
Prediction and Experimental Validation of Novel STAT3
Target Genes in Human Cancer Cells
Young Min Oh1., Jong Kyoung Kim2., Yongwook Choi1, Seungjin Choi2*, Joo-Yeon Yoo1*

1 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea, 2 Department of Computer Science, Pohang University of

Science and Technology, Pohang, Republic of Korea

Abstract

The comprehensive identification of functional transcription factor binding sites (TFBSs) is an important step in
understanding complex transcriptional regulatory networks. This study presents a motif-based comparative approach,
STAT-Finder, for identifying functional DNA binding sites of STAT3 transcription factor. STAT-Finder combines STAT-Scanner,
which was designed to predict functional STAT TFBSs with improved sensitivity, and a motif-based alignment to minimize
false positive prediction rates. Using two reference sets containing promoter sequences of known STAT3 target genes,
STAT-Finder identified functional STAT3 TFBSs with enhanced prediction efficiency and sensitivity relative to other
conventional TFBS prediction tools. In addition, STAT-Finder identified novel STAT3 target genes among a group of genes
that are over-expressed in human cancer cells. The binding of STAT3 to the predicted TFBSs was also experimentally
confirmed through chromatin immunoprecipitation. Our proposed method provides a systematic approach to the
prediction of functional TFBSs that can be applied to other TFs.
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Introduction

The ability of any biological system to properly respond to

stimuli heavily depends on biochemical cascades of signaling

pathways that culminate in the activation of transcription factors

(TFs) and the subsequent alteration of gene expression patterns

[1]. Information about which genes need to be expressed in a

specific cell type at any given time is believed to be encoded in the

genome. The molecular machinery used to interpret such genetic

information has evolved to ensure the accuracy and specificity of

gene regulation. Transcription is a multi-step process requiring the

concerted action of many proteins. Transcriptional activators and

repressors bind in a sequence-specific manner to promoters or

enhancers of target genes. They govern the recruitment of trans-

activators, chromatin modifiers, and general transcription factors,

including RNA polymerase II, to regulate gene expression [2,3].

Whole genome approaches to measure genome-wide expression

patterns have divulged groups of genes that are co-regulated to

exert spatially and temporally controlled cellular responses [4].

Identifying the responsible regulatory modules that govern the

coordinated actions of combinatorial transcription factors is

crucial for understanding the regulatory circuits of biological

processes [5]. For this purpose, computational tools have been

developed to aid in the identification of transcription factor

binding sites (TFBSs) in the promoters of the co-regulated genes

[6,7,8]. These computational approaches can be divided into two

classes: (1) pattern detection and (2) pattern matching. Pattern

detection, also known as de novo motif discovery, finds putative

binding sites for unknown TFs that are over-represented in the

promoters of co-regulated genes. If the binding specificity of a TF

is already known, pattern matching methods are preferred [9]. In

the pattern matching approach, DNA sequence information of

TFBSs is expressed as a position weight matrix (PWM), which can

be used to score potential regulatory sites within a statistical

framework [10]. However, because DNA binding sites for TFs are

generally short and degenerate, this method is prone to high false

positive prediction rates [11].

Based on the observation that conserved non-coding DNA

sequences are often important for the regulation of biological

functions, cross-species sequence comparisons have been actively

integrated to distinguish functional and non-functional TFBSs

[12,13,14]. The act of incorporating the evolutionarily conserved

sequence information in the regulatory regions filters out the non-

conserved TFBSs, thereby greatly reduce the false positive prediction

rate [15,16,17,18,19]. Although this approach has been successfully

applied to increase the predictive power of motif finding, it is highly

sensitive to the algorithm used for sequence alignment and the

accuracy of annotated transcriptional start site (TSS) information.

Therefore, it has been reported that sequence-based promoter

alignments often fail to detect short or degenerate regulatory elements,

when evolutionary divergent promoter sequences are aligned [12,17].

To overcome these limitations, an alignment-free algorithm based on

network-level conservation has also been suggested [20].

Signal transducer and activator of transcription 3 (STAT3)

belongs to the STAT family of transcription factors, which is

activated by Interleukin-6 (IL-6) and related cytokines, such as
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IL-10, Oncostatin M (OSM), and leukemia inhibitory factor (LIF)

[21]. Thus far, seven mammalian STATs (1, 2, 3, 4, 5a, 5b, and 6)

have been identified. They all possess a DNA binding domain, an

SH2 domain for dimerization, and a C-terminal trans-activation

domain [22]. Upon stimulation with extracellular ligand, activated

STAT3 forms homodimers or heterodimers with another STAT

family member, STAT1, then translocates into the nucleus and

binds to cognate regulatory elements in the promoters of STAT-

responsive genes. Accumulating evidences suggest that STAT3

also associates with other transcription factors to form enhanceo-

some complexes in the promoter regions of target genes and

controls cooperative gene induction [23,24,25]. STAT3 is

involved in diverse cellular responses, including cellular differen-

tiation, survival, stem cell renewal, wound healing and systemic

inflammation; this has been proven by the phenotypes of

genetically modified STAT3 mutant mice [22,26,27,28,29]. It

has been found that STAT3 participates in carcinogenesis, and

that the ectopic expression of a constitutively active form of

STAT3 (STAT3-C) induces tumor formation in nude mice [30].

Furthermore, the expression of constitutively-active STAT3 has

been observed in various types of human cancer including multiple

myeloma, colon, ovary, liver, lung, head, and neck cancers [31].

While the regulatory and general trans-activation mechanisms of

STAT3 have been thoroughly studied, not too much effort has

been made towards the identification of direct target genes of

STAT3. The identification of those target genes is crucial for

mediating the diverse biological effects of STAT3 signaling.

To characterize STAT3-mediated transcriptional programs, we

have developed a computational framework designed to predict

STAT3 TFBSs with improved sensitivity and low false positive

rate. Through the integration of the microarray data obtained

from the STAT3 activation condition and the TFBS prediction

tools, we attempted to identify novel STAT3 target genes. Using

our STAT-Finder program, we identified eight novel STAT3

target genes among a group of genes that are highly expressed in

cancer cells. These were then confirmed through chromatin

immunoprecipitation.

Results

Overview of STAT-Finder
To identify direct STAT3 target genes, we developed a

computational framework that predicts functional TFBSs of

STAT3 with increased sensitivity and low false positive rate.

Our framework, STAT-Finder, was constructed based on two

computational components, a TFBS scanning program (STAT-

Scanner) and a motif-based alignment program (Figure 1). STAT-

Scanner was designed to increase the sensitivity for detecting

functional STAT3 TFBSs. A currently available STAT3-specific

PWM of TRANSFAC database [32], V$STAT3_01, frequently

Figure 1. An overview of STAT-Finder. STAT-Finder has two components: The first module, STAT-Scanner, takes a set of six orthologous
mammalian promoter sequences as input. Each promoter sequence is searched to mark putative TFBSs using the modified 8 STAT-related PWMs.
Binding affinity scores of predicted TFBSs are calculated based on the P-values, and a sequence of affinity scores is generated for each promoter. The
second module progressively aligns the score sequences and calculates posterior probability to evaluate the degree of motif conservation.
doi:10.1371/journal.pone.0006911.g001

STAT3 Target Gene Prediction
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fails to detect experimentally proven STAT3 binding sites (data

not shown). For improved predictive power, STAT-Scanner was

therefore designed to use combined PWMs of binding specificity

similar to STAT3. Although STAT family members have different

physiologic functions and regulate distinct sets of target genes, the

targets of individual STAT proteins sometimes overlap, and DNA

sequences recognized by STAT family members are similar

[21,22,23].

For unbiased identification of the PWMs that share sequence

similarity with the STAT3-specific PWM, V$STAT3_01, a total

of 565 PWMs derived from vertebrate TRANSFAC database

[32] were clustered based on their motif similarity (Figure S1).

The motif similarity was defined as the P-value of the gapped

alignment between the two PWMs based on the Kullback-Leibler

divergence [33] (See Methods). Total numbers of PWM clusters

increased with stringent P-value cut-off, reaching maximum

cluster numbers of around 10216 P-value (Figure S1A). With the

P-value cut-off of 1027, PWMs assigned for the STAT family

members were found in the same cluster. It is noteworthy that

PWM clustering did not reveal any non-STAT PWMs that were

similar enough to include nor were there any STAT PWMs that

were distinctly different (Figure S1B). We chose among them eight

PWMs from the STAT family members with high PWM quality

scores (.0.6), where each quality score was calculated using the

method proposed by Rahmann et al. [34]. The relevance of the

selected PWMs for detecting known STAT3 TFBS has been

evaluated in the previously identified STAT3 target genes [35]

(Figure S2).

To minimize false positive predictions, results from STAT-

Scanner were then analyzed using the comparative motif-based

alignment tool (Figure 1). This method finds conserved binding

sites within the orthologous promoters of six mammalian species

by comparing multiple sequences. Within a probabilistic frame-

work, STAT-Finder then evaluates the posterior probabilities of

TFBSs as predicted by STAT-Scanner by assigning higher prior

probabilities on conserved sites over non-conserved ones.

Validation of STAT-Scanner
We first compared the performance of STAT-Scanner with the

most practical TFBS prediction tools, MATCH 2.7 [36] and

MotifLocator [37]. For this purpose, we collected positive genes

with experimentally proven STAT3 binding sites in their promoter

regions through literature mining and TRED search (http://rulai.

cshl.edu/ TRED) [38]. Resulting information on the 22 reference

sequences are listed in Table S1. Genomic DNA sequences

spanning from 2,000 bp up-stream to 500 bp down-stream of the

annotated TSS of each gene were used as input promoter

sequences. Prediction of the true positive TFBSs was then plotted

as a function of the total predicted TFBS count for different cut-off

values. As shown in Figure 2A, STAT-Scanner, which uses

combined STAT3-related PWMs, outperforms MATCH and

MotifLocator, both of which use the representative STAT3 PWM

(V$STAT3_01). We believe the enhanced predictive power of

STAT-Scanner was partly due to the usage of combined STAT3-

related PWMs, especially since the predictive power of MotifLo-

cator also increased when combined PWMs were used (Figure S3).

We also evaluated the performance of STAT-Scanner using

genome-wide STAT3 binding data obtained using embryonic

stem cells [39]. Among the 461 genes with STAT3 binding peaks

in the 2.5 kb promoter regions, 412 have been accurately

predicted by STAT-Scanner to have at least one STAT3 TFBS

(Figure 2B). The overall performance of STAT-Scanner was better

than those of both MATCH and MotifLocator, as the detection of

the same number of true binding sites was achieved by both with

significantly lower total numbers of predicted sites. Although

MATCH and MotifLocator performed similarly to STAT-

Scanner in detecting about 50% of true STAT3 TFBSs, the latter

outperforms both by accurately predicting the remaining true sites.

We believe this is partly due to the usage of combined STAT-

related PWMs which has the capability to enhance the

performance of MotifLocator, albeit less than the enhancement

for STAT-Scanner, with combined data derived from multiple

PWMs (Figure S4). The relative performance of both methods is

Figure 2. Performance comparison of the STAT3 TFBS prediction tools. Curves for the changes of the number of true positive TFBSs
detected using MotifLocator (V$STAT3_01), MATCH (V$STAT3_01), or STAT-Scanner, as a function of total number of predicted TFBSs (A) in the
reference set of 22 STAT3 target genes (Table S1) and (B) in the genome-wide STAT3 ChIP-Seq dataset [39].
doi:10.1371/journal.pone.0006911.g002
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low compared to that of STAT-Scanner; this can be explained by

the fact that their scores on the predicted sites are not directly

comparable among different PWMs, thus showing the importance

of our scoring scheme in integrating matches to different PWMs.

These results also indicate that overlapping PWMs with similar

binding specificity are critical to the development of improved

strategies to detect functional TFBSs of STAT3 with high

predictive accuracy.

Features of the functional STAT3 TFBS
The ultimate goal of computational prediction is to detect

functional TFBSs with a high degree of confidence. To filter out

the false positive TFBSs with high affinity scores, we examined

various functional constraints such as evolutionary conservation

and genome structure of predicted STAT3 TFBS regions.

Sequence conservation among multiple species has been proven

to constrain functional TFBS [16,17,40]. Therefore, we first

evaluated the distribution of multispecies conservation scores

(PhastCons score) [41] and regulatory potentials (RegPotential

score) [42] for positions in the functional and non-functional

STAT3 TFBSs detected by STAT-Scanner using the reference set

of 22 genes (Table S1). For convenience, we considered a TFBS

functional if it was supported by experimental STAT3 binding

data; otherwise, the TFBS was considered non-functional. The

distribution of PhastCons scores for the non-functional STAT3

TFBSs were skewed towards zero, while PhastCons scores for

about 50% of the functional STAT3 TFBS exceeded 0.1

(Figure 3A). In contrast, the distribution of RegPotential scores,

which measure the similarity of patterns to those in the known

regulatory elements, was similar for positions of the functional and

non-functional STAT3 TFBSs (Figure 3B). Next, we investigated

the methylation-resistant CpG island features of the STAT3

TFBS-containing regions. Over-representation of the binding

sequences for specific transcription factors, such as zinc-finger

proteins, in CpG islands has been previously reported [43]. Most

of the predicted STAT3 TFBSs are located inside CpG islands

[44], but the genomic distribution is not significantly altered

among the functional and non-functional STAT3 TFBSs

(Figure 3C). Repeat elements [45] in the genomic sequence might

compromise the functions of transcription factors, as none of the

functional STAT3 TFBSs have been identified inside the repeated

regions (Figure 3D). In summary, motif conservation, a major

constraint that distinguishes between functional and non-function-

al STAT3 TFBSs, has therefore been included in STAT-Finder.

Validation of STAT-Finder
We next evaluated the performance of STAT-Finder compared

to other comparative methods, namely, EEL [46] and CONREAL

[12]. Given that EEL performs pair-wise alignment based on the

matches to a single PWM, we compared the performance of EEL

using each PWM (V$STAT3_01 and V$STAT1_01) separately.

Meanwhile, the performance of CONREAL was examined by

combining both PWMs. We tested the prediction accuracy of

STAT-Finder in the two positive data sets with STAT3 bindings.

STAT-Finder exhibited better performance compared to EEL

using V$STAT3_01, EEL using V$STAT1_01, or compared to

CONREAL in predicting true STAT3 TFBSs in the 22 previously

identified positive genes (Figure 4A). Note that both EEL and

CONREAL failed to detect about 40–60% of true positive STAT3

sites even at the minimum cut-off value, while STAT-Finder found

all of these. These data indicate that STAT-Finder showed better

performance in terms of finding true positive STAT3 TFBSs that

the other comparative programs missed. It was made more evident

when we searched STAT3 TFBSs using EEL or CONREAL in

the data sets with genome-wide STAT3 binding. Although the

overall performance of the STAT-Finder was similar to EEL in

detecting 56% of true STAT3 TFBSs, only STAT-Finder was

capable of detecting the remaining 30% of the true sites

(Figure 4B). Our data suggest that the improved sensitivity of

STAT-Finder could be attributed to the usage of combined

STAT-related PWMs, which evidently overcame the performance

limitations of V$STAT3_01.

We next attempted genome-wide prediction of STAT3 binding

in the human promoter regions. For this purpose, we first

estimated the cut-off value of the motif conservation score (MCS)

to identify conserved functional STAT3 TFBSs. The degree of

conservation of the predicted TFBS, which was determined by

calculating MCS, was integrated with the affinity scores by STAT-

Scanner (See Methods). The confidence score at each MCS was

evaluated using the 2.5 kb promoter sequences of all annotated

human genes and orthologous mouse genes. The confidence score

determines the probability that a given TFBS is not conserved by

chance. As cut-off values of MCS increased, the total number of

predicted STAT3 TFBSs decreased at a slower rate than the

average number of aligned instances of control motifs, resulting in

escalated confidence scores at MCS values higher than 0.9 (Figure

Figure 3. Score distribution of the functional vs. non-functional
STAT3 TFBSs as predicted by STAT-Scanner. (A) PhastCons score,
(B) Regulatory Potential score, (C) Percentage in the CpG island, and (D)
Percentage in the Repeat region.
doi:10.1371/journal.pone.0006911.g003
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S5). Using STAT-Finder, we performed a genome-wide search for

STAT3 TFBSs in the human promoter regions. Among the 15461

human genes with identified orthologs in the mouse, about 7600

genes were predicted to have putative STAT3 binding sites within

the 2.5 kb promoter region, at the probability threshold of 0.9.

Significant enrichment of STAT3 TFBSs could be predicted at the

proximal upstream regions of TSS using STAT-Scanner and

STAT-Finder [35,39] (Figure S6).

Identification of novel STAT3 target genes in the cancer
cells

Constitutive activation of STAT3 and over-expression of its

target gene have been suggested to play critical roles in human

carcinogenesis [12,31,47,48,49,50]. To determine whether or not

STAT-Finder is useful in identifying novel STAT3 target genes,

we applied this program to a group of genes that are over-

expressed in human cancer cells. We integrated microarray data

obtained from the expression module map of genes up-regulated

in cancer [51] and data derived from the A549 cells over-

expressing a constitutively active form of STAT3 [52].

Among the 33 genes that are commonly up-regulated, eleven

have already been reported to be regulated by STAT3 (Table 1).

Using this group of genes, we examined whether or not STAT-

Finder could detect experimentally proven STAT3 TFBSs. It is

noteworthy that we were able to analyze only a fraction of the

promoter sequences, mainly due to alternative promoter usage and

the poorly annotated TSS information available. STAT-Finder

detected three putative STAT3 binding sites in the JUNB

promoter region including one site that has previously been

reported to be a STAT3 binding site [53] (Figure 5A). Using three

different cell lines derived from human cancer patients, we

confirmed STAT3 binding to the JUNB promoter by chromatin

immunoprecipitation (Figure 5B). STAT-Finder also successfully

detected one STAT3 TFBS in the Nicotinamide N-methyltrans-

ferase (NNMT) promoter region, a recently identified STAT3

target gene [54] (Figure 5C, D). Interestingly, STAT-Finder was

unable to detect known STAT3 TFBS in the MYC promoter

region (Figure 5E), even though MYC has been reported to be a

STAT3 target [55]. It has also been reported that STAT3 binding

to the promoter region of the MYC gene requires a site that is

different from the consensus STAT3 binding sequences, but is

similar to E2F TFBS, indicating that, in this case, STAT3 binding

depends on the presence of other transcription factors [55]. Using

primer sets that detect known STAT3 binding sites in the MYC

promoter, we were able to confirm its binding upon IL-6

stimulation in HepG2 cells (Figure 5F). These results suggest that

STAT-Finder could efficiently detect binding sites for STAT3 only

if their binding does not depend on the presence of other cis or

trans factors.

We next examined whether or not we can identify novel target

genes of STAT3 using STAT-Finder. For this purpose, we selected

genes with conserved TSS (Table 1) and determined the presence

of putative STAT3 TFBSs using STAT-Finder in their promoter

regions. STAT-Finder successfully detected putative STAT3

TFBSs with high probabilities in the promoter regions of AKAP12

(A-kinase anchoring protein 12), HIC2 (hyper-methylated in

cancer 2), and THBS1 (Thrombospondin 1). STAT3 binding to

these predicted sites was experimentally confirmed by ChIP assay

(Figure 6A–F). To verify the specificity of STAT-Finder, we also

assayed the binding of STAT3 to the sites that were not conserved,

but were present in the promoters of human orthologous genes. In

contrast to the conserved STAT3 TFBSs, we could not detect

STAT3 binding to the non-conserved STAT3 TFBSs in human

cancer cell lines (Figure 6G). STAT3 binding to other predicted

STAT3 TFBSs present in the promoter regions of ATF3

(activating transcription factor 3), DUSP5 (dual specificity

phosphatase 5), SERPINE1 (serpin peptidase inhibitor, class E),

NP (nucleoside phosphorylase), and SLC2A3 (solute carrier family

2, facilitated glucose transporter, member 3) were also experi-

mentally validated (Figure S7). Finally, we studied whether or not

other computation tools such as EEL or CONREAL could also

accurately detect STAT3 target sites that have been identified and

validated in this study. Of 10 promoter sequences containing

experimentally proven 10 STAT3 binding sites (Figure 5, 6 and

Figure 4. Performance comparison of the comparative alignment tools. Curves for the changes of the number of true binding sites detected
using EEL (V$STAT3_01 or V$STAT1_01), CONREAL (All; combined PWMs of V$STAT3_01 and V$STAT1_01), or STAT-Finder, as a function of total
number of predicted TFBSs (A) in the reference set of 22 genes (Table S1) and (B) in the genome-wide STAT3 ChIP-Seq dataset [39].
doi:10.1371/journal.pone.0006911.g004
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S7), STAT-Finder predicted a total of 29 STAT3 binding sites

including all of the 10 experimentally validated STAT3 binding

sites. Meanwhile, EEL and CONREAL detected only 5 (50%) and

2 (20%) validated STAT3 binding sites among 23 and 6 total

predictions, respectively, thereby indicating that STAT-Finder has

better performance in terms of identifying novel target genes of

STAT3 (Figure S8).

Discussion

We presented a computational framework for identifying

functional STAT3 TFBSs in mammalian promoters. The first

compartment, STAT-Scanner, was designed to predict function-

al STAT3 TFBSs with improved sensitivity. By using compar-

ative motif-based alignments, STAT-Scanner was linked to

STAT-Finder to minimize false positive predictions. Our

proposed method was tested using previously identified STAT3

target genes and was successfully applied to the identification of

novel target genes.

Our strategy in developing STAT-Finder relied on several

assumptions. First, the DNA binding specificity of STAT3 is

shared by other STAT family members. STAT transcription

factors bind to similar DNA sequences, and the similar DNA

binding specificity of various STAT transcription factors, such as

STAT1, STAT5A/5B, or STAT6, have been experimentally

proven [56]. It has also been noted that integration of the

overlapping matches detected by matrices from the same family

members greatly reduces the number of total predicted TFBSs,

and hence decreases the rate of false positive detection [57].

Furthermore, it has been recently reported that roughly half of

Table 1. Putative STAT3 target genes.

Gene Entrez ID

aFold Change
(log2) aFDR

bCancer
Module #

bCancer Module
(P-value)

Reported STAT3
regulation

Reported
STAT TFBS cReference

Remark for
experiment

AKAP12 9590 3.955 0 3 ,1e-14 - - - Putative target

ATF3 467 5.885 0 197 0.002153 - - - Putative target

CCL2 6347 7.205 0 3 ,1e-14 + + [73]

CITED2 10370 2.911 0 3 ,1e-14 + + [74]

CXCL2 2920 2.092 0 197 0.021719 + - [75]

DDEF2 8853 2.184 0 98 1.05E-12 + - [76]

DUSP5 1847 2.782 0 98 0.001713 - - - Putative target

ETS2 2114 3.039 0 197 0.000899 - - -

FOSL1 8061 4.032 0 98 7.13E-05 - - -

HIC2 23119 2.817 0 17 0.007665 - - - Putative target

JUN 3725 3.194 0 197 5.36E-05 + - [77]

JUNB 3726 2.436 0 17 1.07E-05 + + [53] Positive control

LDLR 3949 3.548 0 3 ,1e-14 - - -

LOXL2 4017 2.139 0 3 ,1e-14 - - -

MAFF 23764 5.273 0 3 ,1e-14 + + [78]

MAP2K3 5606 2.739 0 18 0.001053 - - -

MYC 4609 2.053 0 126 ,1e-14 + + [55] Positive control

NNMT 4837 2.041 0 3 ,1e-14 + + [54] Positive control

NP 4860 2.043 0 3 ,1e-14 - - - Putative target

NPC1 4864 5.916 0 18 1.1E-06 - - -

PLAUR 5329 2.89 0 3 2.53E-12 - - -

PLEC1 5339 2.982 0 18 0.016729 - - -

PLEKHC1 10979 2.188 0 3 0.045975 - - -

PMAIP1 5366 2.031 0 54 1.7E-05 + - [79]

PXN 5829 2.217 0.098 18 5.01E-06 - - -

SERPINE1 5054 2.312 0 3 ,1e-14 - - - Putative target

SGK 6446 2.826 0 3 0.004895 + + [80]

SLC2A3 6515 6.191 0 17 2E-06 - - - Putative target

TAF1A 9015 2.661 0.042 124 0.005465 - - -

THBS1 7057 3.25 0 3 ,1e-14 - - - Putative target

UGCG 7357 6.265 0 3 2.21E-08 - - -

WEE1 7465 2.172 0.069 57 ,1e-14 - - -

ZYX 7791 2.124 0 3 ,1e-14 - - -

aAnalyzed microarray data of A549 cell line over expressing STAT3C [52] using SBEAMS [72].
bAnalyzed data of the cluster in the Cancer Module Map [51] (http://robotics.stanford.edu/,erans/cancer/).
doi:10.1371/journal.pone.0006911.t001
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TFs recognize multiple sequence motifs [58]. Therefore, a

conventional motif scanning approach using a single PWM for

each TF has an intrinsic limitation in detecting all functional

TFBSs. As a result, the predictive power of STAT-Scanner was

significantly enhanced by integrating STAT-related PWMs. The

second assumption, used in the motif-based alignments, is that the

relative locations of functional TFBSs are conserved among closely

related mammalian species. In yeast, highly conserved TFBSs for a

set of TFs exhibit relatively low spatial deviations (,150–200 bp)

[20]. Likewise, we found that, for six mammalian species, known

STAT3 TFBSs are located within a similar spatial distribution on

each promoter.

Figure 5. Experimental validation of STAT3 binding to the known STAT3 TFBSs. (A,C,E) The affinity score from STAT-Scanner (top) and the
posterior probability from STAT-Finder (middle) of predicted STAT3 are plotted in the sliding windows for a 2.5-kb promoter region across the JUNB
(A), NNMT (C), and MYC (E) genomic loci. The open square at bottom indicates the predicted TFBS with the posterior probability higher than 0.95;
while the asterisk (*) in the promoter region depicts the known STAT3 TFBS. (B, D, F) Chromatin immunoprecipitation analysis with an anti-STAT3
antibody: Reported STAT3 TFBSs of JUNB (B), NNMT (D), and MYC (F) were PCR amplified using the primers specific binding sites (*) from the input and
immunoprecipitated cell lysates, derived from the non-stimulated or IL-6 (10 ng/ml) + IL-6sR (10 ng/ml)-stimulated HepG2, A549, and MDA-MB-231
cells.
doi:10.1371/journal.pone.0006911.g005
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Figure 6. Experimental validation of STAT3 binding to the novel STAT3 TFBSs. (A, C, E) The affinity score (top, STAT-Scanner) and posterior
probability (middle, STAT-Finder) of predicted STAT3 TFBSs are plotted in the sliding windows for a 2.5-kb promoter region across the AKAP12 (A),
HIC2 (C), and THBS1 (E) genomic locus. The closed square at the bottom indicates the predicted TFBS with posterior probability .0.5; while the yellow
square shows the predicted TFBS with no conservation. (B, D, F) ChIP analysis with an anti-STAT3 antibody. Putative STAT3 TFBSs of the AKAP12 (B),
HIC2 (D), and THBS1 were PCR amplified using the primer sets indicated by inverse arrows. (G) ChIP analysis with an anti-STAT3 antibody. Predicted
TFBSs with no conservation in the human AKAP12, HIC2, and THBS1 genes were PCR amplified using the primer sets indicated by inverse arrows.
doi:10.1371/journal.pone.0006911.g006
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Using STAT-Finder, we have identified a list of STAT3 target

genes that are over-expressed in human cancer cells. Likewise,

STAT3 binding to the predicted TFBSs has been experimentally

verified in IL-6 stimulated human cancer cell lines. Interestingly,

STAT3 was recruited to the predicted TFBS in a cell type-specific

manner. For example, STAT3 binding to the predicted TFBSs in

the promoter regions of the AKAP12 and HIC2 genes was observed

in un-stimulated but not in IL-6 stimulated A549 and MDA-MB-

231 cells. However, in the HepG2 cells, STAT3 was recruited to the

same TFBS only after IL-6 stimulation (Figure 6). In contrast,

STAT3 binding to the promoter regions of MYC, SERPINE1, NP,

and SLC2A3 was only detectable in IL-6 stimulated HepG2 cells,

but not in A549 or MDA-MB-231 cells (Figure 6, Figure S7).

Furthermore, it is evident that STAT3 binding to the predicted

TFBSs in the promoters of the candidate target genes does not

guarantee the expression of that gene. Although the expression of

most of the target genes had been altered upon STAT3 binding to

the promoter, we found that STAT3 binding to target sites did not

always correlate with gene expression in the cell lines tested (Oh,

YM, unpublished data). This suggests that STAT3 binding to target

sites is not sufficient in inducing gene expression, and tissue-specific

transcription factors, or trans-activators that specifying modification

in the chromatin region may also be required [59,60,61,62].

A cis-regulatory module comprises a cluster of multiple TFBSs

that cooperatively-interact with TFs to control gene expression. The

identification of cis-regulatory modules for specific gene regulation is

a challenging step towards understanding genome-wide transcrip-

tion regulatory networks in mammalian genomes. Therefore, it is

necessary to efficiently predict functional TFBSs for individual TFs.

We expect that our comparative approach can be applied to other

TFs with some restrictions. First, the efficiency of our program

depends on the degree of evolutionary conservation among the six

mammalian species. Therefore, DNA binding sites for TFs engaged

in species-specific gene regulation may not be predicted. It is

noteworthy that the frequent gain or loss of TFBSs in the intergenic

regions leads to the evolution of transcriptional circuits [63].

Second, our program may not be applied to TFs that rely on other

DNA binding proteins for recruitment into DNA. Third, because

we only compared 2 kb of upstream promoter sequence relative to

the annotated TSS, DNA binding sites of TFs that are enriched in

regions distal to the TSS might be overlooked by our program.

Although cis-regulatory regions that lie .100 kb away from the

TSS exist, it has been suggested that most functional TFBSs are

highly enriched in regions proximal to the TSS [40,64]. Another

limitation is the amount and quality of annotated TSS information

obtained from diverse mammalian species. With the exception of

those from humans and mice, annotated TSS information for most

of the mammalian genomes is not available, and correct TSS

information is crucial for the identification of evolutionarily

conserved TFBSs based on motif-based alignments. Obtaining

accurate and reliable prediction of functional TFBSs in the

promoter region is a critical step in deciphering the regulatory

code of the complex transcription regulatory networks that govern

diverse biological responses. Given that our proposed method is

based on a multiple-motif model, we believe it can be applied to

other TFs, with some modifications, and may serve as a basic tool to

discover important cis-regulatory features.

Materials and Methods

Clustering of STAT3-related PWMs
We used dynamic programming to find the optimal ga-

pped alignment between two PWMs. We denote by H1 [ RW1|4,
H2 [ RW2|4 the two PWMs of length W1,W2 over S~ A,C,G,Tf g

to align, where HT
k,w represents row w, each entry is non-negative

and
P4
l~1

Hk,wl~1. The optimal pair-wise alignment can be found by

the following steps. We first construct a matrix F[R(W1z1)|(W2z1)

whose pz1, qz1ð Þ-element F pz1, qz1ð Þ is the score of the

optimal alignment between the sub-matrices HT
1,1:p and HT

2,1:q.

Initially, we set F 1,1ð Þ~0, F pz1,1ð Þ~pd and F 1,qz1ð Þ~qd for

all p,q, where d is a gap penalty. We then build up the matrix F using

the following recurrence:

F pz1, qz1ð Þ~ max

F p,qð Þzs HT
1,p,HT

2,q

� �
,

F p,qz1ð Þzd,

F pz1,qð Þzd

8>><
>>:

where s HT
1,p,HT

2,q

� �
is the match score which is defined by the

Kullback-Leibler divergence

s HT
1,p,HT

2,q

� �
~2 exp {KL HT

1,pjHT
2,q

�� �
{

1

2

where

KL HT
1,pjHT

2,q

� �
~{

X4

l~1

HT
1,pl log

HT
2,ql

HT
1,pl

 !
:

To define the similarity between the two PWMs, we assessed the

optimal alignment by calculating the P-value. The P-value of the

observed alignment score was calculated by estimating the score

distribution of 1000 randomly-permuted PWMs via the Gaussian

distribution. In this study, the gap penalty d was set to 0.5.

Prediction of putative STAT TFBSs: STAT-Scanner
We searched putative TFBSs of the STAT family in input

promoter sequences and evaluated their binding affinity scores using

STAT-Scanner. Given a set of position count matrices obtained

from TRANSFAC 9.4 [32], we reconstructed STAT-related PWMs

to compute the P-values of the match scores using a method for

calculating the exact distribution of scores [65,66]. Briefly, our

method consists of three steps. First, we transformed each position

count matrix into the corresponding position frequency matrix

(PFM) by adding position-dependent pseudo-counts [34]. This

position specific regularization leaves the conserved positions of the

matrix relatively unchanged. Second, from the regularized PFM, we

reconstruct a position weight matrix (PWM) whose element is the

log-odds score between the PFM and background model, defined by

a zero-order Markov chain. Then, the match score is defined by the

sum of the log-odds scores. To account for the effect of the uneven

distribution of ‘‘GC’’ and ‘‘AT’’ content, we used six different

background models that were constructed based on clusters of

nucleotide compositional vectors of the whole mouse promoter

sequences available from Ensembl [67]. For clustering, we used the

k-means clustering algorithm. Finally, to determine statistically

significant TFBSs, we calculated the exact distributions of the match

scores under the background model assumption. From the

distributions, we calculated the type-I sequence error probability

an(s), which measures the probability that at least one site within a

sequence of length n (n = 500 as proposed by [34]) has a match score

larger than or equal to s, under the assumption that the sequence is

generated from the background model. We then converted the

match score, s, into the affinity score, t, defined by 1- an(s). This
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conversion makes it easy to define a threshold, c, of the affinity

score within a statistical hypothesis testing framework. In addition, it

is also plausible to directly compare the affinity scores of different

STAT-related PWMs.

Given a set of STAT-related PWMs and an input promoter

sequence, STAT-Scanner first computes the nucleotide composi-

tion of the input sequence in order to select the nearest background

model, and searches TFBSs whose affinity scores are larger than the

threshold, with the PWMs constructed by the chosen background

model. We used eight STAT-related PWMs, V$STAT_01,

V$STAT1_01, V$STAT3_01, V$STAT5A_01, V$STAT5B_01,

V$STAT5A_02, V$STAT1_02, and V$STAT_Q6, and combined

all overlapping sites of the eight PWMs into one with the maximum

affinity score. Notably, the max operator is applicable because the

affinity scores of different PWMs are directly comparable.

Prediction of the conserved STAT TFBSs: STAT-Finder
STAT-Finder was designed to minimize the false positive

discovery of predicted TFBSs using comparative sequence

comparisons. It searches conserved sites within the promoters of

six orthologous species by sequences of affinity scores. To diminish

probabilities of misalignments, we used score sequences defined by

STAT-Scanner as a first approximation of the conserved

regulatory regions. We regarded a region with nonzero affinity

scores within the score sequence as the regulatory region. We focus

on the regulatory regions of multiple alignments by ignoring the

non-conserved regions. We progressively aligned the six score

sequences obtained from orthologous promoter sequences,

according to the phylogenetic tree of all six mammalian species,

and evaluated the degree of conservation by calculating the Motif

Conservation Score (MCS). The MCS value of an aligned TFBS

ranges from 0 (non-conserved) to 1 (most conserved).

Motif-based alignment tool consists of two main parts to align

multiple sequences with different affinity scores of STAT TFBSs.

The first part is a pair-wise global alignment module that finds an

optimal alignment between two sequences. We adapted a variant

version of the Needleman-Wunsch algorithm [68], with a

modification in the scoring function for the match between two

affinity scores. The second part is a progressive alignment module

that determines a multiple motif alignment among orthologous

promoter sequences derived from six mammalian species. The

basic concept of this approach is to sequentially perform pair-wise

alignments between two sequences of affinity scores, between a

sequence and a profile, or between two profiles, according to the

phylogenetic tree of the six species. The profile is a set of aligned

sequences with gaps. This progressive alignment efficiently aligns

multiple sequences with reasonable accuracy. In the given multiple

motif alignment, we computed the motif conservation score (MCS)

at each aligned position by taking the average of the aligned

affinity scores. The affinity score of the gap was set to zero and the

‘‘N’’ character was not considered when calculating the average.

STAT-Finder has a unique feature that detects not only

conserved binding sites but also non-conserved ones with very

strong binding signals to rectify the unavoidable alignment error.

Before describing our probabilistic model, we first explain our

notations to define our model. Among the 8 STAT3-related

PWMs, we denote by Hk [ RW|4 the kth PWM of length W over

S, where HT
k,w represents row w, each entry is non-negative andP4

l~1

Hk,wl~1. The background model h0 [ R4, which describes

frequencies over the alphabet within non-binding sites, is defined

by a zero-order Markov chain. We assume the background model

is known in advance and estimated from the whole mouse

promoter sequences.

Suppose we have a promoter sequence Si which is a string of

length L over the alphabet S. In order to allow for multiple

binding sites per sequence, we represent the sequence Si as a set of

overlapping subsequences SW
ij ~ Sij ,Si jz1ð Þ, . . . ,Si jzW{1ð Þ

� �
of

length W starting at position j [ IW
i , where Sij denotes the letter

at position j and IW
i ~ 1, . . . ,L{Wz1f g. Let us introduce a

latent variable matrix Zk
i [ R2|jIW

i
j in which the jth column vector

Zk
ij is defined as a 2-dimensional binary random vector

Zk
ij1,Zk

ij2

h iT

such that Zk
ij~ 0,1½ �T if a binding site of the kth

PWM starts at position j [ IW
i . Otherwise, Zk

ij~ 1,0½ �T .

Our probabilistic model has the following specification for

defining the joint distribution. First, latent variables Zk
ij indicating

the starting positions of binding sites of the kth PWM are governed

by the probability p~ p1,p2½ �T such that p1,p2§0 and p1zp2~1.

The prior probability of Zk
ij is specified by

P Zk
ij jp

� �
~ P

2

m~1
p

Zk
ijm

m :

For each latent position Zk
ij , the probability distribution of the

subsequence SW
ij is given by

P SW
ij jZk

ij ,Hk,h0

� �
~P SW

ij jh0

� �Zk
ij1

P SW
ij jHk

� �Zk
ij2

where

P SW
ij jHk

� �
~ P

W

w~1
P
4

l~1
H

1 l,Si jzw{1ð Þð Þ
k,wl

P SW
ij jh0

� �
~ P

W

w~1
P
4

l~1
h

1 l,Si jzw{1ð Þð Þ
0l

where 1 l,Si jzw{1ð Þ
� �

is an indicator function which is 1 if

Si jzw{1ð Þ~l, and 0 otherwise.

The objective of probabilistic inference in our model is to calculate

the posterior probability P Zk
ij jSW

ij ,Hk,h0

� �
because this probability

evaluates the degree of being a true binding site of the subsequence

using our prior knowledge and given data. The posterior probability

can be obtained by using Bayes’ theorem

P Zk
ij2jSW

ij ,Hk,h0

� �
~

P SW
ij jHk

� �
p2

P SW
ij jh0

� �
p1zP SW

ij jHk

� �
p2

:

The degree of conservation of each subsequence can be easily

incorporated into our probabilistic framework by assigning

relatively higher prior probability p on Zk
ij than non-conserved

one. In this work, we used the following settings: p2~0:0002 for

non-conserved subsequence (the expected number of binding sites

is 1 when the promoter sequence is 2500 (double stranded)) and

p2~0:01|MCS. The eight different posterior probabilities of the

eight STAT3-related PWMs across the latent positions are

integrated by taking the maximum value and the probability

cutoff value was set to 0.5.

Motif-based pair-wise alignment
We denote two promoter sequences of lengths mi and mj by

tj~t
j
1t

j
2 � � � tj

mj
and tj~t

j
1t

j
2 � � � tj

mj
, where ti

k and t
j
l are the affinity

scores of STAT3 TFBSs. If the score is smaller than a threshold c,
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we cut the score to 0. We also set the score to 21 if the

corresponding site contains the ambiguous ‘‘N’’ characters. With

this setting, the optimal pair-wise alignment between ti and tj can

be found by dynamic programming. We first construct a matrix

F [ R miz1ð Þ| mjz1ð Þ whose kz1,lz1ð Þ-element F kz1,lz1ð Þ is

the score of the optimal alignment between the segments ti
1 � � � ti

k

and t
j
1 � � � t

j
l . For initialization, we set F 1,1ð Þ~0,F kz1,1ð Þ~kd

and F 1,lz1ð Þ~ld for all kandl, where d is a gap penalty. We

then build up the matrix F using the following recurrence:

F kz1,lz1ð Þ~ max

F k,lð Þzs ti
k,t

j
l

� �
,

F k,lz1ð Þzd,

F kz1,lð Þzd

8>><
>>:

where s ti
k,t

j
l

� �
is the sequence match score between ti

k and t
j
l

which is defined by

s ti
k,t

j
l

� �
~

0 if ti
k~{1 or t

j
l~{1,

ln 1{c

ti
k
{t

j

lj j if ti
k{t

j
l

��� ���=0,

10 if ti
k{t

j
l

��� ���~0 and ti
k,t

j
lw0,

0:1 if ti
k,t

j
l~0

8>>>>>><
>>>>>>:

We construct the optimal alignment by tracing back the choices

that result in the final value of F miz1,mjz1
� �

.

Motif-based profile alignment
We denote two profiles of lengths m and n by p~p1p2 � � � pm

and q~q1q2 � � � qn, where pk and qlare the aligned affinity scores

of STAT3 TFBSs constructed from disjoint promoter sequences

indexed by I and J , respectively. The pair-wise profile alignment

can be also found by dynamic programming. The profile match

score sp is defined by the average of the sequence match score:

sp pk,ql

� �
~

1

Ij j Jj j
X
i[I

X
j[J

s ti
k,t

j
l

� �

where the sequence match score s is slightly modified to deal with

the gap ‘‘-‘‘ by setting s {,t
j
l

� �
~s ti

k,{
� �

~d and s {,{ð Þ~0. In

this study, the score threshold c and gap penalty d were set to 0.8

and 20.1, respectively.

Estimation of MCS confidence score
To generate randomly shuffled control motifs, we manually

aligned STAT-related PWMs without gaps by looking up the core

regions (TTCCNGGAA). We excluded V$STAT5A_02 (homo-

tetramer) because it was not aligned with other PWMs. The

operation for random permutation was then applied to the aligned

PWMs to generate 100 control motifs. Based on the assumption

that the control motifs should have occurrence rates similar to the

real motif, we selected 42 control motifs that detect similar

numbers of TFBSs in the reference data set (615%). Among them,

we chose 10 motifs that were most dissimilar to V$STAT_01,

based on the inter-motif distance measure (cut-off: 0.25) [69]. The

confidence level at each MCS was then calculated using the

following equation: (the total number of TFBSs of the real motif -

the average number of TFBSs of the control motifs)/the total

number of TFBSs of the real motif. This value represents the

fraction of the number of conserved TFBSs above the ones that

occurred by chance.

Retrieving information for promoter sequence
Human and mouse promoter sequences (22000, +500 bp of

the annotated transcription start sites) were downloaded from

Table Browser of the UCSC genome browser [70]. We used hg18

and mm9 for human and mouse genome UCSC version,

respectively. Orthologous promoter sequences of chimpanzee,

orangutan, and rhesus were obtained by blatting the 2.5-kb

human promoter sequences into the UCSC genome browser of

each species [70]. Rat promoter sequences were obtained by

blatting the 2.5-kb mouse promoter sequences into the UCSC

genome browser of rat. For each 2.5-kb promoter sequence,

PhastCons scores, Regulatory potential scores, CpG island, and

regions for repeated elements were also obtained through Table

Browser of the UCSC genome browser.

Genome-wide STAT3 ChIP-Seq data set was obtained from

[39]. In this data set, we first selected 461 genes with STAT3

binding peaks located in 2.5kb promoter regions, among which

412 genes have at least one site predicted by STAT-Scanner (cut-

off: 0.2) that is overlapped with experimentally identified regions

(within 150 bp of STAT3 binding peaks). We next defined true

positive sites as those that are overlapped with the STAT3 binding

regions and that match to the highest scoring site predicted by

STAT-Scanner, as suggested by [71].

Microarray data analysis
Cancer module map information was downloaded from the web

browser (http://ai.stanford.edu/,erans/cancer/). We used Can-

cer Module 3, 17, 18, 54, 57, 98, 124, 126, and 197, which contain

commonly up-regulated genes across liver cancer, B lymphoma,

grade3 breast cancer, and stimulated macrophages. Microarray

CEL data files of STAT3-C over-expressed cells were obtained

from Dr. E.B. Haura (University of South Florida, Tampa) [52].

Microarray data was analyzed using the SBEAMS program [72].

The data set was normalized by the global quantile scaling method

(GC-RMA) and filtered to include differentially expressed genes

with more than two fold change, with FDR ,0.1 and P-value

,0.01 (t-test).

Cell culture
Human hepatocarcinoma cell line, HepG2, was maintained in

MEM supplemented with 10% FBS (Hyclone, Logan, UT) and

1% penicillin/streptomycin (Invitrogen, Carlsbad, CA). Human

lung carcinoma cell line, A549, and breast cancer cell line, MDA-

MB-231, were cultured in DMEM with 10% FBS and 1%

penicillin/streptomycin. For IL-6 stimulation, cells were treated

with rhIL-6 (10 ng/ml) and rhIL-6sR (10 ng/ml) (R&D Systems,

Minneapolis, MN) for 15 minutes.

Chromatin Immunoprecipitation (ChIP)
ChIP assays were performed as described with minor changes

[64]. Cells were fixed in 1% formaldehyde for 15 min, harvested

in buffer A (0.25% Triton X-100, 10 mM EDTA, 0.5 mM

EGTA, 10 mM HEPES [pH 6.5]), and then resuspended in buffer

B (200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 10 mM

HEPES [pH 6.5]). Cells were then lysed in lysis buffer (1%

SDS, 10 mM EDTA, 50 mM Tris-HCl [pH 8.1] with proteinase

inhibitors). Chromatin sonication was performed three times for

40 s at setting 5.0 using a Branson 250 sonicator with a microtip.

Fragmented chromatin was immunoprecipitated with STAT3

antibodies (SC-482, SC-483; Santacruz Technology, CA, and
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S21320; Transduction Laboratories, Lexington, KY) for 4 hrs.

After reversal of the cross-links and DNA precipitation, enriched

DNA was analyzed by PCR amplification with primers that flank

the predicted STAT3 TFBSs (Table S2).

Supporting Information

Figure S1 PWM similarity clustering. (A) Total 565 vertebrate

TRANSFAC PWMs were clustered by pair-wise similarity

comparison with the Kullback-Leibler divergence. The number

of PWM clusters at different similarity P-value cut-offs is plotted.

(B) PWM cluster at 10–7 P-value of similarity was represented by

Cytoscape [73]

Found at: doi:10.1371/journal.pone.0006911.s001 (1.55 MB TIF)

Figure S2 Quality scores of STAT-related PWMs and clustered

STAT-related PWMs in the known STAT3 TFBSs. (A) Histogram

of PWM quality score for all 565 vertebrate PWMs derived from

TRANSFAC ver. 9.4. (B) Number of STAT3 binding sites

detected by combined PWMs. Forty STAT3 TFBSs [35] were

used as reference dataset. (C) PWM quality score of STAT-related

PWMs.

Found at: doi:10.1371/journal.pone.0006911.s002 (0.96 MB TIF)

Figure S3 STAT3 TFBS prediction using MATCH and

MotifLocator. Curves for the changes of the number of true

positive TFBSs detected using MotifLocator (A) or MATCH (B) in

the reference set of 22 STAT3 target genes. PWM: V$STAT3_01,

V$STAT1_01, or combined PWMs of V$STAT3_01 and

V$STAT1_01 (All).

Found at: doi:10.1371/journal.pone.0006911.s003 (0.67 MB TIF)

Figure S4 Comparison of the TFBS prediction programs using

the genome-wide STAT3 binding. Curves for the changes of the

number of true positive TFBSs detected using MATCH (A) or

MotifLocator (B) in the genome-wide STAT3 ChIP-Seq dataset.

Found at: doi:10.1371/journal.pone.0006911.s004 (0.75 MB TIF)

Figure S5 Estimation of MCS confidence scores. The graph

displays confidence scores (dotted line) and predicted numbers of

conserved TFBSs (solid line) at each MCS cut-off value.

Found at: doi:10.1371/journal.pone.0006911.s005 (0.48 MB TIF)

Figure S6 Genome-wide distribution of predicted STAT3

TFBSs. Using 2.5-kb promoter sequences of all annotated human

reference genes, predicted STAT3 TFBSs with STAT-Scanner

(blue line at top, P-value ,0.1) or STAT-Finder (blue line at

bottom, posterior probability .0.5) were plotted. The red line

(random) shows the distribution of predicted TFBSs in the

randomly permutated promoter sequences.

Found at: doi:10.1371/journal.pone.0006911.s006 (0.80 MB TIF)

Figure S7 Experimental validation of STAT3 binding to the

novel STAT3 TFBS. The affinity score (top, STAT-Scanner) and

posterior probability (middle, STAT-Finder) of the predicted

STAT3 TFBS are plotted in the sliding windows for a 2.5-kb

promoter region across the ATF3 (A), DUSP5 (C), SERPINE1 (E),

NP (G), SLC2A3 (I), and CCL2 (K) genomic loci. The closed

square at bottom indicates predicted STAT3 TFBS with posterior

probability .0.5. (B, D, F, H, J, L) ChIP analysis with an anti-

STAT3 antibody.

Found at: doi:10.1371/journal.pone.0006911.s007 (7.45 MB TIF)

Figure S8 Performance comparison of the comparative align-

ment tools for the STAT3 target genes identified in this study.

Found at: doi:10.1371/journal.pone.0006911.s008 (0.36 MB TIF)

Table S1 Lists of the reference set for known STAT3 TFBSs.

Found at: doi:10.1371/journal.pone.0006911.s009 (0.17 MB

DOC)

Table S2 The information for primer sets used in ChIP

experiment.

Found at: doi:10.1371/journal.pone.0006911.s010 (0.04 MB

DOC)

Acknowledgments

We thank Dr. E.B. Haura (University of South Florida, Tampa) for sharing

microarray data of A549 over-expressing STAT3-C.

Author Contributions

Conceived and designed the experiments: YMO JKK JYY. Performed the

experiments: YMO JKK YC. Analyzed the data: YMO JKK JYY.

Contributed reagents/materials/analysis tools: SC. Wrote the paper:

YMO JKK JYY.

References

1. Brivanlou AH, Darnell JE, Jr. (2002) Signal transduction and the control of gene
expression. Science 295: 813–818.

2. Emerson BM (2002) Specificity of gene regulation. Cell 109: 267–270.

3. Spiegelman BM, Heinrich R (2004) Biological control through regulated
transcriptional coactivators. Cell 119: 157–167.

4. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA

microarrays. Nat Genet 21: 33–37.

5. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, et al. (2003) Module
networks: identifying regulatory modules and their condition-specific regulators

from gene expression data. Nat Genet 34: 166–176.

6. Della Gatta G, Bansal M, Ambesi-Impiombato A, Antonini D, Missero C, et al.
(2008) Direct targets of the TRP63 transcription factor revealed by a

combination of gene expression profiling and reverse engineering. Genome

Res 18: 939–948.

7. Elnitski L, Jin VX, Farnham PJ, Jones SJ (2006) Locating mammalian

transcription factor binding sites: a survey of computational and experimental

techniques. Genome Res 16: 1455–1464.

8. Tompa M, Li N, Bailey TL, Church GM, De Moor B, et al. (2005) Assessing
computational tools for the discovery of transcription factor binding sites. Nat

Biotechnol 23: 137–144.

9. Hannenhalli S (2008) Eukaryotic transcription factor binding sites–modeling and
integrative search methods. Bioinformatics 24: 1325–1331.

10. Stormo GD (2000) DNA binding sites: representation and discovery. Bioinfor-

matics 16: 16–23.

11. Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification
of regulatory elements. Nat Rev Genet 5: 276–287.

12. Berezikov E, Guryev V, Plasterk RH, Cuppen E (2004) CONREAL: conserved

regulatory elements anchored alignment algorithm for identification of

transcription factor binding sites by phylogenetic footprinting. Genome Res
14: 170–178.

13. Chang LW, Nagarajan R, Magee JA, Milbrandt J, Stormo GD (2006) A
systematic model to predict transcriptional regulatory mechanisms based on

overrepresentation of transcription factor binding profiles. Genome Res 16:
405–413.

14. Doniger SW, Huh J, Fay JC (2005) Identification of functional transcription
factor binding sites using closely related Saccharomyces species. Genome Res

15: 701–709.

15. Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, et al. (2003) Finding

functional features in Saccharomyces genomes by phylogenetic footprinting.

Science 301: 71–76.

16. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and
comparison of yeast species to identify genes and regulatory elements. Nature

423: 241–254.

17. Kheradpour P, Stark A, Roy S, Kellis M (2007) Reliable prediction of regulator

targets using 12 Drosophila genomes. Genome Res 17: 1919–1931.

18. Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE (2000)

Human-mouse genome comparisons to locate regulatory sites. Nat Genet 26:

225–228.

19. Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, et al. (2004) Stat3 activation
regulates the expression of matrix metalloproteinase-2 and tumor invasion and

metastasis. Oncogene 23: 3550–3560.

20. Pritsker M, Liu YC, Beer MA, Tavazoie S (2004) Whole-genome discovery of

transcription factor binding sites by network-level conservation. Genome Res 14:

99–108.

21. Leonard WJ, O’Shea JJ (1998) Jaks and STATs: biological implications. Annu

Rev Immunol 16: 293–322.

STAT3 Target Gene Prediction

PLoS ONE | www.plosone.org 12 September 2009 | Volume 4 | Issue 9 | e6911



22. Ihle JN (2001) The Stat family in cytokine signaling. Curr Opin Cell Biol 13:

211–217.
23. Lerner L, Henriksen MA, Zhang X, Darnell JE, Jr. (2003) STAT3-dependent

enhanceosome assembly and disassembly: synergy with GR for full transcrip-

tional increase of the alpha 2-macroglobulin gene. Genes Dev 17: 2564–2577.
24. Schaefer TS, Sanders LK, Nathans D (1995) Cooperative transcriptional activity

of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci U S A 92:
9097–9101.

25. Yoo JY, Wang W, Desiderio S, Nathans D (2001) Synergistic activity of STAT3

and c-Jun at a specific array of DNA elements in the alpha 2-macroglobulin
promoter. J Biol Chem 276: 26421–26429.

26. Alonzi T, Maritano D, Gorgoni B, Rizzuto G, Libert C, et al. (2001) Essential
role of STAT3 in the control of the acute-phase response as revealed by

inducible gene inactivation [correction of activation] in the liver. Mol Cell Biol
21: 1621–1632.

27. Murray PJ (2007) The JAK-STAT signaling pathway: input and output

integration. J Immunol 178: 2623–2629.
28. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, et al. (1999)

Enhanced Th1 activity and development of chronic enterocolitis in mice devoid
of Stat3 in macrophages and neutrophils. Immunity 10: 39–49.

29. Yoo JY, Huso DL, Nathans D, Desiderio S (2002) Specific ablation of Stat3beta

distorts the pattern of Stat3-responsive gene expression and impairs recovery
from endotoxic shock. Cell 108: 331–344.

30. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, et al. (1999)
Stat3 as an oncogene. Cell 98: 295–303.

31. Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109: 1139–1142.
32. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, et al. (2003)

TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids

Res 31: 374–378.
33. Jensen ST, Liu JS (2008) Bayesian Clustering of Transcription Factor Binding

Motifs. Journal of the American Statistical Association 103: 188–200.
34. Rahmann S, Muller T, Vingron M (2003) On the power of profiles for

transcription factor binding site detection. Stat Appl Genet Mol Biol 2: Article7.

35. Vallania F, Schiavone D, Dewilde S, Pupo E, Garbay S, et al. (2009) Genome-
wide discovery of functional transcription factor binding sites by comparative

genomics: The case of Stat3. Proc Natl Acad Sci U S A 106: 5117–5122.
36. Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, et al. (2003)

MATCH: A tool for searching transcription factor binding sites in DNA
sequences. Nucleic Acids Res 31: 3576–3579.

37. Thijs G, Moreau Y, De Smet F, Mathys J, Lescot M, et al. (2002) INCLUSive:

integrated clustering, upstream sequence retrieval and motif sampling.
Bioinformatics 18: 331–332.

38. Jiang C, Xuan Z, Zhao F, Zhang MQ (2007) TRED: a transcriptional
regulatory element database, new entries and other development. Nucleic Acids

Res 35: D137–140.

39. Chen X, Xu H, Yuan P, Fang F, Huss M, et al. (2008) Integration of external
signaling pathways with the core transcriptional network in embryonic stem

cells. Cell 133: 1106–1117.
40. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, et al. (2005) Systematic

discovery of regulatory motifs in human promoters and 39 UTRs by comparison
of several mammals. Nature 434: 338–345.

41. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005)

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res 15: 1034–1050.

42. King DC, Taylor J, Elnitski L, Chiaromonte F, Miller W, et al. (2005)
Evaluation of regulatory potential and conservation scores for detecting cis-

regulatory modules in aligned mammalian genome sequences. Genome Res 15:

1051–1060.
43. Fan S, Fang F, Zhang X, Zhang MQ (2007) Putative zinc finger protein binding

sites are over-represented in the boundaries of methylation-resistant CpG islands
in the human genome. PLoS ONE 2: e1184.

44. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes.

J Mol Biol 196: 261–282.
45. Smit A, Hubley R, Green P (1996–2007) RepeatMasker Open-3.0. http://

wwwrepeatmaskerorg.
46. Palin K, Taipale J, Ukkonen E (2006) Locating potential enhancer elements by

comparative genomics using the EEL software. Nat Protoc 1: 368–374.
47. Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, et al. (2000)

Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell

carcinogenesis in vivo. Proc Natl Acad Sci U S A 97: 4227–4232.
48. Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in

inflammation and cancer. Eur J Cancer 41: 2502–2512.
49. Song JI, Grandis JR (2000) STAT signaling in head and neck cancer. Oncogene

19: 2489–2495.

50. Spano JP, Milano G, Rixe C, Fagard R (2006) JAK/STAT signalling pathway
in colorectal cancer: a new biological target with therapeutic implications.

Eur J Cancer 42: 2668–2670.
51. Segal E, Friedman N, Koller D, Regev A (2004) A module map showing

conditional activity of expression modules in cancer. Nat Genet 36: 1090–1098.
52. Dauer DJ, Ferraro B, Song L, Yu B, Mora L, et al. (2005) Stat3 regulates genes

common to both wound healing and cancer. Oncogene 24: 3397–3408.

53. Coffer P, Lutticken C, van Puijenbroek A, Klop-de Jonge M, Horn F, et al.

(1995) Transcriptional regulation of the junB promoter: analysis of STAT-

mediated signal transduction. Oncogene 10: 985–994.

54. Tomida M, Ohtake H, Yokota T, Kobayashi Y, Kurosumi M (2008) Stat3 up-

regulates expression of nicotinamide N-methyltransferase in human cancer cells.

J Cancer Res Clin Oncol 134: 551–559.

55. Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, et al. (1999) STAT3

is required for the gp130-mediated full activation of the c-myc gene. J Exp Med

189: 63–73.

56. Ehret GB, Reichenbach P, Schindler U, Horvath CM, Fritz S, et al. (2001) DNA

binding specificity of different STAT proteins. Comparison of in vitro specificity

with natural target sites. J Biol Chem 276: 6675–6688.

57. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, et al. (2005)

MatInspector and beyond: promoter analysis based on transcription factor

binding sites. Bioinformatics 21: 2933–2942.

58. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, et al. (2009)

Diversity and complexity in DNA recognition by transcription factors. Science

324: 1720–1723.

59. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, et al. (2005) Chromosome-

wide mapping of estrogen receptor binding reveals long-range regulation

requiring the forkhead protein FoxA1. Cell 122: 33–43.

60. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, et al. (2007) Distinct and

predictive chromatin signatures of transcriptional promoters and enhancers in

the human genome. Nat Genet 39: 311–318.

61. Kiryu-Seo S, Kato R, Ogawa T, Nakagomi S, Nagata K, et al. (2008) Neuronal

injury-inducible gene is synergistically regulated by ATF3, c-Jun, and STAT3

through the interaction with Sp1 in damaged neurons. J Biol Chem 283:

6988–6996.

62. Urnov FD (2003) Chromatin remodeling as a guide to transcriptional regulatory

networks in mammals. J Cell Biochem 88: 684–694.

63. Doniger SW, Fay JC (2007) Frequent gain and loss of functional transcription

factor binding sites. PLoS Comput Biol 3: e99.

64. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, et al. (2003) The

evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:

1377–1419.

65. Claverie JM, Audic S (1996) The statistical significance of nucleotide position-

weight matrix matches. Comput Appl Biosci 12: 431–439.

66. Staden R (1989) Methods for calculating the probabilities of finding patterns in

sequences. Comput Appl Biosci 5: 89–96.

67. Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, et al. (2004) An

overview of Ensembl. Genome Res 14: 925–928.

68. Needleman SB, Wunsch CD (1970) A general method applicable to the search

for similarities in the amino acid sequence of two proteins. J Mol Biol 48:

443–453.

69. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, et al. (2004)

Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99–104.

70. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The

human genome browser at UCSC. Genome Res 12: 996–1006.

71. Xie X, Rigor P, Baldi P (2009) MotifMap: a human genome-wide map of

candidate regulatory motif sites. Bioinformatics 25: 167–174.

72. Marzolf B, Deutsch EW, Moss P, Campbell D, Johnson MH, et al. (2006)

SBEAMS-Microarray: database software supporting genomic expression

analyses for systems biology. BMC Bioinformatics 7: 286.

73. Liu X, Das AM, Seideman J, Griswold D, Afuh CN, et al. (2007) The CC

chemokine ligand 2 (CCL2) mediates fibroblast survival through IL-6.

Am J Respir Cell Mol Biol 37: 121–128.

74. Leung MK, Jones T, Michels CL, Livingston DM, Bhattacharya S (1999)

Molecular cloning and chromosomal localization of the human CITED2 gene

encoding p35srj/Mrg1. Genomics 61: 307–313.

75. Hartner A, Goppelt-Struebe M, Hocke GM, Sterzel RB (1997) Differential

regulation of chemokines by leukemia inhibitory factor, interleukin-6 and

oncostatin M. Kidney Int 51: 1754–1760.

76. Snyder M, Huang XY, Zhang JJ (2008) Identification of novel direct Stat3 target

genes for control of growth and differentiation. J Biol Chem 283: 3791–3798.

77. Sasaki A, Yasukawa H, Suzuki A, Kamizono S, Syoda T, et al. (1999) Cytokine-

inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by

binding through the N-terminal kinase inhibitory region as well as SH2 domain.

Genes Cells 4: 339–351.

78. Yang Y, Ochando J, Yopp A, Bromberg JS, Ding Y (2005) IL-6 plays a unique

role in initiating c-Maf expression during early stage of CD4 T cell activation.

J Immunol 174: 2720–2729.

79. Bai Y, Ahmad U, Wang Y, Li JH, Choy JC, et al. (2008) Interferon-gamma

induces X-linked inhibitor of apoptosis-associated factor-1 and Noxa expression

and potentiates human vascular smooth muscle cell apoptosis by STAT3

activation. J Biol Chem 283: 6832–6842.

80. Firestone GL, Giampaolo JR, O’Keeffe BA (2003) Stimulus-dependent

regulation of serum and glucocorticoid inducible protein kinase (SGK)

transcription, subcellular localization and enzymatic activity. Cell Physiol

Biochem 13: 1–12.

STAT3 Target Gene Prediction

PLoS ONE | www.plosone.org 13 September 2009 | Volume 4 | Issue 9 | e6911


