantage of machine learning techniques, CAFU addresses the issue of accurately identifying the species origin of
transcripts assembled using unmapped reads from mixed-species samples. CAFU also represents an innovation in that it
provides a comprehensive collection of functions required for transcript confidence evaluation, coding potential calculation,
sequence and expression characterization and function annotation. These functions and their dependencies have been
integrated into a Galaxy framework that provides access to CAFU via a user-friendly interface, dramatically simplifying
complex exploration tasks involving unmapped RNA-Seq reads. CAFU has been validated with RNA-Seq data sets from
wheat and Zea mays (maize) samples. CAFU is freely available via GitHub: https://github.com/cma2015/CAFU.
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Introduction

Rapid advances in next-generation sequencing (NGS) technolo-
gies have enabled us to decipher the genomes of both model
and non-model species, providing multi-layered omics data at
a reasonable cost [1, 2]. At the level of transcriptomics, mil-
lions of short reads (usually 100–150 base pairs) generated from
RNA sequencing (RNA-Seq) provide valuable resources for inves-
tigating the structure and dynamics of genes under defined
conditions. In most workflows, short RNA-Seq reads are ana-
lyzed based on their alignments with the genome sequence.
However, in such analysis, a small but significant fraction of
RNA-Seq reads is usually unexplored, owing to their unmap-
pability to the genome sequence. Unmapped RNA-Seq reads
may be caused by several factors, including the incompleteness
of genome sequences, the inherent limitations of alignment
programs and the sequencing of mixed-species (e.g. pathogen–
host) samples [3–7].

In recent years, the importance of unmapped RNA-Seq reads
has been widely recognized [4, 8–11]. A large-scale analysis
of unmapped RNA-Seq reads from >17 000 human disease-
related samples identified reads from archaeal, bacterial or
viral genomes, highlighting the role of the microbiome in
human disease [4]. Unmapped RNA-Seq reads are also valuable
resources to identify novel transcripts missing from the existing
genome annotation. For example, Kazemian et al. identified 2550
novel human transcripts from ∼300 million unmapped RNA-Seq
reads from 11 normal and 21 cancer tissues [10]. Assembled
transcripts from unmapped RNA-Seq reads offer researchers an
opportunity to identify novel transcripts associated with specific
cancers in humans [10] and with agricultural traits in maize [9].
Such surveys indicate that ignoring unmapped reads may lead
to the loss of important biological information in RNA-Seq data
analysis for many organisms.

Many frameworks have been developed for mapped reads;
however, until now, none has been specially designed for the
comprehensive analysis of unmapped reads (Supplementary
Data Table S1). One obstacle is that the majority of existing
NGS programs are not user friendly, are complicated or require
extensive preparation steps. Another is that most analysis
(e.g. parameter optimization and sequential implementation)
requires researchers to program custom scripts, which can
result in errors that affect reproducibility. Finally, specialist
software is required to deeply mine unmapped RNA-Seq reads,
especially for those from mixed-species samples generated
by dual RNA-Seq experiments. Dual RNA-Seq simultaneously
profiles the transcriptomes of the pathogen and the host in
mixed-species samples and has been a powerful tool in the
study of pathogen–host interactions [12]. Thus, there is a need
to develop a program to accurately determine the species of
origin of transcripts assembled using unmapped RNA-Seq reads
from mixed-species samples. In our experience, the large-scale
exploration of unmapped RNA-Seq data presents a considerable
challenge for many researchers.

Here, we present an analytical framework and accompanying
web-based Galaxy platform for comprehensive assembly and
functional annotation of unmapped RNA-Seq data (CAFU) from
single- and mixed-species samples. CAFU not only facilitates
basic analysis of RNA-Seq reads, including read cleansing and
mapping, unmapped read extraction and de novo transcription
assembly, but also introduces several novel functions. Taking
advantage of machine learning (ML) technologies, CAFU
addresses the challenge of identifying the species of origin
of transcripts assembled using unmapped reads from mixed-

species samples. Furthermore, CAFU offers multiple-level
evidence evaluation, sequence and expression characterization
and transcript function annotation. We have demonstrated
the effectiveness of CAFU in the analysis of unmapped RNA-
Seq reads in wheat and maize. To enhance the application of
CAFU, all functions and their dependencies have been combined
into a Galaxy platform and further packaged into a Docker
image (∼14 GB). Through standardized packaging techniques,
comprehensive user documents, detailed case studies and wiki
discussion groups at the webpage of the CAFU project (https://
github.com/cma2015/CAFU), we aim to ensure that researchers,
regardless of their informatics expertise, can benefit from
our framework for accessible, reproducible and collaborative
analysis of large-volume unmapped RNA-Seq data.

Materials and methods
Overview of the CAFU framework

The Galaxy-based framework, CAFU, is composed of 7 mod-
ules, covering 17 functions, developed with existing NGS tools
as well as a set of programs developed by ourselves (Figure 1;
Supplementary Data Table S2). The details of these functional
modules are presented in the following.

Extraction of unmapped reads

To run CAFU, users will typically start with a set of RNA-Seq
data and genome sequences. The quality of RNA-Seq data
is first examined using FastQC [13], followed by trimming of
poly-A/T sequences and low-quality bases using fqtrim [14]
and Trimmomatic [15]. After trimming, reads shorter than a
specified length (e.g. 20 bp) are also discarded. The remaining
reads are subsequently mapped to the genome sequences using
the fast, splice-aware alignment program HISAT2 [16], yielding
a Sequence Alignment Map (SAM) file recording read-genome
alignments. Unmapped reads (paired-end reads in which both
ends are unmapped and single-end reads, which are unmapped)
are extracted from the SAM file by using SAMTools [17] and
BEDTools [18]. Specifically, for RNA-Seq reads from mixed-
species (e.g. pathogen–host) samples, CAFU first aligns RNA-
Seq reads against the host genome sequences. The resulting
unmapped reads are then aligned against the pathogen genome
sequences. After this two-step read-genome alignment, reads
unmapped to genome sequences of both species are output in
fastq format. This process of generation of unmapped reads
is iteratively performed for all RNA-Seq data from different
samples.

As unmapped reads may result from contamination during
sampling or RNA-Seq, CAFU also provides options to remove
potential contamination sequences using Deconseq [19] with
user-specific matching coverage and identity (e.g. 0.95). A built-
in database, which included 3529 bacterial reference genomes
(as of 5 November 2018) and 81 viral reference genomes (as of
5 November 2018) from the National Center for Biotechnology
Information (NCBI), was provided for users to remove contami-
nation. Likewise, users can also submit customized contamina-
tion sequences.

De novo transcript assembly of unmapped reads

Unmapped reads from different samples are pooled together and
used as an input to Trinity [20] to generate transcript fragments
through de novo assembly. To ensure that assembled transcripts
are more ‘complete’, transcript fragments are input into
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Figure 1. Overview of CAFU.

CD-HIT-EST [21] to reduce redundancy with a sequence identity
cutoff (e.g. 0.90). The nonredundant transcript fragments are
further merged to generate longer transcripts using CAP3 [22].
Two fragments are merged if they meet the criteria of a specified
overlap size (e.g. ≥50 bp) and identity (e.g. ≥98%).

Multiple-level evidence analysis of assembled transcripts

To eliminate possible artifacts introduced by de novo transcript
assembly, CAFU provides evidence of assembled transcripts at
the expression, genome, transcript and protein levels.

(a) The expression-level evidence allows users to eliminate
assembled transcripts with low read coverage and/or low
expression abundance, which are likely to be assembly
artifacts. RNA-Seq reads from different samples are mapped
to newly assembled transcripts and reference transcripts
using bowtie2 [23]. CAFU outputs the read coverage of
assembled transcripts at single-base resolution using
BEDTools [18] and estimates the expression abundance of
all transcripts in terms of fragments per kilobase million
(FPKM) using RSEM [24]. Assembled transcripts with low
read coverage (e.g. <10) or low expression (e.g. FPKM <1) in
the majority of samples (e.g. 80%) are discarded.

(b) The genome-level evidence can be used to identify de novo-
assembled transcripts missing from the existing genome
annotation. CAFU aligns assembled transcripts to the
genome sequences of the corresponding and closely related
species using GMAP [25] and selects the best genomic
matches with high identity (e.g. ≥95%) and coverage (e.g.
≥95%). Users can also eliminate assembled transcripts
with no introns, which could represent either noise or
pseudogenes.

(c) The transcript-level evidence can be used to select assem-
bled transcripts with high similarity to other well-annotated
transcripts, such as full-length transcripts generated from
single-molecule real-time sequencing and/or high-quality
transcripts annotated in closely related species. After

aligning assembled transcripts with other well-annotated
transcripts with GMAP, CAFU outputs the best transcript
alignments with high identity (e.g. ≥95%) and coverage
(e.g. ≥95%).

(d) The protein-level evidence indicates whether or not an
assembled transcript can be translated into a protein. CAFU
assesses the coding potential of assembled transcripts using
CPC2 [26], which is a fast and accurate coding potential
calculator built with ML algorithms and sequence intrinsic
features. Assembled transcripts are regarded as coding
transcripts if they have a coding potential score ≥0.5 and a
specific amino acid length (e.g. ≥100). Otherwise, assembled
transcripts are regarded as noncoding transcripts. For coding
transcripts, putative domains in corresponding protein
sequences are identified using the Pfam database [27].

Species assignment of assembled transcripts

This module is specifically designed for coding transcripts
assembled using unmapped reads from mixed-species samples.
Existing coding potential calculators, such as CPC2 [26] and
CPAT [28], have good capability for distinguishing protein-
coding transcripts from noncoding transcripts in many species.
However, they are often species-neutral and do not detect
information regarding the original species of coding transcripts,
resulting in difficulties in exploring pathogen–host interactions
from unmapped RNA-Seq reads. To address this problem, we
developed an ML-based functional module named species
assignment of transcripts (SAT) to pinpoint the species cate-
gories of assembled transcripts, based on features extracted
from amino acid sequences of pathogen and host species
(Figure 2).

As the input, SAT takes the coding sequences of pathogen
and host reference transcripts. Each sequence is first converted
into a fixed-length (2257-dimensional) numeric vector using
nine feature-encoding schemes (see Supplementary Data for
details): k-mer (420 features), distance-based residues (DR, 1220
features), autocovariance (6 features), cross-covariance (CC, 12
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Figure 2. Overview of SAT functional module in CAFU.

features), auto-CC (ACC, 18 features), physicochemical distance
transformation (531 features), series correlation pseudo acid
composition (PC-PseAAC, 22 features), general series correlation
PseAAC, (26 features) and codon usage bias (CUB, two features).
Then, the M (number of sequences) × N (number of features,
2257) feature matrix is fed into the deep forest algorithm [29],
which is a decision tree-based ensemble learning method with
the complexity of a deep neural network but without hyper-
parameter tuning. Next, a predictor for classifying assembled
transcripts is constructed, the performance of which is eval-
uated using a 5-fold cross-validation approach with different
evaluation measures, including the receiver operating charac-
teristic (ROC) curve, precision-recall (PR) curve, sensitivity (Sn),
specificity (Sp), precision, accuracy (Acc), Matthews correlation
coefficient and F1-score. Finally, SAT assigns a probability score
to each tested sequence, indicating the likelihood that the tran-
script belongs to the pathogen or host species.

Sequence characterization of assembled transcripts

(a) Basic character: users can explore the similarity between
assembled and reference transcripts in terms of the distribu-
tion of transcript length and G+C content, as well as amino
acid-based features used in SAT. The significance level of the
similarity between two distributions is estimated using the
Kolmogorov–Smirnov test.

(b) Alternative splicing for assembled transcripts is explored
using the R package SGSeq [30].

Expression characterization of assembled transcripts

The distribution of expression levels of all transcripts under
different experimental conditions can be characterized through
condition-specificity analysis, heterogeneous analysis and
differential expression (DE) analysis.

(a) Condition-specificity analysis: this analysis identifies a set
of transcripts highly expressed under different conditions.
The condition specificity of a transcript for condition
type T is defined using the formula described in [31]:
CS(i) = 1 − medianx∈SEx

i
medianx∈SEx

i
, where medianx∈SEx

i and medianx∈SEx
i

represent the median expression values of transcript i under
experimental condition T and under other experimental
conditions, respectively. That is, the higher the condition-
specific score of a transcript under one experimental
condition, the more likely the transcript is to be specifically
expressed under this experimental condition.

(b) Heter ogeneous analysis: this analysis examines the stability
of each transcript expressed in all samples using the Gini
index (coefficient), which is widely used by economists to
investigate inequalities in wealth distribution in popula-
tions [32]. Gini index values range from 0 (full equality)
to 1 (extreme inequality); a low value indicates that the
transcript is stably expressed and may be a housekeeping
transcript [33].

(c) DE analysis: DE transcripts are identified using EBSeq [34],
with a suitable fold change (e.g. ≥2.0) and false discovery rate
(FDR)-adjusted P-value (e.g. ≤0.05).
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Function annotation of assembled transcripts

The potential functions of assembled transcripts are explored
using weighted gene co-expression network analysis [35], a sys-
tems biology method for gene function analysis that groups tran-
scripts with similar expression patterns into one module [36–
39]. The transcript expression similarity is calculated using the
Gini correlation coefficient [40]. Gene Ontology (GO) enrichment
analysis of each module is performed using topGO [41].

Framework efficiency

CAFU has been used to analyze unmapped RNA-Seq reads
from wheat and maize samples on an Intel(R) Xeon(R) E5-2678
v3 48-core machine with 2.50 GHz speed and 132 GB RAM.
Thirty Xiaoyan 6 (XY 6) wheat paired-end RNA-Seq samples
were downloaded from the NCBI’s Sequence Read Archive
database under accession number PRJNA387101; 171 maize
paired-end RNA-Seq samples were collected from the NCBI
BioProject repository under accession numbers PRJNA171684,
PRJNA237837 and PRJNA272662; and 94 maize drought-related
RNA-Seq samples were obtained from BioProject under acces-
sion number PRJNA291919. The costs in terms of time and
computer resources for each functional module are shown in
Supplementary Data Table S3. A subset of newly assembled
transcripts was experimentally validated using polymerase
chain reaction (PCR) and sequencing. More details about the
experimental validation (plant material preparation, RNA iso-
lation and cDNA synthesis, PCR amplification and sequencing)
can be found in the Supplementary Data.

Results
Application of CAFU to unmapped RNA-Seq reads in
wheat

We first demonstrated CAFU’s utility by exploring unmapped
reads from 15 stripe rust-infected and 15 uninfected wheat
RNA-Seq samples (Supplementary Data Table S4). More details
regarding these samples can be found in [42]. Briefly, wheat (XY
6) seedlings were inoculated with Chinese yellow rust race 32
(CYR32), which is one of the most frequent and virulent races
among the identified stripe rust pathogens [43]. Then wheat
seedlings with (I) and without (NI) inoculation were further
grown under three different temperature conditions, normal
temperature (N; 15 ± 1◦C), heat stress (H; 20 ± 1◦C) and NHN
(first grown at 15 ± 1◦C for 7 days, then transferred to 20 ± 1◦C
for 24 hours and finally moved back to 15 ± 1◦C), and harvested
at the start (TS) and end (TE) points of temperature treatment
(Figure 3A). Finally, inoculated wheat samples (I-N-TS, I-N-TE, I-
NHN-TE, I-H-TS and I-H-TE; each for three biological replicates)
and noninoculated wheat samples (NI-N-TS, NI-N-TE, NI-NHN-
TE, NI-H-TS and NI-H-TE; each for three biological replicates)
were subjected to RNA-Seq to generate 101 bp paired-end reads,
using the Illumina HiSeq 2000 platform.

After trimming sequencing adapters and low-quality reads,
∼1.46 billion clean reads were first mapped to the reference
genome of Chinese Spring wheat (Triticum aestivum L.; https://
plants.ensembl.org/Triticum_aestivum). Unmapped reads were
then mapped to the reference genome of stripe rust pathogen
(Puccinia striiformis f. sp. Tritici PST 78; https://fungi.ensembl.org/
Puccinia_striiformis_f_sp_tritici_pst_78). As a result, we obtained
a total of 27.91 million unmapped reads (14.42% per sample on
average). For noninoculated and inoculated wheat samples, the

corresponding unmapped reads were assembled into 1207 and
1809 transcripts, respectively, which were expressed in at least
5 samples (FPKM ≥1) and had at least 5× read coverage across
at least 80% of the transcript sequence. We observed that >74%
unmapped reads can be aligned to assembled transcripts. That
is to say, >74% unmapped reads analyzed in this study could be
reused by CAFU. Further, CPC2 analysis indicated that 232 and
383 putatively coding transcripts could be obtained from the
unmapped reads for the noninoculated and inoculated wheat
samples, respectively (Figure 3B; Supplementary Data Table S5).
A total of 50.86% (118/232) transcripts from noninoculated
wheat samples and 58.22% (223/383) transcripts from inoc-
ulated wheat samples can be annotated by Pfam database
(Supplementary Data Table S5). Several transcripts assembled
from inoculated wheat samples may play roles in disease
resistance. For example, I-Contig2176 encodes an aci-reductone-
dioxygenase (ARD) domain-containing protein. It has >98%
sequence identity with the protein sequence of TaARD gene,
which has been reported to be responsive to stripe rust
pathogen infection in wheat [44]; I-Contig159 encodes an
amidase domain-containing protein, which has ∼87% identity
with protein XP 020192680.1 [fatty acid amide hydrolase-like
(AtFAAH) (Aegilops tauschii subsp. tauschii)]. It has reported that
overexpression of AtFAAH compromises innate immunity to
bacterial pathogens in Arabidopsis [45]; I-Contig2155 has a fairly
high identity (99.15%) and the same ICL (isocitrate lyase) family
domain with protein BAI66426.1 [ICL (Triticum aestivum)]; ICL and
malate synthase (MS) are unique enzymes of glyoxylate cycle;
recent studies indicate that ICL and MS play important roles in
human, animal and plant pathogenesis [46].

To identify the original species of the coding transcripts
from wheat and stripe rust pathogen, the SAT module in CAFU
was trained using coding regions of 20 502 and 137 052 mRNAs
annotated in the reference genome of stripe rust pathogen
Puccinia striiformis f. sp. tritici (PST-78 v1) and Chinese Spring
wheat (IWGSC RefSeq v1.0), respectively (see Supplementary
Data for details). To explore the performance of SAT, we plotted
two major features (DR and CUB) in a two-dimensional space
and observed that mRNAs from wheat and stripe rust were
grouped into two distinct clusters (Figure 3C). This indicated
that the features used in SAT had enough discriminative
power for transcript classification. As expected, 5-fold cross-
validation experimental results showed that CAFU had a
promising prediction performance, with an area under the
ROC curve (AUC) of 0.960, in the classification of mRNAs from
stripe rust and wheat (Figure 3D; Supplementary Data). The
high performance of CAFU was also demonstrated on the
hold-out testing data set, with an AUC of 0.987 (Figure 3D–E)
and area under PR (AUPR) curve of 0.933. Meanwhile, with a
threshold cutoff of 0.5, CAFU generated an Acc of 94.1%, Sn
of 97.6% and Sp of 93.8% (Figure 3E). We further applied CAFU
to identify the species of origin of assembled transcripts and
found that the majority of assembled transcripts (206/232) using
unmapped reads from noninoculated samples were predicted
to be wheat transcripts (Supplementary Data Table S5). For
the 383 assembled transcripts using unmapped reads from
inoculation samples, 254 were predicted to be wheat transcripts
(score ≥0.5) and the other 129 assembled transcripts were
predicted to be pathogen transcripts. Four wheat transcripts
and four pathogen transcripts were randomly selected and
experimentally validated by PCR amplification (Figure 3F;
Supplementary Data Figure S1; Supplementary Data Table S6).

The heterogeneous analysis showed that 216 of 383 tran-
scripts assembled using unmapped reads from the inoculated

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
https://plants.ensembl.org/Triticum_aestivum
https://plants.ensembl.org/Triticum_aestivum
https://fungi.ensembl.org/Puccinia_striiformis_f_sp_tritici_pst_78
https://fungi.ensembl.org/Puccinia_striiformis_f_sp_tritici_pst_78
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1


Deep mining of unmapped RNA-Seq reads 681

Figure 3. Application of CAFU to unmapped RNA-Seq reads from stripe rust-infected and uninfected wheat samples. (A) shows the experimental process of obtaining

30 RNA-Seq data from wheat seedlings under different inoculation and temperature treatments. (B) Data mining of unmapped RNA-Seq reads for identifying wheat and

pathogen transcripts. (C) Dot plot of CUB and DR; blue and red dots denote wheat and pathogen mRNAs, respectively. (D) ROC curves of 5-fold cross-validation for SAT

functional module. The diagonal line is a reference representing 0.5 AUC. (E) Performance evaluation of SAT using hold-out testing samples. (F) PCR amplification of four

predicted wheat transcripts (I-Contig1665, I-Contig1698, I-Contig2610 and I-Contig3238) and four predicted pathogen transcripts (I-Contig362, I-Contig1449, I-Contig1647

and I-Contig2403). cDNAs for the PCR amplification of wheat and pathogen transcripts were prepared from XY 6 wheat seedlings and stripe rust-infected wheat

seedlings, respectively. (G) Heat map of Pearson’s correlations between 216 assembled transcripts. (H) Expression patterns of assembled transcripts in four clusters.

Gray lines represent Z-score-normalized expression levels of all transcripts in the corresponding cluster, and red lines represent the median value of normalized

expression levels.

wheat samples had varying expression levels (Gini index
≥0.1) among the 5 experimental conditions (I-N-TS, I-N-TE, I-
NHN-TE, I-H-TS and I-H-TE). Pearson correlation coefficient
(PCC) and hierarchical clustering analysis revealed that these
216 assembled transcripts could be grouped into four major
clusters (Figure 3G), each of which was composed of predicted
wheat and pathogen transcripts with similar expression
patterns across the five experimental conditions (Figure 3H).
We also observed that 813 transcript pairs exhibited strong co-
expression relationships (|PCC| ≥ 0.90). These results indicate
that the mining of unmapped RNA-Seq reads could be used
to identify novel transcripts and co-expression relationships,

allowing researchers to generate a more comprehensive
picture of transcript co-expression for resolving host–pathogen
interactions.

Application of CAFU to unmapped RNA-Seq reads in
maize

We further applied CAFU to explore unmapped RNA-Seq reads
from 171 maize B73 samples (Figure 4A-4B; Supplementary
Data Table S7). Approximately 4.71 billion clean reads were
aligned to the maize B73 reference genome (APGv4); the
quality and coverage of which were recently significantly

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
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Figure 4. Application of CAFU to unmapped RNA-Seq reads from maize B73 samples. (A) provides tissue information for 171 RNA-Seq samples. The numbers of samples

are in parentheses. (B) Data processing strategy for identifying maize transcripts from unmapped RNA-Seq reads. (C) PCR amplification of eight newly assembled maize

transcripts using cDNAs from B73 seedling samples. (D) shows the number of different coding potential transcripts. (E) shows the expression heat map of seed-specific

maize transcripts at different seed development stages.

improved by single-molecule real-time sequencing and high-
resolution optical mapping [47]. Despite improvements in the
alignment methods and maize reference genome, ∼50 million
reads remained unmapped to the maize reference genome
(Supplementary Data Table S7). The unmapped reads were de
novo assembled into 12 286 long transcripts, 5419 of which
were expressed with FPKM ≥1 in at least 5 samples and had
at least 5× read coverage across at least 80% of the transcript
sequence (Supplementary Data Table S8). This analysis results
to the reuse of >54% unmapped reads analyzed in this study.
Using the criteria of ≥95% coverage and identity, 1254 of these
5419 assembled transcripts could be aligned onto the maize B73
reference genome (Supplementary Data Table S8). From this, we
could identify 581 novel transcripts that were missing in the
maize B73 reference genome annotation but were found in the
unmapped reads (Supplementary Data Table S9). We found that
550 of these 581 newly discovered transcripts had high sequence
similarity (≥95% coverage and identity) with the maize full-
length single-molecule sequencing transcripts (437 transcripts)
[48] and/or the reference genome sequences of maize Mo17
(517 transcripts), Sorghum bicolor (73 transcripts), Oryza sativa
L. ssp. japonica (1 transcript), Setaria italica (6 transcripts),

Brachypodium distachyon (1 transcript) and Arabidopsis thaliana
(1 transcript; Supplementary Data Table S9). We found that 54
assembled transcripts had no hits or relatively low sequence
similarity (<95% coverage and/or identity) with the maize B73
reference genome; however, they were matched (≥95% coverage
and identity) to the maize B73 single-molecule sequencing
transcription and reference genome of the plant species under
study (Supplementary Data Table S9). We randomly selected
eight transcripts with significant matches to the maize B73
reference genome, maize Mo17 reference genome, Sorghum
bicolor genome and/or full-length single-molecule sequencing
transcripts and experimentally validated them by PCR amplifi-
cation using specific primers (Supplementary Data Table S10),
followed by Sanger sequencing from a mixture of cDNA libraries
derived from well-watered and drought-stressed maize seedling
tissues (Figure 4C; Supplementary Data Figure S2). These results
indicate that the novel transcripts, regardless of whether
they matched the corresponding reference genome, could be
identified from unmapped RNA-Seq data.

The downstream analysis focused on the 635 (581 + 54)
assembled transcripts that had strong evidence support at the
genome and/or transcript level. The length of these 635 novel

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz018/-/DC1


Deep mining of unmapped RNA-Seq reads 683

assembled transcripts (mean ± SD, 514 ± 497 bp) was much
shorter than the length of maize transcripts annotated in the
Ensembl Plants database (mean ± SD, 2600 ± 1631 bp). Using
the coding potential calculator CPC2, 83 of these 635 novel
transcripts were classified as protein-coding RNAs (Figure 4D;
Supplementary Data Table S9), including putative transcription
factors containing bZIP and zf-C2H2 domains.

We next evaluated whether any of our newly discovered
maize transcripts had putative biological function. The expres-
sion levels of all newly assembled and reference transcripts were
first estimated using all 171 RNA-Seq libraries. Then transcripts
highly expressed in the same tissues were identified using a
tissue-specific score threshold of 0.8. In seed tissue, we detected
40 tissue-specific transcripts assembled from unmapped RNA-
Seq reads (Figure 4E). The hierarchical clustering analysis
revealed that these transcripts could be divided into three groups
with temporal patterns during maize seed development from 0
to 38 days after pollination (Figure 4E). Five transcripts (group
I) exhibited higher expression levels in both the early and later
stages of whole seed development than in the middle stages,
including one transcript (Conitg1938) encoding a trehalose-
phosphatase domain-containing protein. In Arabidopsis, a
member of the trehalose-phosphatase domain gene family
may be involved in seed maturation and germination [49]. Six
transcripts (group II) showed relatively high expression levels
in the early stage of whole seed, while 15 transcripts (group III)
exhibited higher expression levels in the middle stage. These
results indicate potential roles for these seed-specific novel
transcripts during maize seed development.

We next explored whether any of the newly assembled maize
transcripts were involved in drought stress. Using 94 drought
stress-related RNA-Seq libraries [50], we estimated the expres-
sion abundance of newly assembled and reference transcripts
in 3 tissues of maize that spanned 4 developmental stages
(V12, V14, V18 and R1) under well-watered and drought stress
conditions. This resulted in the identification of 291 assembled
transcripts and 54 484 reference transcripts that showed signif-
icant expression changes (fold change ≥2.0 and FDR-adjusted
P ≤ 0.05). The biological functions of these DE transcripts were
further explored using a co-expression network approach [35].
The co-expression network was constructed using 13 354 DE
transcripts (including 124 novel transcripts) that expressed more
than a third of the samples in 94 libraries with a coefficient
of variation greater than one (Supplementary Data Table S11). A
total of 14 modules were identified according to the hierarchical
clustering results. Highly correlated clusters of these 14 mod-
ules were then merged using the ‘mergeCloseModules’ function
with cutHeight set to 0.15 to generate 8 modules (Figure 5A).
In these 8 modules, the number of co-expressed transcripts
ranged from 70 to 3296 (Figure 5B). Transcripts in the same
module displayed similar expression trends across diverse con-
ditions (Figure 5C); thus, functional coherence among the tran-
scripts in the same module is expected. GO enrichment analysis
showed that each module had distinct GO terms (Figure 5B;
Supplementary Data Table S12). Module M1 formed a cluster of
1185 transcripts enriched in translation (Figure 5B). Hierarchical
clustering of module eigengenes showed higher expression in
ear and leaf tissues (Figure 5C). Tissue-specific transcript expres-
sion was observed in modules M2, M3, M7 and M8, which are
associated with photosynthesis and macromolecule transport
(Figure 5B and C); 3296 transcripts including 28 novel transcripts
in M3 were related to photosynthesis and were highly expressed
in leaf tissues. In module M6, 2523 transcripts including 14
novel transcripts were associated with DNA replication and

chromatin assembly; the expression of these transcripts was
observed in four ear development stages and some tassel devel-
opment stages (Figure 5B and C).

For each of these eight modules, intramodular hub tran-
scripts were identified based on the correlation with module
eigengenes. According to this, transcripts could be grouped
into two classes: hub transcripts and non-hub transcripts.
In total, 10 novel transcripts distributed in M1, M2, M3 and
M5 were identified as hub transcripts (Figure 5B). Module
M3, which is a photosynthesis-related cluster, contained
329 hub transcripts, including two novel hub transcripts:
Contig461 and Contig5212. Contig5212 showed a high correlation
(Spearman correlation coefficient, 0.96) with reference transcript
Zm00001d042840 T001, which may be involved in the pathway
of carbohydrate biosynthesis. Module M1, which is associated
with the translation process, included 118 hub transcripts
(including 6 novel transcripts: Contig1931, Contig2501, Con-
tig5419, Contig5467, Contig10136 and Contig10762). Contig1931,
Contig10136 and Contig10762 were differentially expressed in
the drought-stress response in ear and leaf tissues of maize
(Supplementary Data Table S11). We visualized a subnetwork
using 58 transcripts with top 100 highest correlation coefficients.
Among these 58 transcripts, there were 5 novel transcripts (Con-
tig2501, Contig10762, Contig10136, Contig1931 and Contig5467)
and several transcripts encoding translation factors (e.g. eEF1a9
[Zm00001d046449 T015], eEF1a10[Zm00001d036904 T013] and
eIF4G2[Zm00001d025777 T006]; Figure 5D).

Discussion
RNA-Seq, a revolution methodology for RNA profiling based on
NGS, has been widely applied in both model and non-model
plant species, altering our view of the extent and complex-
ity of transcriptomics during the development of plants and
animals and under different experimental conditions. Despite
its successes, challenges associated with large-scale RNA-Seq
data analysis remain. One key challenge is the deep mining of
biological knowledge from unmapped reads, which are usually
considered to be noise or contamination and therefore are gen-
erally ignored [6–8]. The large-scale nature of RNA-Seq data, the
incompleteness and inaccuracy of genome sequences, the fast-
evolving and command line-based nature of the computational
tools available and the lack of a unified pipeline deter biologists
from taking part in the processing and analysis of unmapped
reads. To help address this challenge, this work presented a
Galaxy-based system CAFU with a user-friendly interface to
facilitate the comprehensive assembly and functional annota-
tion of unmapped RNA-Seq reads. Compared with the existing
aligned reads analysis pipeline, CAFU has several advantages.

First, CAFU is compatible with the analysis of large-scale
unmapped reads from traditional and dual RNA-Seq experi-
ments. Traditional RNA-Seq analysis typically focuses on tran-
scriptomes from a single species at a time. An iterative process
can be performed to process unmapped reads from different
samples. Given the increased volume and depth of sequencing
that is now available, dual RNA-Seq experiments can be used
to simultaneously profile gene expression in multiple species
(e.g. pathogen and host) from mixed-species (infected) samples,
providing further insights into host–pathogen interactions that
currently cannot be obtained by sequencing of the individual
players. After aligning RNA-Seq data against the respective host
and pathogen genome sequences, reads mapped to either the
pathogen or the host genome are usually used for quantifi-
cation and function analysis. As further complementary work,
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Figure 5. Functional characterization of differentially expressed transcripts. (A) Hierarchical cluster tree showing co-expression modules identified using weighted

gene co-expression network analysis. (B) GO enrichments of eight modules in the co-expression network. (C) shows the expression heat map of transcripts in different

modules. (D) Subnetwork showing connections between newly assembled transcripts and reference transcripts encoding translation-related proteins. The subnetwork

was constructed using 58 transcripts with top-100 highest correlation coefficients.

our framework CAFU not only performs de novo assembly of
transcripts from unmapped reads from mixed-species samples
but also takes advantage of ML technologies to assign original
species of assembled transcripts, based on discriminative prop-
erties of mRNAs in these two different domains of life (pathogen
and host). Thus, CAFU is expected to be valuable in obtaining a
more complete picture of pathogen–host infection.

Second, CAFU offers multiple functionalities. It contains
a comprehensive collection of functions required for quality
control, removal of low-quality reads and de novo assembly
of unmapped reads. CAFU also provides options to explore
evidence of assembled transcripts at the expression, genome,
transcript and protein levels, guiding users to select assembled
transcripts of interest for downstream analysis. Additionally,
CAFU allows users to characterize newly assembled transcripts
at the sequence and expression levels and to explore their func-
tions through gene co-expression analysis. These functionalities
can also benefit bioinformaticians as they can be integrated with
other Galaxy-based NGS analysis platforms, such as Rnnotator
[51], Eoulsan [52] and Oqtans [53].

Third, CAFU is user friendly. By taking advantage of the
Galaxy platform, CAFU provides an easy-to-use interface with
functions that allow users to configure the implementation of
the different functionalities, manipulate large-scale RNA-Seq
data, set different parameters, examine the running status and
visualize the computational outputs of multiple steps. Users
can customize the workflow execution by selecting appropri-
ate functional modules and tuning corresponding parameters
according to the data set at hand. In order to facilitate nonexpert
users in their analyses, we also provide a set of default param-
eters derived from our own analysis experience. To address
the issues of data security, data sharing and high-performance
computing, we have made CAFU available via a Docker image, in

which all computational programs, newly developed scripts and
dependencies are packaged. This modern packaging strategy
overcomes issues related to code changes, dependencies and
backward compatibility over time. The easy implementation of
CAFU, as well as detailed case studies, comprehensive explana-
tions of the input and output and wiki discussion groups, sup-
ports users throughout their work and thus lowers the barriers
for researchers unfamiliar with specific NGS data analyses.

Considering the broad applications of RNA-Seq in life science
communities, CAFU is potentially broadly applicable to the in-
depth study of unmapped reads across plant, animal and micro-
bial species. To facilitate its utility, the CAFU project is hosted
on GitHub and is available for download at https://github.com/
cma2015/CAFU.

Key Points
• RNA-Seq is a powerful tool to study transcriptome char-

acteristics in both model and non-model species. RNA-
Seq data are generally analyzed by aligning short reads
to genome sequences. Unmapped RNA-Seq reads are
usually discarded from the analysis process, resulting in
a loss of significant biological information and insights.

• A modularized unmapped RNA-Seq data processing
pipeline is proposed in this work, covering a series of
general RNA-Seq data analytical functionalities, as well
as several specifically designed functionalities.

• Comprehensive Assembly and Functional annotation
of Unmapped RNA-Seq data (CAFU) takes advantage of
machine learning technologies to identify the species of
origin of transcripts assembled using unmapped RNA-
Seq reads from mixed-species samples.

https://github.com/cma2015/CAFU
https://github.com/cma2015/CAFU
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• CAFU provides a convenient framework for researchers
to thoroughly explore unmapped RNA-Seq reads using
the Galaxy system.

Supplementary Data

Supplementary Data are available online at https://academic.
oup.com/bib.

Supplementary Data figures and tables are available
online at the website of the CAFU project (https://github.
com/cma2015/CAFU).
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