
 

Int. J. Mol. Sci. 2012, 13, 10143-10153; doi:10.3390/ijms130810143 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Review 

Epigenetic Effects of Environmental Chemicals Bisphenol A  
and Phthalates 

Sher Singh 1 and Steven Shoei-Lung Li 2,3,* 

1 Department of Life Science, College of Science, National Taiwan Normal University, Taipei 116, 

Taiwan; E-Mail: sher@ntnu.edu.tw 
2 Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan 
3 Center of Excellence for Environmental Medicine, Kaohsiung Medical University,  

Kaohsiung 807, Taiwan 

* Author to whom correspondence should be addressed; E-Mail: lissl@kmu.edu.tw;  

Tel.: +886-7-313-5162; Fax: +886-7-313-5162. 

Received: 6 April 2012; in revised form: 18 July 2012 / Accepted: 8 August 2012 /  

Published: 15 August 2012 

 

Abstract: The epigenetic effects on DNA methylation, histone modification, and 

expression of non-coding RNAs (including microRNAs) of environmental chemicals such 

as bisphenol A (BPA) and phthalates have expanded our understanding of the etiology of 

human complex diseases such as cancers and diabetes. Multiple lines of evidence from  

in vitro and in vivo models have established that epigenetic modifications caused by  

in utero exposure to environmental toxicants can induce alterations in gene expression that 

may persist throughout life. Epigenetics is an important mechanism in the ability of 

environmental chemicals to influence health and disease, and BPA and phthalates are 

epigenetically toxic. The epigenetic effect of BPA was clearly demonstrated in viable 

yellow mice by decreasing CpG methylation upstream of the Agouti gene, and the 

hypomethylating effect of BPA was prevented by maternal dietary supplementation with a 

methyl donor like folic acid or the phytoestrogen genistein. Histone H3 was found to be 

trimethylated at lysine 27 by BPA effect on EZH2 in a human breast cancer cell line and 

mice. BPA exposure of human placental cell lines has been shown to alter microRNA 

expression levels, and specifically, miR-146a was strongly induced by BPA treatment. In 

human breast cancer MCF7 cells, treatment with the phthalate BBP led to demethylation of 

estrogen receptor (ESR1) promoter-associated CpG islands, indicating that altered ESR1 

mRNA expression by BBP is due to aberrant DNA methylation. Maternal exposure to 

phthalate DEHP was also shown to increase DNA methylation and expression levels of 
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DNA methyltransferases in mouse testis. Further, some epigenetic effects of BPA and 

phthalates in female rats were found to be transgenerational. Finally, the available new 

technologies for global analysis of epigenetic alterations will provide insight into the extent 

and patterns of alterations between human normal and diseased tissues. In vitro models 

such as human embryonic stem cells may be extremely useful in bettering the 

understanding of epigenetic effects on human development, health and disease, because the 

formation of embryoid bodies in vitro is very similar to the early stage of embryogenesis. 
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Abbreviations 

BBP: butylbenzyl phthalate; BPA: bisphenol A; DBP: dibutyl phthalate; DEHP: diethylhexyl 

phthalate; EDCs: endocrine-disrupting chemicals; IPA: Ingenuity Pathways Analysis;  

MBP: monobutyl phthalate; MEHP: mono-(2-ethylhexyl)phthalate; PVC: polyvinyl chloride. 

1. Introduction 

Plastics are widely used in modern life, and their unbound chemicals bisphenol A (BPA) and 

phthalates can leach out into the surrounding environment. BPA and phthalates have recently attracted 

the special attention of the scientific community, regulatory agencies and the general public because of 

their high production volume, widespread use of plastics, and adverse health effects [1]. BPA is now 

used in the production of polycarbonate plastic containers such as baby bottles and epoxy resins that 

line metal cans for food and beverages. BPA is also used as a plasticizer to soften and increase the 

flexibility of polyvinyl chloride (PVC) plastic products. BPA has another medical use in dental 

sealants and composites used for filling. It is thought that human exposure mainly occurs through food 

and drink. However, exposure may also occur through dermal contact with thermal paper, used widely 

in cash register receipts. Phthalates are a group of similar diesters of phthalic acid used as plasticizers 

to soften and increase the flexibility of PVC plastics [2]. Human exposure to phthalates mainly occurs 

through foods, because of their uses in wrapping materials and food processing [3]. When ingested 

through food contamination, diethylhexyl phthalate (DEHP) is converted by intestinal lipases to  

mono-(2-ethylhexyl) phthalate (MEHP), which is then preferentially absorbed. Dibutyl phthalate (DBP) 

is used as a component of latex adhesives. It is also used in cosmetics and other personal care products, 

as a plasticizer in cellulose plastics, and as a solvent for dyes [4]. Monobutyl phthalate (MBP) is the 

toxic metabolite of DBP and butylbenzyl phthalate (BBP). 

Epigenetics is the study of heritable changes in gene expression occurring without changes in DNA 

sequence. Epigenetic mechanisms include DNA methylation, histone modifications (acetylation, 

methylation, phosphorylation, ubiquitination, sumoylation and ADP ribosylation), and expression of 

non-coding RNAs (including microRNAs). In mammals, DNA methylation patterns are established 

during embryogenesis through the coopearation of DNA methyltransferases (DNMTs) and associated 

proteins. DNMT1 is responsible for the maintenance of methylation patterns throughout DNA 
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replication (i.e., specific for hemi-methylated sequences). DNMT2 may be involved in embryonic stem 

cells and potential RNA methylation. DNMT3A and DNMT3B are involved in active de novo DNA 

methylation at CpG sites. The early developmental period is thought to be the most susceptible to 

epigenetic insults because the DNA synthesis rate is high, and the elaborate DNA methylation 

patterning and chromatin organization required for normal tissue development is established at this 

time [5]. 

Epigenetics can influence the gene expression profiles of most organs and cell types. Furthermore, 

epigenetics is an important mechanism in the ability of environmental chemicals to influence human 

health and disease [6]. Environmental chemicals such as BPA and phthalates may play some critical 

roles in the etiology of many human disease risks [5,7,8]. Multiple lines of evidences from in vitro and 

in vivo models have established that epigenetic modifications caused by in utero exposure to 

environmental toxicants can induce alterations in gene expression that may persist throughout life. 

Thus, the environmentally induced epigenetic changes become increasingly relevant to human health 

and disease [9–11]. 

In the last few years, many investigations have examined the relationships between exposure to 

environmental chemicals and epigenetic effects, and identified several toxicants that modify epigenetic 

marks. Most of these studies conducted so far have focused on DNA methylation, whereas only a few 

recent investigations have studied the effects of environmental chemicals on histone modifications and 

expression of microRNAs [12]. Here, we review the epigenetic effects, as well as toxicogenomics, 

toxicities and health effects, of environmental toxicants BPA and phthalates derived from in vitro 

models, animal and human studies. 

2. Toxicities and Health Effects of Bisphenol A and Phthalates 

BPA and phthalates have long been known to have weak estrogenic properties and act as  

endocrine-disruptors owing to their ability to compete with endogenous steroid hormones binding to 

receptors. BPA was originally discovered as an artificial estrogen, and its estrogenic effect was used to 

enhance the rapid growth of cattle and poultry. BPA was also used for a few years as estrogen 

replacement for women. Since BPA can bind weakly to estrogen receptors ESR1 and ESR2, it is likely 

to be an endocrine disruptor. The impacts of BPA exposure on human health has been extensively 

reviewed and reported by the National Toxicology Program-Center for the Evaluation of Risks to 

Human Reproduction [13]. There is extensive literature showing the adverse effects of acute exposure 

of low doses of BPA in experimental animals [14,15]. Epidemiological studies had found associations 

between blood levels of BPA in women and impaired health, including endometrial hyperplasia and 

obesity [16]. BPA had been shown to have adverse health effects, including secondary sexual 

developmental changes and neurobehavioral alterations, in fetal through early childhood  

development [17]. Elevated exposure of pregnant women and children is of particular concern because 

of known windows of vulnerability to BPA that put the developing fetus and children at higher risk, 

compared with adults exposed to the same levels of BPA [14,18]. 

The impacts of phthalate exposure on human health have also been extensively reviewed and 

reported by the National Toxicology Program-Center for the Evaluation of Risks to Human 

Reproduction [19]. There is sufficient evidence in rodents that phthalate exposure causes 
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developmental and reproductive toxicities. In humans, dysmorphic disorders of the genital tract, 

observed in male infants, were significantly associated with prenatal exposure to phthalates [20]. 

DBP/BBP/MBP were shown to have profound effects on the male reproductive development if 

exposure occurred during the critical periods of sexual differentiation (i.e., late in the gestation). The 

phenotypic alterations observed in male offspring rats exposed to DBP/BBP/MBP during the perinatal 

period had remarkable similarities with common human reproductive disorders, including 

cryptorchidism, hypospadias and low sperm counts [21]. The antiandrogenic activities of phthalate 

mixtures and bisphenol A display additive interactions. They show a tendency to synergistic activities 

at high and antagonistic activities at low concentrations [22].  

Biomonitoring of BPA through human blood and/or urine testing may underestimate the total body 

burden of this potential toxicant. Sweat analysis should be considered as an additional method for 

monitoring bioaccumulation of BPA in humans. Induced sweating appears to be a potential method for 

elimination of BPA [23]. 

3. Toxicogenomics of Bisphenol A and Phthalates 

In the Comparative Toxicogenomics Database [24], BPA and the five most frequently curated 

phthalates (DEHP/MEHP and DBP/BBP/MBP) were found to have 1232 and 265 interactions with 

unique genes/proteins, respectively [25,26]. The GeneGo pathway maps, GeneGo processes, GeneGo 

toxicity networks and GeneGo diseases of the 1232 unique genes/proteins interacting with BPA were 

compared using MetaCore with those of the 265 unique genes/proteins interacting with five phthalates. 

BPA and phthalates were found to exhibit similar toxicogenomics, as well as adverse effects on human 

health, owing to their 89 common interacting genes/proteins. All of the top ten GeneGo pathway maps 

with highest probabilities were from the 89 common genes/proteins interacting with both BPA and 

phthalates, while those interacting with either BPA- or phthalate-specific genes/proteins had lower and 

little probabilities. All top 10 BPA- and phthalate-specific GeneGo processes were similar to those of 

the 89 common genes/proteins. It is of importance that five of the top 10 GeneGo toxicity networks 

predicted by the 89 common genes/proteins were involved in inflammation, because many chronic 

human diseases are due to immune and inflammatory dysfunctions [27]. It is also of interest that six of 

the top 10 GeneGo diseases were urogenital, prostatic, male genital, female genital, endometrial, and 

breast neoplasms. The diseases and disorders, as well as molecular and cellular functions, and 

physiological system development and functions, of the 89 common genes/proteins interacting with 

both BPA and phthalates were further analyzed using IPA, and cancer, developmental disorder and 

reproductive diseases were found to be the top three categories. Finally, these 89 genes/proteins may 

serve as biomarkers to assay the toxicities of environmental chemicals BPA and phthalates leached out 

from the widely used plastics. 

4. Epigenetic Effects of Bisphenol A and Phthalates 

Bisphenol A (BPA) and phthalates (DEHP/MEHP and DBP/BBP/MBP) are epigenetically toxic 

(Figure 1 and Table 1). The epigenetic effect of BPA was clearly demonstrated in viable yellow  

mice [28]. The maternal exposure to BPA shifted the coat color distribution of viable yellow mouse 

offspring toward yellow by decreasing CpG methylation in the IAP retrotransposable sequence 
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inserted upstream of the Agouti gene. Interestingly, this effect on DNA methylation and the associated 

change in coat color of the exposed animals were prevented by maternal dietary supplementation with 

a source of methyl group such as folic acid or the phytoestrogen genistein [29].  

Table 1. Epigenetic effects of bisphenol A (BPA) and phthalates. 

Chemicals Epignetic alterations Genes Organisms References 

BPA DNA hypomethylation Agouti Mouse [28,29] 
BPA DNA hypomethylation Pde4d4 Rat [30,31] 
BPA DNA hypomethylation Nsbp1 

Rat [32] 
 DNA hypermethylation Hpcal1 

BPA DNA hypermethylaton ESR1&2 Rat [33] 
BPA DNA hypomethylation Hoxa10 Mouse [34] 

BPA 
DNA hypomethylation  

or hypermethylation 
13 genes Mouse [35] 

BPA DNA hypermethylation LAMP3 Human [36] 
BPA Histone modification H3K27me3 Human Mouse [37,38] 
BPA Induction of microRNA miR-146a Human [39] 
BPA Up/down-regulated miRNAs 37 miRNAs Mouse [40] 

Phthalate BBP DNA hypomethylation ESR1 Human [41] 
Phthalate DEHP DNA hypermethylation INSL3 Mouse [42] 
Mixture of BPA  

& phthalates 
Differential DNA methylation 

Transgeneration (F3) 
 Rat [43] 

Figure 1. Epigenetic mechanisms of bisphenol A and phthalates. 

 

The in utero and neonatal exposure to low doses of bisphenol A (BPA) and/or phthalates 

(DEHP/MEHP and BBP/DBP/MBP) may cause DNA hypermethylation/hypomethylation at CpG 

islands near gene promoter regions, histone modifications (acetylation, methylation, phosphorylation, 

ubiquitination, sumoylation and ADP ribosylation), and expression of non-coding RNAs, including 



Int. J. Mol. Sci. 2012, 13 10148 

 

 

microRNAs. These epigenetic marks can induce up/down alterations in gene expression that may 

persist throughout a lifetime. These permanent changes will result in adverse health effects such as 

neural and immune disorders, infertility, and late-onset complex diseases (cancers and diabetes). The 

transient exposure to BPA and phthalates of gestating female rats was further shown to be a 

transgenerationally differential DNA methylation of the F3 generation. 

Exposure to endocrine disrupting chemicals such as BPA and phthalates is of particular concern in 

the context of development. Neonatal exposure of rats to BPA resulted in an increased incidence of 

prostate intraepithelial neoplasia, and the prostate tissues showed consistent methylation changes. For 

example, the phosphodiesterase type 4 variant 4 (Pde4d4) gene of the rat was found to have 

hypomethylation in the regulatory CpG island and an elevated expression in the adult prostate [30,31]. 

Neonatal exposure of the rat to BPA was also reported to alter the promoter methylation and 

expression of nucleosome binding protein-1 (Nsbp1) and hippocalcin-like 1 (Hpcal1) genes [32]. The 

neonatal exposure to BPA was shown to induce hypermethylation of estrogen receptor promoter 

regions in rat testis, indicating methylation mediated epigenetic changes as one of the possible 

mechanisms of BPA induced adverse effects on spermatogenesis and fertility [33]. 

BPA has been shown to alter the methylation status of the Hoxa10 gene in mouse in utero exposure 

model [34]. The in utero BPA treatment increased the expression of the developmental homeobox 

gene Hoxa10 in the uterus of female offspring at two weeks of age. This change in gene expression 

was associated with significant demethylation of specific CpG sites in both promoter and intron of the 

Hoxa10 gene. Genome-wide effects of BPA on DNA methylation in brain tissue have also been 

investigated. Maternal exposure to BPA was associated with either hypo- or hyper-methylation of the 

promoter-associated CpG islands in several loci in the fetal mouse brain [35]. Gene-specific changes 

were confirmed at 13 loci, and changes in DNA methylation state of two genes, encoding  

transport-related proteins, were associated with altered gene expression profiles. Exposure of human 

primary breast epithelial cells to low-dose BPA was reported to increase DNA methylation at CpG 

islands of lysosomal-associated membrane protein 3 (LAMP3) gene and repress the expression of  

LAMP3 gene [36]. 

BPA effects on histone modifications were found to increase expression of the histone 

methyltransferase Enhancer of Zeste Homolog 2 (EZH2) level in human breast cancer MCF7 cells and 

mammary glands of six-week-old mice exposed to BPA in utero [37]. Both in intro and in vivo, these 

changes were accomplished by an increase in histone H3 trimethylation at lysine 27, which is the main 

histone modification catalyzed by EZH2 and is typically associated with gene expression [38].  

Concerning microRNAs (miRNAs), BPA exposure of human placental cell lines has been shown to 

alter miRNA expression levels, and specifically, miR-146a was strongly induced by BPA treatment. 

This resulted in both slower proliferation rate and higher sensitivity to the DNA damaging agent 

bleomycin [39]. A mouse sertoli cell line TM4 exposed to BPA for 24 h was reported to have two-fold 

up or down-regulated 37 miRNAs, and most of miRNAs were down-regulated over the course of  

BPA treatment [40]. 

As to phthalates, treatment of human breast cancer MCF7 cells with BBP led to the demethylation 

of estrogen receptor (ESR1) promoter-associated CpG islands, indicating that altered ESR1 mRNA 

expression by BBP is related to aberrant DNA methylation in the promoter region of the receptor  

gene [41]. Maternal exposure to DEHP was shown to increase DNA methylation and expression levels 
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of DNA methyltransferases in mouse testis. Fetal testis was a main target for DEHP as evidenced in 

testicular dysgenesis syndrome due to a reduction in insulin-like hormone 3 (INSL3) expression and  

testosterone production [42].  

Molecular mechanisms that underlie the long-lasting effects of BPA and phthalates continue to be 

elucidated, and they likely involve disruption of epigenetic programming of gene expression during 

development. It will be important to determine whether epigenetic markers in more accessible tissues 

correlate with epigenetic markers in target tissues. Many studies strongly imply that exposures to 

endocrine-disrupting chemicals (EDCs) may have cumulative adverse effects on future generations, 

and that these effects could be mediated through epigenetic mechanisms [43]. 

Finally, the transient exposure to a plastic mixture (BPA and phthalates) of gestating female rats 

during the period of embryonic sex determination was shown to promote early-onset female puberty 

transgenerationally (F3 generation) and decrease the pool size of ovarian primordial follicles. 

Spermatogenic cell apoptosis was also affected transgenerationally, and differential DNA methylation 

of the F3 generation sperm promoter regions was found in all exposed lineage males [44]. 

5. Conclusion and Remarks 

The hypomethylation of the mouse Agouti gene caused by exposure to BPA can be prevented by 

maternal dietary supplementation with a source of methyl group [29]. However, it remains to be 

investigated if any bioaccumulation of epigenetic impacts can be reversed/eliminated after exposure to 

BPA and phthalates is discontinued. The differential DNA methylation was reported to be 

transgenerational after exposure of gestating female rats to mixture of BPA and phthalate, but the 

synergistic impact of both BPA and phthalate remain to be determined. 

The growing evidence indicates that epigenetics holds substantial potential for developing 

biological markers to predict which chemicals would put exposed subjects at risk and which 

individuals would be more susceptible to developing disease. It is still important to note that the 

mechanisms by which environmental toxicants modulate the epigenetic landscape of individual cells 

are yet to be elucidated in order to better understand the biology of epigenetic alterations and the health 

effects of toxic exposures on these disease-associated epigenetic alterations. Better defined 

mechanisms will lead to better prediction of the toxic potential of environmental chemicals such as 

BPA and phthalates and allow for more targeted and appropriate disease prevention strategies. 

In human studies, the use of laboratory methods with enhanced precision, sensitivity and coverage 

will be required, so that epigenetic changes can be detected as early as possible and well ahead of 

disease diagnosis. New technologies available now allow for global analysis of epigenetic alterations 

and these may provide insight into the extent and patterns of alterations between human normal and 

diseased tissues. Appropriate in vitro models must be considered. In this context, human embryonic 

stem cells may be extremely useful in bettering the understanding of epigenetic effects on human 

development, health and disease, because the formation of embryoid bodies in vitro is very similar to 

the early stage of embryogenesis [45,46]. 
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